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1 Preface

These notes were taken in University of Illinois, Urbana Champaign (UIUC)’s Math 514 (Complex

Algebraic Geometry) class in Fall 2020, taught by Professor Pierre Albin. Please send questions,

comments, complaints, and corrections to jinghui.yang@stcatz.ox.ac.uk.

This course is an introduction to the geometry of Kähler manifolds and the Hodge structure of

cohomology.

Kähler manifolds are at the intersection of complex analytic geometry, Riemannian geometry, and

symplectic geometry. Moreover, every smooth projective variety is a Kähler manifold. All of this

structure is reflected in a rich theory of geometric and topological invariants. In this course we will

develop techniques from sheaf theory and linear elliptic theory to study the cohomology of Kähler

manifolds.

The course web page can be founded here: https://faculty.math.illinois.edu/~palbin/

Math514.Fall2020/home.html.

jinghui.yang@stcatz.ox.ac.uk
https://faculty.math.illinois.edu/~palbin/Math514.Fall2020/home.html
https://faculty.math.illinois.edu/~palbin/Math514.Fall2020/home.html
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2 Introduction

Let fi(x1, · · · , xn), i ∈ {1, · · · , k} be polynomials with coefficients in R and C. An affine algebraic

variety is the common zero set of X = X(f1, · · · , fn) = {x : fi(x) = 0,∀i}. We incorporate the field

into the notation

X(C) = {x ∈ Cn : fi(x) = 0,∀i}

X(R) = {x ∈ Rn : fi(x) = 0,∀i} (when fi ∈ R[x]) .

These can be thought of naturally as topological spaces with the topology they inherit from Cn or Rn.

(Alternatively, one can see the Zariski topology induced by declaring that zero sets of polynomials are

closed.)

Remark 1. X(C) is essentially never compact.

To remedy this, we shift our attention to projective space.

Definition 1. The complex projective space CPn is defined as follow: for all λ 6= 0,

CPn = Cn+1\{0}/dilations

= {(z0, · · · , zn) ∈ Cn+1\{0}}/(z0, · · · , zn) ∼ (λz0, · · · , λzn)

= Sn+1/U(1).

By definition, it is compact.

Given homogeneous polynomials Fi(x0, · · · , xn), we obtain a “projective variety”X = X(F1, · · · , Fk) =

{x ∈ Rk : Fi(x) = 0,∀i}. As before, if the polynomial have real coefficients, the case becomes

X(R) = {x ∈ RPn : Fi(x) = 0,∀i}. We can ask about the relation between the topology and geometry

of X(R) and X(C) and the algebraic properties of X. For example, say X is the zero set of a single

homogeneous polynomial F of degree d, can we recover d from X(C) and X(R)? This is only a sensible

question for irreducible F .

It turns out that XF (C) determines a homology class [XF (C)] ∈ H2n−2(CPn;Z) and this group is

cyclic with generator [H] induced by CPn−1 ↪−→ CPn and [XF (C)] = d · [H].

We can recover d from the intrinsic geometry at XF (C) using its “Chern class” in H∗(XF (C)).

Over the real numbers, Hn−1(RP b;Z2) is cyclic with generator [H] and [XF (R)] = d · [H], this gives us

the recovery of d mod 2. It’s possible to show that XF (R) does not provide an upper bound for d.

From a different point of view, the Nash embedding theorem shows that any smooth, closed

manifold over R is diffeomorphic to X(R) for some real, smooth, projective variety. For complex

manifolds, the analogue statement is false.

To be diffeomorphic to a complex projective variety, a manifold must be complex, Kähler, Hodge

and then it will have an embedding into CPN for some integer N and Chow’s theorem guarantees that

it’s algebraic. In this course, we’ll show that compact submanifolds of CPn satisfy these properties is

a complex projective variety.
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3 Several Complex Variables

3.1 Basic Settings

First recall some concepts and theorems for one complex variable. Let U ⊂ C be an open set and

f : U → C be a function.

