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1. Intro to (Co)bordism Theory

1.1. Overview.

1.2. Colimits of topological spaces and abelian groups.

1.3. Classifying spaces. A Rn-vector bundle ξ over a space X is a family of
n-dimensional vector spaces parameterized by X. More precisely,

Definition 1.1. we have map E
p−→ X such that

(1) for any x ∈ X, p−1(x) ∼= Rn;
(2) any x ∈ X has a neighborhood U with p−1(U) ∼= U × Rn, and the map to

X is projection to the first factor;
(3) given two such neighborhoods U1 and U2 with U1 ∩ U2 ̸= ∅,

(U1 ∩ U2)× Rn ∼=−→
u

p−1(U1 ∩ U2)
∼=←−
v

(U1 ∩ U2)× Rn.
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Let h12 = v−1 ◦ u. For any u ∈ U1 ∩ U2 and x ∈ Rn, h12(u, x) = (u, η12)(u)(x),
where η12(u) ∈ GLn(R). This data gives a map

U1 ∩ U2
η12−−→ GLn(R)

called the transition map. Transition maps are compatible in a suitable way you
would expect.

Example 1.2. Let E = X ×Rn. This is a trivial n-bundle, which we shall denote
by o(n). When n = 1, it is called a line bundle. In this case, η12 is the constant
map.

Example 1.3. Let X = S1, n = 1, E be the interior of the Möbius band. This is
a twist of the trivial line bundle, and so E ≇ S1 × R.

1.4. Characteristic classes.

1.5. Eilenberg-MacLane spaces.

1.6. Tangential structures. Let H,G be Lie groups and ρ : H → G be a homo-
morphism.

Definition 1.4. (1) Let Q → M be a principal H-bundle. The associated
principal G-bundle Qρ →M is the quotient

Qρ = (Q×G)/H,

where H acts freely on the right of Q×G by (q, g) ·h = (q ·h, (ϕ(h))−1(g)),
where q ∈ Q, g ∈ G, and h ∈ H.

(2) Let P → M be a principal G-bundle. A reduction to H is a pair (Q, θ)
consisting of a principal H-bundle Q→M and an isomorphism

Qρ P

M

θ

of principal G-bundles.

Example 1.5. Recall the determinant homomorphism

GLn(R)
det−−→ R ̸=0.

Let GL+
n (R) ⊂ GLn(R) denote the subgroup det−1(R>0). An orientation of a real

rank n vector bundle V → M is a reduction of structure group of B(V ) → M
to the group GL+

n (R) → GLn(R), where B(V ) → M is the associated principal
GLn(R)-bundle, or the frame bundle.

Definition 1.6. The spin group Spin(n) is the double cover group of SO(n).

Example 1.7. Spin(1) = Z/2, Spin(2) = S1, Spin(3) = S3. Note that Spin(3) is a
nontrivial double cover of SO(2).

Definition 1.8. Let V → M be a real vector bundle of rank n with a metric. A
spin structure on V is a reduction of structure group of the orthonormal frame
bundle B(V )→ M along ρ : Spin(n)→ O(n). Here ρ is the projection Spin(n)→
SO(n) followed by the inclusion SO(n)→ O(n). Therefore, it can be thought of in
two steps: an orientation followed by a lift to the double cover.
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1.7. Spectra. Recall that we have an adjoint pair of sets Map∗(ΣX,Y ) ∼= Map∗(X,ΩY ).

Definition 1.9. A prespectrum T is a sequence {Tn}n≥0 of pointed spaces and
maps σn : ΣTn → Tn+1. T is an Ω-prespectrum if the adjoints σ̃n : Tn → ΩTn+1

of structure maps are weak homotopy equivalence. T is further a spectrum if σ̃n,
n ≥ 0 are homeomorphism.

Example 1.10. Let X be a pointed space. The suspension prespectrum of X,
denoted Σ∞X, is defined by setting (Σ∞X)n = ΣnX with structure maps being
the identity maps. If X = S0, Σ∞S0 = S is the sphere prespectrum.

Example 1.11. Let A be an abelian group. The set of Eilenberg-MacLane spaces
{K(A,n)}n≥0 with the obvious structure maps forms an Ω-prespectrum.

One might wonder if every prespectrum becomes a spectrum after some process.
This leads to the concept of spectrification. Let T be a prespectrum. If the adjoint
structure maps σ̃n : Tn → ΩTn+1 are inclusions, then we define (LT )n to be the

colimit of Tn
σ̃n−−→ ΩTn+1

Ωσ̃n+1−−−−→ Ω2Tn+2 → · · · . Namely,

(LT )n = colimq→∞ΩqTn+q.

{LT}n≥0 is then a spectrum.

Remark 1.12. Every map is a cofibration up to homotopy equivalence. In general,
we can define colimits not only for inclusions, but also for cofibrations.

The spectrification function L : PreSp → Sp is the left adjoint to the forgetful
functor U : Sp→ PreSp. In particular, for a spectrum S and a prespectrum T , we
have

[LT, S] = [T,US].

Example 1.13. Let X be a pointed space. Consider its suspension prespectrum
Σ∞X. Let LΣ∞X be its spectrification. Then (LΣ∞X)0 = colimq→∞ΩqΣqX,
denoted by QX. In particular, for X = S0, (LΣ∞S0) is the sphere spectrum S
(note here we abuse the notation).

Example 1.14. Let A be an abelian group. The spectrification of {K(A,n)}n≥0

is the Eilenberg-MacLane spectrum HA.

Definition 1.15. Let T be a prespectrum. Its homotopy groups is defined to

be the colimit of πn+qTq
πn+qσ̃q−−−−−→ πn+qΩq+1

adjunction−−−−−−−→ πn+q+1Tq+1 −→ · · · . Namely,

πnT = colimq→∞πn+qTq.

The homology groups of T is defined similarly:

Hn(T ;R) = colimq→∞H̃n+q(Tq;R),

where the colimit is taken over maps

H̃n+q(Tq;R)
Σ−→ H̃n+q+1(ΣTq;R)

(σq)∗−−−→ H̃n+q+1(ΣTq+1;R).