Definition 2. f is called holomorphic if f satisfies the Cauchy-Riemann equation. That is, write

z = x+ iy and f(x, y) = u(x, y) + iv(x, y), where x, y ∈ R and u, v are R-valued C1-functions, and they

satisfies

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
.

Or, df(z) is C-linear.

Definition 3. f is called analytic if for any zo ∈ U , there exists an ε > 0 such that for every

z ∈ Bε(z0), the ball with radius ε centered at z0,

f(z) =
∑
n≥0

an(z − z0)n.

Proposition 1. f is analytic if and only if f is holomorphic. This is also equivalent to f ∈ C1 satisfying

the Cauchy integral formula: for every z0 ∈ U , there exists a small ε > 0 such that

f(z0) =
1

2πi

∫
∂Bε(z0)

f(z)

z − z0

dz.

Let’s introduce the differential operators

∂z =
∂

∂z
=

1

2
(∂x − i∂y), ∂z =

∂

∂z
=

1

2
(∂x + i∂y).

We justify the notations by

∂zz = ∂zz = 1, ∂zz = ∂zz = 0.

In terms of the new notations, Cauchy-Riemann equation can be written by ∂zf = 0. Geometrically,

f : U ⊂ C = R2 → C = R2, then

f

([
x

y

])
=

[
u

v

]
induces Dz0f : Tz0R2 → Tf(z0)R2 with respect to the standard bases. This is the (real) Jacobian of

f ,

JR(f) =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
.



3 SEVERAL COMPLEX VARIABLES 6

Example 1.

(D(x0,y0)f)(∂x) = ∂t|t=0f(x0 + t, y0)

= ∂t|t=0

[
u(x0 + t, y)

v(x0 + t, y)

]

=

[
∂xu

∂xv

]

After we complexify DC
z0
f : Tz0R2 ⊗ C→ Tf(z0)R2 ⊗ C, we can write this matrix in the basis ∂z, ∂z for

both domain and codomain: [
∂z(u+ iv) ∂z(u+ iv)

∂z(u− iv) ∂z(u− iv)

]
=

[
∂zf ∂zf

∂zf ∂zf.

]

Here we have ∂zf = ∂zf and ∂zf = ∂zf . The function f is holomorphic if and only if this matrix is

diagonal. The (complex) Jacobian for f is

JC(f) =
[
∂zf
]
.

Holomorphic functions of one variable satisfy the following important theorems:

Theorem 1 (Maximum Principle). Suppose we have an open and connected set U ⊂ C and a

holomorphic function f : U → C that is non-constant. Then |f | has no local maximum in U . If U is

bounded and f can extend to a continuous function f̃ : U → C, then max |f | occurs on ∂U .

Theorem 2 (Identity Theorem). Suppose we have two holomorphic functions f, g : U → C, and

U ⊂ C is connected. If {z ∈ U : f(z) = g(z)} contains an open set, then it is all of U .

Theorem 3 (Extension Theorem). Suppose we have a bounded holomorphic function f : Bε(z0)\{z0} →
C defined on some ball of radius ε > 0 centered at z0, then it extends to a holomorphic function

f̃ : Bε(z0)→ C.

Theorem 4 (Liouville’s Theorem). If f : C→ C is holomorphic and bounded, then f is constant.

Theorem 5 (Riemann Mapping Theorem). If U ⊂ C is a simply connected proper open set, then

U is biholomorphic to the unit ball B1(0).

Theorem 6 (Residue Theorem). If f : Bε(0)\{0} → C is holomorphic and f(z) =
∑

n∈Z anz
n is its

Laurent series, then

a−1 =
1

2πi

∫
∂Bε/2(0)

f(z)dz.

We now begin the several complex variables part.

Definition 4. Let U ⊂ Cn be an open set, f : U → C is continuous differentiable. Then f is

holomorphic at a = (a1, · · · .an) ∈ U if for all j ∈ {1, · · · , n}, the function of one variable

zj 7→ f(a1, · · · , aj−1, zj , aj+1, · · · , an)
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is holomorphic at aj , i.e. ∂zjf = 0. If we write

(df)C =
∑ ∂f

∂zj
dzj︸ ︷︷ ︸

∂f

+
∑ ∂f

∂zj
dzj︸ ︷︷ ︸

∂f

,

then f is holomorphic if and only if ∂f = 0.