Remark 1.16. In general, we cannot define the cohomology groups in this way.
Instead, we will see how it goes using representability.
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Let M,N be two prespectrum. We use the notion [M,N ]−k (k ∈ Z) to denote
the homotopy classes of maps from M to N of degree −k. To be specific, any map
in [M,N ]−k consists of a sequence of maps Mn → Nn+k such that the diagram
commutes:

ΣMn ΣNn+k

Mn+1 Nn+k+1

where the columns are the structure maps. Two maps of prespectra of degree −k
are homotopic, denoted f ∼ g, if there is a map H : M∗ ∧ I+ → N∗+k which

restricts to f ∨ g along the inclusion M∗ ∨M∗
i0∨i1−−−→ M∗ ∧ I+

H−→ N∗+k, where
I+ = [0, 1] ⊔ {∗}, and i0, i1 are the inclusion maps at 0, 1 ∈ [0, 1], respectively. If
N is an Ω-prespectrum, then [M,N ]−k is an abelian group. If in addition, N is
a ring spectrum (i.e. a spectrum admitting a ring structure, see Definition 1.19),
then [M,N ]−∗ forms a graded ring. We usually write [M,N ] = [M,N ]0.

Corollary 1.17. πdM = [S,M ]d.

Definition 1.18. Let R be a ring. Then the Eilenberg-MacLane spectrum (Ex-
ample 1.14) is a ring spectrum. The cohomology ring of a prespectrum M with
coefficients in R is defined to be H∗(M ;R) := [M,HR]−∗.

Definition 1.19. Let T be a prespectrum. T is a ring prespectrum if there are
maps η : S0 → T0 and ϕm,n : Tm ∧ Tn → Tm+n such that the following diagrams
commute up to homotopy equivalence:

Tm ∧ ΣTn Tm ∧ Tn+1

Σ(Tm ∧ Tn) ΣTm+n Tm+n+1

ΣTm ∧ Tn Tm+1 ∧ Tn

id∧σn

ϕm,n+1

(−1)n

Σϕm,n σm+n

σm∧id
ϕm+1,n

S0 ∧ Tn T0 ∧ Tn

Tn

η∧id

∼=
ϕ0,n

and

Tn ∧ T0 Tn ∧ S0

Tn

ϕn,0

id∧η

∼=

T is said to be associative if the following diagrams are homotopy commutative:

Tm ∧ Tn ∧ Tp Tm+n ∧ Tp

Tm ∧ Tn+p Tm+n+p

ϕm,n∧id

id∧ϕn,p ϕm+n,p

ϕm,n+p

T is commutative if there are equivalences (−1)mn : Tm+n → Tm+n that suspend
to (−1)mn on ΣTm+n, and the following diagrams are homotopy commutative:

Tm ∧ Tn Tn ∧ Tm

Tm+n Tm+n

t

ϕm,n ϕn,m

(−1)mn
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T is a ring spectrum if it is already a spectrum.

Example 1.20. The sphere spectrum S is a ring spectrum.

Example 1.21. The Eilenberg-MacLane spectrum HR is a ring spectrum, if R is
a ring.

Example 1.22. The Thom spectra MO,MSO,MSpin are ring spectra. We will
discuss them right away.

Recall that we have a chain of inclusions

in : BO(n)→ BO(n+ 1).

For each in, it is the colimit of the inclusions of real Grassmannians in the columns
of the diagram

...
...

· · · Gn,k Gn,k+1 · · ·

· · · Gn,k Gn,k+1 · · ·

...
...

From the definition of tautological vector bundle S(n)→ BO(n), there is a natural
isomorphism over BO(n):

i∗nS(n+ 1)
∼=−→ R⊕ S(n).

If Y is a stable tangential structure, then we also have maps in : Y(n)→ Y(n+1).
The same isomorphism can be derived in a similar manner.

Let ξ : V → X be an n-plane bundle. Apply one-point compactification to each
fiber of ξ to obtain a new bundle S(V ) over X, whose fibers are spheres Sn with
given basepoints (usually denoted ∞). These basepoints specify a cross-section
X → S(V ).

Definition 1.23. The Thom space of ξ is the quotient space Tξ = S(V )/X. In
other words, T (ξ) is obtained from V by applying fiberwise one-point compactifica-
tion and then identifying all of the points at ∞ to a single basepoint (also denoted
as ∞).

If we equip ξ with an Euclidean metric and denote its unit disk bundle and
unit sphere bundle by D(V ), S(V ), respectively, then there is a homeomorphism
between Tξ and the quotient space D(V )/S(V ), written as Thom(X;V ).

Proposition 1.24. Thom spaces satisfy

(1) Thom(X × Y ;V ×W ) = Thom(X;V ) ∧ Thom(Y ;W ).
(2) Thom(X;V ⊕ Rn) = ΣnThom(X;V ).
(3) Thom(X;Rn) = ΣnX+.
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Here V → X, W → Y are real vector bundles, and Rn is the trivial real bundle of
dimension n.

Proof. For (1), note that D(V ×W ) = D(V )×D(W ), S(V ×W ) = ∂D(V ×W ) =
∂D(V )×D(W )∪D(V )× ∂D(W ) = S(V )×D(W )∪D(V )×S(W ). It follows that

Thom(X × Y ;V ×W ) = D(V ×W )
/
S(V ×W )

= D(V )×D(W )
/
S(V )×D(W ) ∪D(V )× S(W )

= D(V )/S(V ) ∧D(W )/S(W ) = Thom(X;V ) ∧ Thom(Y ;W ).

Let V = ∅, then D(V )/S(V ) = X+. Hence, (3) immediately follows from (2).
For (2), we induct on n. The only case to be checked is when n = 1, and the
rest are straightforward. Up to homeomorphism, we can replace the disk bundle of
V ⊕ R → X by the Cartesian product of the unit disk in R and the disk bundle
of V → X. Crushing the boundary of the disk bundle of V ⊕ R → X to a point
is the same crushing which one dose to form the suspension of Thom(X;V ). The
base case is then verified. □

Let Y be a stable tangential structure. Consider the diagram

R⊕ S(n) S(n+ 1)

Y(n) Y(n+ 1)i

There are induced maps in Thom spaces by Proposition 1.24

(1.25) sn : ΣThom(Y(n);S(n))→ Thom(Y(n+ 1);S(n+ 1)).

Definition 1.26. The Thom prespectrum TY of a stable tangential structure
Y is defined by TYn := Thom(Y(n);S(n)) with structure maps given by (1.25).
The Thom spectrum MY is the spectrification L(TY).

Let {G(n)}n≥0 be a sequence of Lie groups with maps G(n)→ G(n+1) for each
n. Let ρ(n) : G(n) → O(n) be a series of homomorphisms such that the diagram
commutes:

· · · G(n) G(n+ 1) · · ·

· · · O(n) O(n+ 1) · · ·

ρ(n) ρ(n+1)

There is a stable tangential structure BG→ BO that is the colimit of the induced
sequence of maps of classifying spaces

· · · BG(n) BG(n+ 1) · · ·

· · · BO(n) BO(n+ 1) · · ·

Bρ(n) Bρ(n+1)

The corresponding Thom spectrum is defined by MG, where G = colimnG(n).

Example 1.27. The Thom spectrum of the stable framing tangential structure is
S.
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1.8. Pontryagin-Thom isomorphism. Endow Rn+k with the standard inner
product. The map W → W⊥ to the orthogonal subspace induces inverse dif-
feomorphisms Gn,k → Gk,n between Grassmannians, exchanging the tautological
subbundles S with the tautological quotient bundle Q. Taking the double colimit
as n, k →∞ yields an involution

ℓ : BO → BO.

If X → BO is a stable tangential structure, we define its pullback by ℓ to be a new
stable tangential structure

X⊥ X

BO BOℓ

If f : M → BO is the stable classifying map of a vector bundle V →M , and there
is a complementary bundle V ⊥ →M such that V ⊕V ⊥ ∼= Rm, then ℓ◦f : M → BO
is a stable classifying map for V ⊥ →M .

Fix a stable tangential structure π : X → BO. Let M be a smooth manifold.
A stable X -structure on M is an X (n + q)-structure on TM → M for sufficiently
large q, i.e. compatible classifying maps

TM S(n) S(n) · · ·

M Xn,q Xn,q+1 · · ·

where Xn,q is the pullback of X (n)→ BO(n) to the Grassmannian Gn,q ↪−→ BO(n).
Suppose M ↪−→ An+q is an embedding with normal bundle v → M of rank q. We
use the Euclidean metric to identify v ∼= TM⊥, and so TM ⊕ v ∼= Rn+q. This leads
to a classifying map

v Q(q)

M X⊥
q,n

where X⊥
q,n is the pullback of X⊥ → BO to the Grassmannian Gq,n. After stabiliz-

ing, we get a classifying map of the stable normal bundle. It is simply ℓ ◦ f , where
f is the stable classifying map of the tangent bundle. Note that ℓ ◦ f is defined
without choosing an embedding. In this way, we pass back and forth between stable
tangential X -structures and stable normal X⊥-structures.

Definition 1.28. Define the X -bordism groups

ΩX
n (X) = {(N, f) | N is an n-dimensional closed smooth manifold endowed an

X -structure on the stable tangent bundle, f : N → X continuous}
/
∼ .

Here (N, f) ∼ (N ′, f ′) if there exists (M, g), where M is an (n + 1)-dimensional
compact smooth manifold with an X -structure on the stable tangent bundle with
∂M = N ⊔ N ′, and the X -structures on N,N ′ are induced from that on M , and
g : M → X is a continuous map such that g |∂M= f ⊔ f ′. If X = BG, then we
write this notion ΩG

n (X) instead.
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Theorem 1.29 (Pontryagin-Thom). There is an isomorphism

ϕ : πn(MX⊥)→ ΩX
n .

Proof. We will construct ϕ. Note that a class in πn(MX⊥) is represented by

f : Sn+ε → TX⊥
q = Thom(X⊥

q ;S(q))

for some positive q ∈ Z. We choose f so that it is smooth and transverse to the
zero section Z(q) ⊂ Thom(X⊥

q ;S(q)). DefineM := f−1(Z(q)) ⊂ Sn+q. The normal
bundle v → M to M is a rank q bundle isomorphic to the pullback of the normal
bundle to Z(q), which is S(q)→ Z(q). It inherits the X⊥-structure

M
f−→ Z(q) ∼= X⊥(q)→ X⊥

on its normal bundle, so on its stable normal bundle. This is equivalent to an
X -structure on the stable tangent bundle to M . □

1.9. Serre spectral sequence.

1.10. Adams spectral sequence. Before we move on to the Adams spectral
sequence, we would like to revisit the Serre’s program of calculating the homo-
topy groups. Two main tools in the process are Hurewicz theorem and Eilenberg-
MacLane spaces. Suppose we are given a (k − 1)-connected space X, then πkX ∼=
HkX. At the same time, X and K(πk(X), k) share the same homotopy groups.
Write p : X → K(πk(X), k). If we replace X by some homotopy equivalent space

X̂ such that the diagram commutes:

X̂ K(πk(X), k)

X

p̂

≃
p

then we get a Serre fibration. Let X1 denote its fiber, so we have a fiber sequence

X1 → X0
p0−→ K(πk(X), k),

where X0 = X̂. Denote K(πk(X), k) by K for simplicity. There is an associated
long exact sequence

· · · → πiX1 → πiX0
πi(p0)−−−−→ πiK → πi−1X1 → · · · .

πi(p0) is an isomorphism for i = k and 0 for i ̸= k. It follows that

πiX1 =

{
0 , i ≤ k,

πiX , i > k.

We can use the Serre SS to compute H∗X1. Using the Hurewicz theorem, we
can find the first nontrivial homotopy group of X1, i.e. the second such group for
X0 = X.

Example 1.30. Let X = S2, π2S
2 = Z and π1S

2 = 0. There is a map S2 →
K(Z, 2) = CP∞. Consider the fiber sequence

S1 ≃ ΩK(Z, 2)→ X1 → S2 → K(Z, 2).
Note thatH∗K(Z, 2) = Z[x], x ∈ H2K(Z, 2). Serre SS indicates Ep,q

2 = Hp(K(Z, 2);Hq(X1)) =⇒
H∗S2.
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Figure 1.10.1: E4-page of S2.
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From the figure, d4(y) = x2. So it is easy to derive that d4(x
ny) = xn+2. We

conclude that

Hi(X1) =

{
Z , i = 0, 3,

0 , else.

In fact, X1 ≃ S3. This is actually the Hopf fibration S1 → S3 → S2. Observing
the long exact sequence, one finds

πi(S
3) =

{
Z , i < 3,

πi(S
2) , i ≥ 3.

It follows that π3(S
2) = Z.

Proposition 1.31. Let F → E → B be a fiber sequence. Then ΩB → F → E is
also a fiber sequence.