Definition 5. For a ∈ Cn, R ∈ (R+)n, the polydisc around a with multiradius R is the set

D(a,R) = {z ∈ Cn : |zj − aj | < Rj ,∀j ∈ {1, · · · , n}}.

If R = (1, · · · , 1) and a = 0, we abbreviate D(0, 1) by Dn and refer to it as the unit disc in Cn.

Repeatly applying the Cauchy formula in one variable, we obtain

Theorem 7. Let f : D(ω, ε)→ C be a holomorphic function and z ∈ D(ω, ε), then

f(z) =
1

(2πi)n

∫
∂D(ω,ε)

f(ξ1, · · · , ξn)

(ξ1 − z1) · · · (ξn − zn)
dξ1 · · · dξn.

Using this theorem, we can show that for any ω ∈ U , there exists D(ω, ε) ⊂ U such that for all

z ∈ D(ω, ε),

f(z) =
∞∑
|α|=0

∂αz f

α!
(z − ω)α,

where α = (α1, · · · , αn) ∈ (N)n is a multi-index. To be explicit,

(z − ω)α =
n∏
k=1

(zk − ωk),

α! = α1!α2! · · ·αn!,

∂αz f = ∂α1
z1
∂α2
z2
· · · ∂αnzn f.

From the list above, the Maximum Principle, the Identity Theorem, and the Liouville’s Theorem

generalize easily. Riemann Extension Theorem holds but is harder to prove. However, Riemann

Mapping Theorem fails in several variables. There are also phenomena that do NOT have analogues

in one complex variable. One example we shall see later is the Hartogs Extension Theorem.

3.2 Equation ∂u = f

In this section, we will continue to list the counterexamples that do NOT have analogues in one

complex variable. These are examples of the Hartogs phenomenon.

Example 2. Consider H = {(z, ω) ∈ C2 : |z| < 1, 1
2
< |z| < 1} ∪ {(z, ω) ∈ C2 : |z| < 1

2
, |ω| < 1}. Let

f be holomorphic on H. Claim: there exists a holomorphic function F defined on D = {(z, ω) ∈ C2 :

|z| < 1, |ω| < 1} such that F |H = f .

In fact, we have for r ∈ ( 1
2
, 1)

F (z, ω) =
1

2πi

∫
|ξ|=r

f(z, ξ)

ξ − ω
dξ,
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so F is holomorphic. Indeed, ∂z

(
f(z,ξ)
ξ−ω

)
= ∂ω

(
f(z,ξ)
ξ−ω

)
= 0. For any fixed z with |z| < 1

2
, ω 7→ f(z, ω)

is holomorphic on all of {(z, ω) ∈ C2 : |ω| < 1}. So F (z, ω) = f(z, ω) for any |z| < 1
2
, |ω| < r by the

Cauchy integral formula, which implies F = f on H.

Lemma 1. Let f ∈ C1(Ω), then∫
∂Ω

fdz =

∫
Ω

∂f

∂z
dzdz = 2i

∫
Ω

∂zfdxdy.

Proposition 2. Let u ∈ C1(Ω), then

u(ζ) =
1

2πi

∫
∂Ω

u(ζ)

z − ζ
dz +

1

π

∫
Ω

∂u
∂z

(z)

z − ζ
dxdy.

Proof. Fix ζ, let ε < d(ζ, ∂Ω) and let Ωε = {z ∈ Ω : |z − ζ| > ε}. Apply Lemma 1 to f(z) = u(z)
z−ζ , we

obtain ∫
∂Ωε

u(z)

z − ζ
dz = 2i

∫
Ωε

∂zu

z − ζ
dxdy.

As ε→ 0, LHS converges to

−
∫
∂Ω

u(ζ)

z − ζ
dz + 2πiu(ζ),

which concludes our result.