If we have a fiber sequence F
i−→ E

p−→ B, where all spaces are n-connected, then
there is a long exact sequence in dimension around 2n:

· · · → HiB
p∗

−→ HiE
i∗−→ HiF

δ−→ Hi+1B → · · ·
Suppose p∗ is onto in our range of dimensions. In this case, i∗ = 0 and J is
one-to-one. The long exact sequence restricts to a short exact sequence

(1.32) 0→ Hi−1F
J−→ HiB

p∗

−→ HiE → 0.

In Serre’s approach, the first step is to study the fiber sequence F
i−→ Sn p−→

K(Z, n). This leads to a long exact sequence

· · · → Hn−1F → HnK(Z, n)
∼=−→
p∗

HnSn → 0.

Like what we did in (1.32), we obtain a short exact sequence

0→ Hn+i−1F
J−→ Hn+iK(Z, n) p∗

−→ Hn+iSn → 0

for 0 ≤ i < n− 1. For n > 2, pin+1S
n = πn+1F = Z/2.

However, things would get really unsatisfying if we choose the coefficient to
be Z/2. In this case, p∗ induced by F → B → K(Z/2, n + 1) is not onto. So
there is no elegant short exact sequence as in (1.32). To resolve this, Adams re-
placed K(Z/2, n + 1) by another space L such that L is good enough to restart
Serre’s algorithm. By we mean “good”, we are looking for some n-connected L
with πn+1L = Z/2 and known cohomology, such that p∗ is onto in the interested
range.
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Proposition 1.33. For any (n−1)-connected space, there is a map X
p−→ L, where

L is desired good space. Moreover, p∗ is onto below dimension 2m.

The next goal to construct this L. Consider the map Sn → K(Z/2, n). We know

H∗K(Z/2, n) = Z/2 [SqIxn]. Here I = (i1, i2, · · · , iℓ) ̸= ∅ needs to be admissible

(i.e. it ≥ 2it+1 ≥ 0 for all 1 ≤ t < ℓ) with excess e(I) =
∑ℓ−1

i=1(it−2it+1) < n. This
is a certain kind of cyclic A -module.

The Steenrod algebra A will be examined in great detail in Chapter 2. In short,
it is a non-commutative Z/2-algebra, generated by Sqi for i > 0 subject to the
Adem relations

SqaSqb =
∑

0≤i≤a/2

(
b− 1− i

a− 2i

)
Sqa+b−iSqi

for a < 2b. This relation enables us to construct higher Steenrod operators with
the lower ones. For example, in the case n ≥ 0, we have Sq1Sq2n = Sq2n+1 and

Sq2Sq4n =
∑(

4n− 1− i

2− 2i

)
Sq4n+2−iSqi

=

(
4n− 1

2

)
Sq4n+2 +

(
4n− 2

0

)
Sq4n+1Sq1.

Recall that in elementary number theory, we have the following result:

Theorem 1.34 (Lucas). For non-negative integers m,n, and a prime p,(
m

n

)
≡

k∏
i=0

(
mi

ni

)
mod p,

where m =
∑k

i=0 mip
i and n =

∑k
i=0 nip

i are the base p expansions of m and n,
respectively.

Applying to m =
∑

mi2
i and n =

∑
ni2

i, where mi, ni ∈ {0, 1} for all i, we
deduce that (

4n− 1

2

)
≡ 1 mod 2,

and hence,

Sq2Sq4n = Sq4n+2 + Sq4n+1Sq1 = Sq4n+2 + Sq1Sq4nSq1.

Equivalently,

Sq4n+2 = Sq2Sq4n + Sq1Sq4nSq1.

In the preceding case, we actually showed that A , as a Z/2-algebra, is generated

by {Sq2
i

: i ≥ 0}.
We can now answer the question why F → K(Z/2, n + 1) is not onto in H∗.

Consider the short exact sequence

0→ Hn+i−1F → Hn+iK(Z/2, n)→ Hn+iSn → 0.

A generator xn ∈ Hn+iK(Z/2, n) is sent to xn ∈ Hn+iSn. Let y be the bottom
class of F , corresponding to yn+1 ∈ Hn+1−iF , which is sent to Sq2xn. Then
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Sq3yn+1 is sent to Sq3xn. There is another class yn+3 ∈ Hn+1−iF that is mapped
to Sq4xn. We immediately deduce that

Sq1yn+3 7→ Sq5xn

Sq2yn+3 7→ Sq6xn

Sq4yn+1 7→ Sq4Sq2xn

{yn+2j−1 : j > 0} forms a subset of generators of Hn+i−1F . However, Sq4 cannot
be generated by lower Steenrod squares by Adem relations. This indicates that yn+3

cannot lie in the image of p∗, for if it did, then it corresponds to a generator Sq4xn of
H∗K(Z/2, n), contradicting to e(I) < n. To fix this, Adams chose a set {z1, z2, · · · }
in H∗F that generate it as an A -module, each of which determines a map to some
K(Z/2, Ni). Collectively, they give a map p to

∏
i,Ni

K(Z/2, Ni). Since the set

{z1, z2, · · · } generates H∗F as an A -module, p∗ is onto. This
∏

i,Ni
K(Z/2, Ni) is

ideal candidate for the desired L.
Accepting Adam’s remediation, and recursively repeating on each level, we can

continue Serre’s program to get the Adams resolution:

X0 = Sn K(Z, n) = L0

X1 L1

X2 L2

...
...

p0

p1

p2

where Xi is the fiber of pi−1, each pi induces surjection in H∗, and each Li is a
product of K(Z/2, Ni) for some Ni, i ≥ 1. So H∗(Ls) is a free mod 2 A -module.
For each fiber sequence

Xs+1 → Xs → Ls,

there is an associated short exact sequence from Serre sequence sequence (i < n)

0←− Hn+iXs ←− Hn+iLs ←− Hn+i−1Xs ←− 0.

From the discussion, it is not hard to see the following result:

Theorem 1.35. πn+i(S
n) is a finite abelian group for 0 < i < n− 1, independent

of n.

Packaging up everything, we make the following definition.

Definition 1.36. The following diagram is called an Adams resolution

Sn = X0 X1 X2 X3 · · ·

K(Z, n) = L0 L1 L2 L3

f0 f1 f2 f3

satisfying

(1) Xs+1 is the fiber of fs, and is (n+ s)-connected;
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(2) H∗(fs) is onto;
(3) H∗(Ls) is a free A -module in the stable range (below 2n+2s−2) for s > 0.