Theorem 8. Let φ ∈ C∞c (C) and u(ζ) = 1
π

∫
C
φ(z)
z−ζ dxdy, then u is an analytic function outside of suppφ

and u is smooth on C. Moreover, ∂zu = φ.

Proof. Interchanging derivatives and the integral we see that u ∈ C∞(C). By a change of variables, we

have

u(ζ) = − 1

π

∫
C

φ(ζ − z)
z

dxdy.

So

∂ζu(ζ) = − 1

π

∫
C

∂ζφ(ζ − z)
z

dxdy =
1

π

∫
C

∂zφ(z)

z − ζ
dxdy.

Applying Proposition 2 to any disc containing suppφ, we get ∂ζu = φ.

Remark 2. Even though φ has compact support, there is no solution of ∂zu = φ that can have compact

support if
∫
C φ 6= 0. Indeed, if u(ζ) = 0 for any |ζ| > R, then

0 =

∫
|z|=R

u(z)dz =

∫
|z|<R

∂zudxdy = 2i

∫
|z|<R

φdxdy.

Theorem 9. Suupose fj ∈ C∞c (Cn), j ∈ {1, · · · , n}, n > 1, satisfy ∂zjfk = ∂zkfj for every j, k ∈
{1, · · · , n}, then there is a u ∈ C∞c (Cn) such that ∂zju = fj for every j ∈ {1, · · · , n}.

Proof. Define

u(z) =
1

2πi

∫
C

f1(ζ, z2, · · · , zn)

ζ − z1

dζdζ

= − 1

2πi

∫
C

f1(z1 − ζ, z2, · · · , zn)

ζ
dζdζ.



3 SEVERAL COMPLEX VARIABLES 9

We note that u ∈ C∞(C). Since f1 has compact support, u vanishes if |z2| + · · · + |zn| >> 0. By

Theorem 8, ∂z1u = f1. Also differentiating, by Proposition 2,

∂zju =
1

2πi

∫
C

∂z1fj(ζ, z2, · · · , zn)

ζ − z1

dζdζ = fj .

Hence u solves the system of equations. Let K =
⋃n
j=1 supp fj , then u is holomorphic on Cn\K. We

know that u is zero if |z2|+· · ·+|zn| >> 0, so by the Identity Theorem u must vanish on the unbounded

component of Cn\K, which implies u ∈ C∞c (C∞).

3.3 Hartogs Extension Theorem

We will introduce the famous Hartogs Extension Theorem.

Theorem 10 (Hartogs Extension Theorem). Let U be a domain in Cn, n > 1; that is, U is a

non-empty connected open set. Let K be a compact subset of U such that U\K is connected. Then

every holomorphic function on U\K extends uniquely to a holomorphic function on U .

Proof. Given an analytic function f defined on U\K. Choose θ ∈ C∞c (U) such that θ|K = 1. Define

f0 ∈ C∞(U) by setting

f0(z) =

0 , z ∈ K

(1− θ)f , z ∈ U\K.

We shall construct v ∈ C∞(Cn) such that f0 + v is the required holomorphic extension of f . In order

for f0 + v to be holomorphic we need

∂zj (f0 + v) = ∂zj (1− θ)f + ∂zjv = −(∂zjθ)f + ∂zjv,

that is, we need ∂zjv = (∂zjf) for every j ∈ {1, · · · , n}. By Theorem 9, we can find vC∞c (Cn) solving

this system of equations. Since v has compact support and is holomorphic outside the support of θ,

it must vanish on the unbounded component of Cn\supp θ, Since supp θ ⊂ U , there is an open set in

U\K where v ≡ 0 and so f0 + v = f0 = f . But U\K is connected and f, f0 + v are holomorphic, so

they must coincide on all of U\K. Thus f0 + v is the desired holomorphic extension of f .

Corollary 1. Let U ⊂ Cn be a domain, n > 1, and f is holomorphic on U . The zero set f−1(0) of f

is never a compact subset of U .

Proof. Assume K = f−1(0) is compact and let g : U\K ⊂ Cn → Cn be g(z) = 1
f(z)

. Then g

is holomorphic on U\K. Proceeding as in the proof of the Hartogs Extension Theorem, we pick

θ ∈ C∞c (U) with θ|K = 1. Define g0 ∈ C∞(U) to be 0 on K and (1 − θ)g otherwise. We can find

v ∈ C∞c (Cn) such that v is holomorphic on Cnsupp θ and g0 + v is holomorphic on U . So v vanishes on

the unbounded component of U\supp θ. Thus there is an open set in U\K on which g = g0 = g0 + v

since g and g0 + v are holomorphic on U\K, they coincide on the corresponding connected component

of U\K, say W . Finally, pick (wk) ⊂ W , wk → w∞ ∈ K. We have |g(wk)| = 1
|f(wk)| → ∞, but from

g(wk) = (g0 + v)(wk)→ (g0 + v)(w∞) we conclude |g(wk)| is bounded. Contradiction!
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Heuristically, we might expect that the zero set of a nontrivial holomorphic function f : U ⊂ Cn →
C will have complex codimension 1. For example, if f is a polynomial of degree 1, then its zero set is

an affine subspace of complex dimension n − 1. If Dpf : Cn → C is nonzero at each p ∈ f−1(0), then

f is “well-approximated” by its linear approximation and f−1(0) should be locally modeled by open

subsets of Cn−1. Indeed, the complex version of the implicit function theorem holds and shows that

f−1(0) is a smooth submanifold of complex dimension n− 1.

Things are more complicated if the derivative vanishes. In one complex variable, if nonzero function

f satisfies f(0) = 0, then “0 is a root of a finite order” (say p) means that there is a holomorphic function

g such that g(0) 6= 0 and f(z) = zpg(z). In several complex variables, after a change of coordinates, we

can write the nontrivial function f to be F (zn) = f(0, zn), where 0 ∈ Cn−1. So it has a zero of finite

order, sat p, such that F (zn) = zpng0(zn).

Using the continuity of f , we can apply Roche’s Theorem to conclude that there is a polydisc

D(0, ε) ⊂ Cn−1 such that for all z′ ∈ D(0, ε), the function z 7→ f(z′, z) has exactly p zeros in D(0, εn) ⊂
C. In particular, we see again that the zeros of a holomorphic function of several variables are not

isolated.

3.4 Weierstrass Preparation Theorem

In this section, we will discussion what a holomorphic function looks like near a zero. In the

one variable case, f(z) = zpg(z), where p is a positive integer and g is a holomorphic function with

g(0) 6= 0 or f ≡ 0. Suppose we are given a holomorphic function f(z1, · · · , zn−1, ω) near 0 ∈ Cn, and

f(0, · · · , 0) = 0, and ω-axis is not in f−1(0). Write fz(ω) = f(z, ω), where z ∈ Cn−1, then f0(ω) is not

identically zero. We know that f0(ω) = ωpg(ω), where g(0) 6= 0, p is a positive integer. There exists a

r > 0 such that |f0(ω)| > δ > 0 whenever |ω| = r. So there exists an ε > 0 such that |z| < ε, |ω| = r,

then |fz(ω)| > δ
2
> 0.

Writing fz(ω) = f̃z(ω)
∏p
j=1(ω − aj(z)), we see that

∑
j

aj(z)
q =

1

2πi

∫
|ω|=r

ωq
f ′z(ω)

fz(ω)
dω.

This shows that the LHS is a holomorphic function of z for any q. Hence the elementary symmetric

functions of the aj(z) are holomorphic functions of z. Denote them by σj(z). Then gz(ω) = ωp −
σ1(z)ωp−1 + · · ·+ (−1)NσN (z) =

∏
(ω− aj(z)) is also holomorphic function of z. So, g(z, ω) = gz(ω) is

holomorphic on {(z, ω) ∈ Cn−1 ×C : |z| < ε, |ω| < r}. It also has the same zeros as f(z, ω) on this set.