Recall that in homological algebra, Ext∗R(M,N) is the cohomology of chain com-
plex Tot(homR(M•, N

•)), where M•, N
• are projective and injective resolutions of

M,N , respectively. Let R = A , M = H∗X1, and N = Z/2. We get

Ext∗A (H∗X1,Z/2).

This is the E2-term of the Adams spectral sequence (see his paper [2] in 1958) for
finding the 2-component of π∗X1 for large ∗, n.

One can generalize this to any spectrum X.

Theorem 1.37 (Adams spectral sequence). There is a spectral sequence with E2-
term

Es,t
2 = Exts,tA (H∗X,Z/2) =⇒ πt−sX,

with the Adams indexing dn : Es,t
n → Es+n,t+n−1

n .

Example 1.38. Let X = HZ. Then H∗(HZ;Z/2) = A ⊗E Z/2, and so Es,t
2 =

Exts,tE (Z/2,Z/2). Replace A by the subalgebra E generated by Sq1. The Adem

relations tells us Sq1Sq1 = 0, so E has basis {1,Sq1}, with |Sq1| = 1. There is a
free E-resolution of Z/2

Z/2←− E
Sq1

←−− ΣE
Sq1

←−− Σ2E
Sq1

←−− · · ·

where every unit 1 of ΣkE is sent to Sq1 in Σk−1E. Applying homE(−,Z/2) to the
resolution and computing the cohomology, we obtain

Exts,tE (Z/2,Z/2) =

{
Z/2 , t = s,

0 , t ̸= s.

If E is graded Z/2-algebra, then there is a Yoneda product structure in ExtsR(Z/2,Z/2),
which making it a bigraded ring. See Chapter 9 of Oxford C2.2 Homological Alge-
bra course note for hints.

Now we will discuss things in general pattern. We have seen two examples of
spectral sequences due to Serre and Adams. There are others besides these in
algebraic topology, and all of them can be constructed in similar ways. There are
two ways to do it: by exact couples or by filtered chain complexes.

Firstly, we want to see how spectral sequences can be made from filtered chain
complexes. Let C be a chain complex. An increasing filtration on C is a sequence
of sub-chain complexes

F0C ⊂ F1C ⊂ F2C ⊂ · · ·

with C = ∪iFiC. Naturally, we chop it in parts and get a short exact sequence for
each n > 0:

0→ Fn−1C → FnC → FnC
/
Fn−1C → 0.

https://jinghui-yang1998.com/files/Homological_Algebra (13).pdf
https://jinghui-yang1998.com/files/Homological_Algebra (13).pdf
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A reenactment can be predicted if we use the decreasing filtration with C = ∩iFiC.
For simplicity, we focus on the case of increasing filtration. Consider the diagram

0 0 0

0 Fn−2C Fn−1C Fn−1C
/
Fn−2C 0

0 Fn−2C FnC FnC
/
Fn−2C 0

0 0 FnC
/
Fn−1C FnC

/
Fn−1C 0

0 0 0

The rows are columns are exact. The long exact sequence associated with the right
column is

· · · → Hi+1Fn/Fn−1
dn,i+1−−−−→ HiFn−1/Fn−2 → HiFn/Fn−2 → HiFn/Fn−1

dn,i−−→ Hi−1Fn−1/Fn−2 → · · · ,

yielding a short exact sequence

0→ coker dn,i+1 → HiFn

/
Fn−2 → ker dn,i → 0.

If we manage to find the middle group, then we can continue to get

0 0 0

0 Fn−3C Fn−2C Fn−2C
/
Fn−3C 0

0 Fn−3C FnC FnC
/
Fn−3C 0

0 0 FnC
/
Fn−2C FnC

/
Fn−2C 0

0 0 0

Again, from the associated long exact sequence and short exact sequence, we expect
to know → HiFn

/
Fn−3. Eventually, we learn H∗(FnC) and H∗C itself. All of the

process can be encoded as a spectral sequence painlessly.
The other way is through the exact couples. Let C be an abelian category.

Definition 1.39. A differential object (E, d) in C is an object E with a morphism
d : E → E such that d ◦ d = 0. Given a differential object (E, d) in C, we define
the cycle, boundary, and homology of (E, d) to be the kernel of d, the image
of d and the quotient of these two, respectively. Denote them by Z(E), B(E), and
H(E) = Z(E)/B(E), respectively.
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Definition 1.40. An exact couple in C is a tuple (D,E, i, j, k) =: (D,E) such
that

D D

D

i

jk

is exact in every direction, i.e. ker i = im k, ker j = im i, and ker k = im j.

Given an exact couple (D,E), we can extend the diagram to get

D D

E E E

o

j jk

d d

k

Let d = jk : E → E. It is straightforward that d2 = 0, so (E, d) is a differential
object.

Definition 1.41. Given an exact couple as above, the derived couple is a diagram

D′ D′

E′

i′

j′k′

where D′ = im i ⊂ D, E′ = H(E) = ker d/im d, and i′ = i |D′ . For x ∈ D, j′ sends
i(x) to [j(x)], the homology class of j(x). k′ sends [y] (for y ∈ ker d ⊂ E) to k(y).

Proposition 1.42. The derived couple of an exact couple is again exact.

We have a sequence of exact couples

(D,E)⇝ (D′, E′)⇝ (D′′, E′′)⇝ · · ·
(E, d) is a differential object with E′ = H(E, d). Continually, (E′, d′) is a dif-
ferential object with E′′ = H(E′, d′), · · · , (En, dn) is a differential object with
En+1 = H(Ee, dn). This leads to a spectral sequence.

Example 1.43. If we revisit the Adams resolution

X0 X1 X2 · · ·

K0 K1 K2 · · ·

f0

g0

f1 f2

g1

where for each s, Xs+1
gs−→ Xs

fs−→ Ks is a fiber sequence, then from the long exact
sequence

· · · → πn(Xs+1)
(gs)∗−−−→ πn(Xs)

(fs)∗−−−→ πn(Ks)
hs−→ πn−1(Xs+1)→ · · ·

i.e. we have
D = π∗X∗ π∗X∗ = D

E = π∗K∗

g∗

f∗h

This is an exact couple, so it leads to a spectral sequence: the Adams spectral
sequence.
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Example 1.44. Consider the sequence

0 = K−1 → K0 ↪−→ K1 ↪−→ K2 ↪−→ K3 ↪−→ · · · ⊂ K,

where each Ki is a chain complex. This is a filtered chain complex. We have short
exact sequence for each p ≥ 0

0→ Kp−1 → Kp → Kp/Kp−1 → 0,

leading to a long exact sequence

· · · Hp+qK
p−1 Hp+qK

p Hp+q

(
Kp/Kp−1

)
Hp+q−1K

p−1 · · ·

Dp−1,q+1 Dp,q Ep,q Dp−1,q

i j ∂=k

This leads to an exact couple of bigraded abelian groups

D D

E

i

j∂

which is the starting point of Serre spectral sequence, if we choose the appropriate
chain complex.

Definition 1.45. Let X, Y be spectra. We define the notation

[X,Y ]t = colim[Σn+tX,ΣnY ] = πtF (X,Y ),

where F (−,−) is the function spectrum.

Theorem 1.46. There is a spectral sequence of the form

Es,t
2 = Exts,tA (H∗(Y ), H∗(X)) =⇒ πt−sF (X,Y )∧2 ,

where the t-part refers to the internal grading of the modules.

Given an element f ∈ [ΣtX,Y ], we get a homomorphism of A -modules:

H∗(Y )→ H∗(ΣtX) = ΣtH∗(X),

and H∗(ΣtX) = [ΣtX,HF2]−∗ = [X,HF2]−∗+t = H∗−t(X). If M is a graded

module, then (ΣM)n = Mn−1. Therefore, given a stable map ΣkX
f−→ Y , we get

f∗ ∈ homA (H∗(Y ), H∗(ΣkX)). If f is null-homotopic, then f∗ = 0. On the other
hand, if f∗ = 0, then it is not necessarily true that f is null-homotopic. If it is,
then C(f) = Y ∨ Σk+1X, H∗C(f) = H∗(Y ) ⊕ H∗(Σk+1X) as A -modules. The
sequence

ΣkX → Y → C(f)→ Σk+1X → · · ·
induces a long exact sequence

· · · → H∗(Σk+1X)→ H∗(C(f))
p∗

−−−→
onto

H∗(Y )
f∗

−→ H∗(ΣkX)→ · · · ,

which again implies f∗ = 0. In this case, the long exact sequence can be compressed
into a short exact sequence of graded A -modules

0→ H∗(Σk+1X)→ H∗(C(f))→ H∗(Y )→ 0.

This is an extension of H∗(Y ) by H∗(Σk+1X) in the category of A -modules, and
thus an element of Ext1A (H∗(Y ), H∗(Σk+1X)).
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Example 1.47. Consider the multiplication by 2 map on S0, denoted as f . In
mod 2 cohomology, f∗ = 0. However, f is not null-homotopic. If we consider the
extension

S0 →M(Z/2)→ S1,

where M(Z/2) is the Moore space, then we have an induced morphisms in coho-
mology

0→ H∗(S1)→ H∗(M(Z/2))→ H∗(S0)→ 0.

But H∗(M(Z/2)) ≇ H∗(S0) ⊕ H∗(S1) as A -modules since there is no splitting
H∗(S0) → H∗(M(Z/2)) as A -modules. The counterexample highlights the fact
that we can detect the extension of A -modules using the appropriate maps.

Now we are ready to construct the spectral sequence.

Definition 1.48. A generalized Eilenberg-MacLane spectrum is a wedge of
Eilenberg-MacLane spectra.

Proposition 1.49. If M = HF2 ∧X, then for any finite spectrum Y , we have

[Y,M ]∗ = hom∗
A (H∗(M), H∗(Y )).

Proof. By Spanier-Whitehead duality, it suffices to show the result for Y = S. We
deduce that

[S,M ]∗ = π∗(M) = H∗X ∼= (H∗X)∗ = hom∗(H∗X,F2)

= hom∗
A (A ⊗H∗X,F2) = hom∗

A (H∗M,F2),

which is the desired result. □

Let S → HF2 be the map giving the nonzero element of H
∗S = F2. This is

actually the unit map for the E∞-ring structure on HF2. Let HF2 be the fiber of
S→ HF2. For any spectrumX, smashing with the fiber sequenceHF2 → S→ HF2

gives a new fiber sequence

HF2 ∧X → X → X ∧HF2.

This leads to the tower of fibrations for any spectrum Y :

...
...

Y ∧
(
HF2

)∧2
(
Y ∧

(
HF2

)∧2
)
∧HF2

Y ∧HF2

(
Y ∧HF2

)
∧HF2

Y Y ∧HF2

where Yn = Y ∧
(
HF2

)∧n
, and Yn+1 sits in a fiber sequence

Yn+1 = Yn ∧HF2 → Yn → Yn ∧HF2.
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This is the canonical Adams resolution. Convert this to a sequence:

Y Y ∧HF2 Y ∧
(
ΣHF2

)
∧HF2 Y ∧

(
ΣHF2

)∧2 ∧HF2 · · ·

Y ∧
(
ΣHF2

)
Y ∧

(
ΣHF2

)∧2
Y ∧

(
ΣHF2

)∧3 · · ·

where each up-right arrow is given by S → HF2, and ΣHF2 is the cofiber of
S→ HF2. Applying the functor [X,−] yields a spectral sequence with

E1 = [X,Y ∧
(
ΣHF2

)∧n ∧HF2].

By Proposition 1.49,

[X,Y ∧
(
ΣHF2

)∧n ∧HF2] = homA

(
A ⊗H∗ (ΣHF2

)⊗n ⊗H∗Y,H∗X
)
.

Proposition 1.50. H∗ (ΣHF2

)
= I(A ), the ideal of positive degree elements.

The map S→ HF2 gives the augmentation A → F2. We know A⊗H∗ (ΣHF2

)⊗n⊗
H∗Y = A ⊗ (I(A ))⊗n ⊗H∗Y .

Proposition 1.51. In fact, A ⊗(I(A ))⊗n⊗H∗Y is the n-th stage of the canonical
projective resolution of H∗Y as an A -module, and H∗(Y → Y ∧HF2 → · · · ) realizes
this projective resolution.

As a corollary, the homotopy classes [X,Y ∧
(
ΣHF2

)∧n∧HF2] are homA (Pn, H
∗X),

where Pn is the n-th stage of the projective resolution. The maps in spectra re-
alizes the d1-differential in the exact couple from the tower of fibrations, which is
homA (−, H∗X) of the maps in the projective resolution.

Corollary 1.52. The E2-page is E2 = ExtA (H∗Y,H∗X).