Define

h(z, ω) =
f(z, ω)

g(z, ω)
.

One can check it is well-defined and holomorphic off the zero set. Fix z, hz(ω) has only removable

singularities so it extends to a function on D(0, ε)×D(o, r). The extended one is holomorphic in ω for
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each z and holomorphic off the zero set. Writing

h(z, ω) =
1

2πi

∫
|u|=r

h(z, u)

u− ω
du,

we see that h is holomorphic in z.

Definition 6. A Weierstrass polynomial in ω is a polynomial of the form

ωp + α1(z)ωp−1 + · · ·+ αp(z),

where αj(z) is holomorphic for each j with αj(0) = 0.

Theorem 11 (Weierstrass Preparation). Let f be a holomorphic function near the origin in Cn

and f(0) = 0. f is also assumed not to be identically zero on the ω-axis. Then there is a neighborhood

of 0 in which f can be written uniquely as f = g · h, where g is a Weierstrass polynomial of degree p

in ω and h(0) 6= 0.

Theorem 12 (Riemann Extension). Suppose f(z, ω) is holomorphic in a ball B ⊂ Cn, and g(z, ω)

is holomorphic on B\f−1(0) and bounded. Then g extends to a holomorphic function on B.

Proof. WLOG, assume that ω-axis is not contained in f−1(0). As before, there are r, ε such that

|f(z, ω)| > δ > 0 whenever |z| < ε, |ω| = r. The one variable version of Riemann extension then

applies to each gz and the extension g̃z satisfies

g̃z(ω) =
1

2πi

∫
|ω|=r

gz(ξ)

ξ − ω
dξ.

Hence g̃(z, ω) = gz(ω) is holomorphic in (z, ω) for all |z| < ε, |ω| < r.

Now, we will discuss the failure of Riemann mapping theorem in several complex variables.

Example 3. Consider H = {z ∈ Cn : =z1 > 0} and Bn = {z ∈ Cn : |z| < 1}. If ψ : H → Bn is

holomorphic, then for each z1 with =z1 > 0, the function (z2, · · · , zn) 7→ ψ(z1, z2, · · · , zn) is holomorphic

and bounded on Cn−1. Hence it is constant.

Theorem 13 (Poincaré). For n > 1, the unit polydisc Dn and the unit ball Bn are not biholomorphic.

Proof. Assume ψ : Dn → Bn is a biholomorphic with ψ(0) = 0 and let Φ : Bn → Dn be the inverse. We

claim that we must have D0ψ(Dn) ⊂ Bn and D0Φ(Bn) ⊂ Dn. Given the claim we have D0ψ(Dn) = Bn

and D0ψ(∂Dn) = ∂Bn. This is impossible since D0ψ is linear and ∂Dn contains linear pieces of positive

dimension, which ∂Bn does not.

Now to prove the claim.

1. D0ψ(Dn) ⊂ Bn:

Write ψ = (ψ1, · · · , ψn), where r ∈ Dn and u = (u1, · · · , un) ∈ Bn. Applying Schwarz’s lemma to

the function

t 7→
n∑
j=1

ujψj(tv),

we see that |〈u, (D0ψ)(v)〉| ≤ 1. As this holds for all u ∈ Bn, we must have |D0ψ(v)| ≤ 1.
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2. D0Φ(Bn) ⊂ Dn:

Write Φ = (Φ1, · · · ,Φn) and u = (u1, · · · , un) ∈ Bn. Applying Schwarz’s lemma to the function

t 7→ Φj(tu1, · · · , tun),

we see that |
∑
uk∂zkΦj(0)| ≤ 1 for 1 ≤ j ≤ n. Hence D0Φ(u) ∈ Dn.
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4 Manifolds and Bundles

We will focus on the complex manifolds, complex structures and bundle theory in this chapter. To

begin with, we assume the familiarization of point-set topology.

4.1 Manifolds

Let M be a metrizable topological space.