1.11. Thom isomorphism. Let ξ : V → X be an n-plane bundle. Apply one-
point compactification to each fiber of ξ to obtain a new bundle S(V ) over X,
whose fibers are spaces Sn with given basepoints, i.e. the point at ∞. These
basepoints specify a cross-section X → S(V ). The Thom space is the quotient
space Tξ = S(V )/X. If the bundle ξ : V → X is trivial, then V = X × Rn, and
Tξ = ΣnX+ = X+ ∧ Sn. In this case,

Hq(X;R) ∼= H̃q(X+;R) ∼= H̃n+q(Tξ;R).

For any n-plane bundle ξ : V → X, we have a projection ζ : S(V ) → X and a
quotient map π : S(V ) → Tξ. Compose their product with the diagonal map of
S(V ), we obtain a composite map

S(V )→ S(V )× S(V )→ X × Tξ.

This sends all points at ∞ to points of X × {∞}. Therefore it factors through a
map ∆ : Tξ → X+ ∧ Tξ, called the Thom diagonal. For a commutative ring R, we
can use ∆ to define a cup product

Hp(X;R)⊗ H̃q(Tξ;R)→ H̃p+q(Tξ;R),

and a cap product

H̃p+q(Tξ;R)⊗ H̃q(Tξ;R)→ Hp(X;R).
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When the bundle ξ is trivial, letting µ ∈ H̃n(X+ ∧ Sn;R) be the suspension of the
identity element 1 ∈ H0(X;R), we find that x 7→ x ∪ µ specifies the isomorphism

Hq(X;R) ∼= H̃n+q(X+ ∧ Sn;R) = H̃n+q(Tξ;R).
In general, let ξ be an arbitrary bundle. On some neighborhood U of X over

which ξ is trivial, we have Hq(U ;R) ∼= H̃n+q(Tξ |U ;R). The isomorphism depends
on the local trivialization ϕU : U × Rn → ξ−1(U). One would wonder if these

isomorphisms patch together to give a global isomorphism Hq(X) → H̃n+q(Tξ).
This is similar to the problem of patching local fundamental classes to obtain a
global one, i.e. orientation.

Let b be a point in X, and Sn
b be the one-point compactification of the fiber

ξ−1(b). Since Sn
b is the Thom space of ξb, we have a canonical map ıb : S

n
b → Tξ.

Definition 1.53. Let ξ : V → X be an n-plane bundle. An R-orientation, or
Thom class, of ξ is an element µ ∈ H̃n(Tξ;R) such that, for every point b ∈ X,

ı∗b(µ) is a generator of the free R-module H̃n(Sn
b ).

Recall that if ξ : V → X is a vector bundle, then the Thom space of ξ is also
defined as T (ξ) = D(ξ)/S(ξ), where D(ξ) = {v ∈ V : ∥v∥ ≤ 1} is the disk bundle
of ξ, and S(ξ) = {v ∈ V : ∥v∥ = 1} is the sphere bundle of ξ. We use the Serre
spectral sequence to compute the homology of T (ξ).

Theorem 1.54 (Thom isomorphism). Let ξ : V → X be an n-dimensional vector
bundle, and R be a commutative ring. Assume that X is simply connected or
char R = 2. Then there is an element µ ∈ H̃n(Tξ;R) such that we have dual
isomorphisms

Φ∗ : H̃∗+n(Tξ;R) ∼= H∗(X;R),

Φ∗ : H∗(X;R) ∼= H̃∗+n(Tξ;R),

defined by

Φ∗(t) = t ∩ µ,

Φ∗(x) = x ∪ µ,

for t ∈ H̃∗(Tξ;R) and x ∈ H∗(X;R).

Theorem 1.55 (Generalized Serre spectral sequence). Let k be a commutative

ring, and (F, F ′)→ (E,E′)
π−→ B such that either

(1) E′ = F ′ = ∅, and π is a fibration or
(2) π is a relative fiber bundle, i.e. there is an open cover of B of open sets U

with (π−1(U), π−1(U) ∩ E′) ∼= (U × F,U × F ′).

Suppose that B is a CW complex which is either simply connected or connected with
char k = 2. Then there are spectral sequences

E2
s,t = Hs(B;Ht(F, F

′; k)) =⇒ H∗(E,E′; k),

Es,t
2 = Hs(B;Ht(F, F ′; k)) =⇒ H∗(E,E′; k),

and the second SS is multiplicative.

The proof can be found in [1, Theorem 2.6.3].
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Proof of Theorem 1.54. Let ξ : (D(ξ), S(ξ)) → X be a relative fiber bundle with
fiber (Dn, Sn−1). The resulting SSS read

E2
s,t =

{
Hs(X;R) , t = n,

0 , t ̸= n,

and

Es,t
2 =

{
Hs(X;R) , t = n,

0 , t ̸= n.

Thus,

Φ∗ : H̃k(Tξ;R) ∼= Hk(D(ξ), S(ξ);R) = E∞
k−n,n

∼= Hk−n(X;R),

Φ∗ : Hk−n(X;R) ∼= Ek−n,n
∞ = Hk(D(ξ), S(ξ);R) ∼= H̃k(Tξ;R).

Let µ ∈ H̃n(Tξ;R) be corresponding to 1 ∈ H0(X;R) ∼= E0,n
∞ . Let t ∈ H̃∗(Tξ;R)

and x ∈ H∗(X;R). Then clearly the preceding isomorphisms Φ∗,Φ
∗ are given by

Φ∗(t) = t ∩ µ, Φ∗(x) = x ∪ µ, respectively. These isomorphisms are dual because

⟨Φ∗(x), t⟩ = ⟨x ∪ µ, t⟩ = ⟨x, t ∩ µ⟩ = ⟨x,Φ∗(t)⟩ .

□

Let T be a prespectrum. Recall that πn(T ) = colimqπn+q(Tq). We can define
the homology and cohomology groups in the same manner. That is,

Hn(T ;R) = colimqH̃n+q(Tq;R),

where the colimit is taken over maps

H̃n+q(Tq;R)
Σ−→ H̃n+q+1(ΣTq;R)

(σq)∗−−−→ H̃n+q+1(Tq+1;R),

and

Hn(T ;R) = lim
q

H̃n+q(Tq;R),

where the limit is taken over the maps

H̃n+q+1(Tq+1;R)
(σq)

∗

−−−→ H̃n+q+1(ΣTq;R)
Σ−1

−−−→ H̃n+q(Tq;R).