Definition 7. A real (or complex) coordinate chart is a homeomorphism ϕ : U → V between an

open subset U ⊂ M and an open subset V ⊂ Rn (or Cn). A smooth (or holomorphic) atlas is a

collection of charts {ϕα : Uα → Vα} such that

1. M =
⋃
α Uα and,

2. the transition map ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) between open subsets of Rn (or Cn)

is smooth (or holomorphic) whenever Uα ∩ Uβ 6= ∅.

Two atlases are equivalent if their union is again an atlas.

Definition 8. A smooth (or complex) manifold is a metrizable topological space M together with

an equivalence class of smooth (or holomorphic) atlases.

We will assume once for all that all charts use the same dimensional Euclidean space and refer to

n as the real dimension of M (or n as the complex dimension of M).

Example 4. Any open subset of Rn is an n-dimensional real manifold with a single chart. Similarly

any open subset of Cn is an n-dimensional complex manifold with a single chart.

Example 5. The sphere S2 is a 2-dimensional real manifold and a 1-dimensional complex manifold.

1. To see it is a 2-dimensional real manifold, first notice S2 ⊂ R3. We can use the stereographic

projection. Choose a pair of antipodal points on the ball, say N and S, to be the “north pole”

and the “south pole” of the ball, respectively. Define the coordinate charts φN : S2\{N} → R2

to be (x, y, z) 7→ ( x
1−z ,

y
1−z ), and φS : S2\{S} → R2 to be (x, y, z) 7→ ( x

1+z
, y

1+z
).
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x

y

z

N

P̂
S

P

To see this makes sense, one can compute the inverse maps φ−1
N as follows: let (u, v) = ( x

1−z ,
y

1−z ),

then u2 + v2 = ( x
1−z )2 + ( y

1−z )2 = 1+z
1−z . This implies z = u2+v2−1

u2+v2+1
. In the same way we can

obtain x, y in terms of u, v. So φ−1
N (u, v) = ( 2u

u2+v2+1
, 2v
u2+v2+1

, u
2+v2−1
u2+v2+1

). Similarly we can get φ−1
S

(exercise). It is straight calculation that φS ◦ φ−1
N (u, v) = ( u

u2+v2
, v
u2+v2

), which is smooth. Hence

we obtain a smooth atlas {φN , φS} that ensures S2 is a 2-dimensional smooth manifold.

2. To see it is a 1-dimensional complex manifold, we define

φN : S2\{N} → C, (x, y, z) 7→ x+ iy

1 + z

φS : S2\{S} → C, (x, y, z) 7→ x− iy
1− z

.

Then φS ◦ φ−1
N (ω) = 1

ω
: C\{0} → C\{0}, which is holomorphic. Hence it yields that S2 is a

1-dimensional complex manifold. This is usually called the Riemann sphere.

Exercise 1. If we define

φ̃S : S2\{S} → C, (x, y, z) 7→ x+ iy

1− z
,

in the above Example 5, can we still obtain an atlas {φN , φ̃S} that makes S2 a 1-dimensional complex

manifold? Why?

Definition 9. If M is a smooth (or complex) manifold, a function f : M → R (or C) is smooth (or

holomorphic) at ζ ∈ M if there is a chart ϕ : U → V , where U is a neighborhood of ζ in M , such

that f ◦ ϕ−1 : V → R is smooth (or holomorphic).
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Definition 10. If M and M ′ are smooth (or complex) manifolds, a function f : M → M ′ is smooth

(or holomorphic) at ζ ∈M if there are charts ϕ : U → V and ϕ′ : U ′ → V ′, where U is a neighborhood

of ζ in M and U ′ is a neighborhood of f(ζ) in M ′, such that ϕ′ ◦ f ◦ ϕ−1 : V → V ′ is smooth (or

holomorphic) at ϕ(ζ).

Example 6. Consider the complex projective space of dimension n, CPn. There is a natural surjective

map π : Cn+1{0} → CPn, which sends z to [z] ∈ CPn, where [z] is the equivalence class of {λz : λ ∈ C}.
We equip CPn through π with quotient topology. Then for any z = (z0, · · · , zn), we denote π(z) by

(z0 : z1 : · · · : zn) and call them “homogeneous coordinate”. Note (z0 : z1 : · · · : zn) = (λz0 : λz1 : · · · :
λzn) for every λ ∈ C× = C\{0}.