In fact, this definition of cohomology is not correct in general. However, this defi-
nition makes sense when R is a field and each H̃n+q(Tq;R) is a finite dimensional
vector space over R. This is the only case needed. In this case, it is clear that
Hn(T ;R) is the vector space dual to Hn(T ;R), a fact that we shall use repeatedly.

Remark 1.56. There is no cup product in H∗(T ;R). Note that the maps in the
reverse system factor through the reduced cohomologies of suspensions, in which the
cup products are identically zero. However, if T is an associative and commutative
ring prespectrum, then the homology groups H∗(T ;R) form a graded commutative
R-algebra.

The Hurewicz homomorphisms πn+q(Tq)→ H̃n+q(Tq;Z) pass to colimit to give
the stable Hurewicz homomorphism

h : πn(T )→ Hn(T ;Z).

We may compose this with the mapHn(T ;Z)→ Hn(T ;R) induced by the unit of R,
and continue to denote the composite by h. If T is an associative and commutative
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ring prespectrum, then h : π∗(T ) → H∗(T ;R) is a map of graded commutative
rings.

For simplicity, we write H∗ and H∗ for homology and cohomology with coeffi-
cients in Z/2. The Thom isomorphisms say that

Φq : Hn(BO(q))→ H̃n+q(TO(q))

obtained by cupping with the Thom class µq ∈ H̃q(TO(q)). By naturality of the
Thom diagonal, the map of bundles γq ⊕ ε→ γq+1 gives the commutative diagram

ΣTO(q) BO(q)+ ∧ ΣTO(q)

TO(q + 1) BO(q + 1)+ ∧ TO(q + 1)

σq

∆

ıq∧σq

∆

It derives a commutative diagram

Hn(BO(q + 1)) Hn(BO(q))

H̃n+q+1(TO(q + 1)) H̃n+q+1(ΣTO(q)) H̃n+q(TO(q))

ı∗q

Φq+1 Φq

σq Σ−1

This implies the stable Thom isomorphism in cohomology :

Φn : Hn(BO)→ Hn(TO)

by passing to limits. Dually, we have an isomorphism in homology:

Φn : H̃n+q(TO(q))→ H̃n(BO(q)),

here we abuse the notation Φ. Passing to colimit, we obtain the stable Thom
isomorphism in homology :

Φn : Hn(TO)→ Hn(BO).

Applying the naturality of Thom diagonal to γq ⊕ γr → γq+r, we get

TO(q) ∧ TO(r) BO(q)+ ∧ TO(q) ∧BO(r)+ ∧ TO(r)

(BO(q)×BO(r))+ ∧ TO(q) ∧ TO(r)

TO(q + r) BO(q + r)+ ∧ TO(q + r)

ϕq,r

∆∧∆

id∧t∧id

(pq,r)+∧ϕq,r

∆

Passing pq,r : BO(q)×BO(r)→ BO(q+r) to limit gives BO an H-space structure.
It follows that H∗(BO) is an Z/2-algebra. Passing to colimit, the previous diagrams
imply the following result in homology.

Proposition 1.57. The Thom isomorphism Φ : H∗(TO) → H∗(BO) is an iso-
morphism of Z/2-algebras.

The next step is to determine the algebraic structure of these two homologies.
Let i : RP∞ = BO(1) → BO be the inclusion, and xi ∈ Hi(RP∞) be the unique
non-zero element. Write bi = i∗(xi).

Theorem 1.58. H∗(BO) is the polynomial algebra Z/2 [bi | i ≥ 1].
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Let ai ∈ Hi(TO) be the element characterized by Φ(ai) = bi.

Corollary 1.59. H∗(BO) is the polynomial algebra Z/2 [ai | i ≥ 1].

From the compatibility of the Thom isomorphism for BO(1) and BO, we see that
the ai’s come from H∗(TO(1)). Remember that elements of Hi+1(TO(1)) map to
elements of Hi(TO) as colimits; in particular, the non-zero element of H1(TO(n))
maps to the identity element 1 ∈ H0(TO).

Lemma 1.60. TO(1) and RP∞ are homotopy equivalent.

Proof. Note that T (γ1) = D(γ1)/S(γ1), and S(γ1) = S∞ is contractible. The
zero section RP∞ → D(γ1) and the quotient map D(γ1) → T (γ1) are homotopy
equivalences, so is their composite. □

Corollary 1.61. For i ≥ 0, j∗(xi+1) maps to ai ∈ H∗(TO), where j : RP∞ →
TO(1) and a0 = 1.

The case in cohomology is fairly easy. We already know that H∗(BO(n)) =
Z/2 [w1, w2, · · · , wn] and ı∗q(γq+1) = γq ⊕ ε. So

H∗(BO) = Z/2 [wi | i ≥ 1]

as an algebra. One can also derive a coalgebra structure Ψ : H∗(BO)→ H∗(BO)⊗
H∗(BO) from p∗q,r(w(γq+r)) = w(γq ⊕ γr) = w(γq) · w(γr). Explicitly,

Ψ(wk) =
∑

i+j=k

wi ⊗ wj .

The Stiefel-Whitney classes wn can be constructed in a different way involving
the Thom isomorphism Φ. To be clear, one can set

wi = Φ−1SqiΦ(1),

where Sq is the Steenrod operator, where ξ is a vector bundle of rank n.
Recall that Stiefel-Whitney classes must satisfy the following axioms:

A1 w0(ξ) = 1, wi(ξ) = 0 for i > n.
A2 For f : B(ξ)→ B(η) with ξ = f∗η, wi(ξ) = f∗wi(η).
A3 If ξ and η are vector bundles over the same base, then w(ξ⊕η) = w(ξ)∪w(η),

where w is the total Stiefel-Whitney class.
A4 For the canonical line bundle γ1

1 over RP1, w1(γ
1
1) ̸= 0.

We are now checking the validity of our new definition. A1 is immediate from the
relations Sq0 = id and Sqi(x) = 0 for i > |x|. A2 is obvious. Since T (γ1

1) = RP2 and
Sq1(x) = x2 for |x| = 1, Sq1 is non-zero on the Thom class of γ1

1 , verifying A4. For
A3, notice that for every vector bundle ξ and η, we have T (ξ×η) ≃ T (ξ)∧T (η). The
Thom class of ξ×η is the tensor product of the Thom classes of ξ and η. Interpreting
the Cartan’s formula for the Steenrod operators externally in the cohomology of
products and therefore of smash product, we arrive at the desired conclusion.

1.12. Thom splitting.

1.13. Oriented bordism groups.

1.14. Computation of bordism groups.
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