For 0 ≤ j ≤ n, we denote Uj = {(z0 : z1 : · · · : zn) ∈ CPn : zj 6= 0}. These Uj form the

standard open cover of CPn. Define coordinate charts ϕj : Uj → Cn by sending (z0 : z1 : · · · : zn)

to 1
zj

(z0, · · · , ẑj , · · · , zn). These are homeomorphisms with ϕ−1
j : Cn → Uj , sending (ω1, · · · , ωn) to

(ω1 : · · · : ωj−1 : 1 : ωj+1 : · · · : ωn) with ϕj(Uj ∩ Uk) = {(ω1, · · · , ωn) ∈ Cn : ωk 6= 0}. Also

ϕk ◦ ϕ−1
j :ϕj(Uj ∩ Uk)→ ϕk(Uj ∩ Uk)

(ω1, · · · , ωn) 7→ 1

ωk
(ω1, · · · , ωj−1, 1, ωj+1, · · · , ω̂k, · · · , ωn).

So ϕk ◦ ϕ−1
j is holomorphic. The atlas {ϕj : Uj → Cn} gives CPn the structure of a complex manifold

of complex dimension n. As smooth manifolds, CPn ' S2n+1/S1, hence CPn is compact.

4.2 Bundle Theory

Definition 11. Let M be a smooth manifold, F ∈ {R,C}. A rank k F-vector bundle over M

consists of

• A smooth manifold E together with a surjective map E
π−→M ;

• For each ζ ∈M , the fiber Eζ = π−1(ζ) is an F-vector space of dimension k;

• (local trivialization) For each ζ ∈ M , there is a neighborhood U and a diffeomorphism h :

π−1(U)→ U × Fk such that the following diagram is commutative

π−1(U) U × Fk

U

h

π pr1

and h|π−1(ζ) : Eζ → Fk is an isomorphism.

M is called the base space, E is called the total space, and Fk is called the fiber of the vector

bundle. We often denote this by Fk → E →M . If k = 1, we call an rank 1 F-vector bundle an F-line

bundle.

Definition 12. The trivial rank k F-vector bundle over M is M × Fk pr1−−→ M . Denote the total

space of this bundle by Fk.
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Example 7. Let M = S1. We have two rank 1 real vector bundles. The trivial bundle E1 = S1×R→
S1 and the infinite Möbius band E2 : Möbius → S1. Both of them are local trivial. However, the

first bundle is globally trivial while the second one is not.

Another way of thinking about a vector bundle comes from looking at the transitions between

different local trivializations.

If (Uα, hα) and (Uβ, hβ) are local trivializations such that Uα ∩ Uβ 6= ∅, then the map hα ◦ h−1
β :

(Uα ∩ Uβ)× Fk → (Uα ∩ Uβ)× Fk has the form

(ζ, ν) 7→ (ζ, gαβ(ζ)ν),

and so is equivalent to a map gαβ : Uα ∩ Uβ → GLk(F). We call these maps the transition maps.

The transition maps (Uα, gαβ : Uα ∩ Uβ → GLk(F)) make up a Čech cocycle. That is,

• gαα = id,

• gαβ ◦ gβγ ◦ gγα = id whenever Uα ∩ Uβ ∩ Uγ 6= ∅.

This data determines a rank k F-vector bundle over M , and at the same time is determined from a

rank k F-vector bundle over M .

Definition 13. Let M be a complex manifold. A C-vector bundle over M is holomorphic if its

transition maps are holomorphic maps Uα ∩ Uβ → GLk(C).

Definition 14. A vector bundle morphism between E
π−→ M and E′

π′−→ M ′ is a smooth map

Φ : E → E′ such that

E E′

M M ′

Φ

F

for some smooth F : M →M ′, and the restrictions Φ|π−1(ζ) : Eζ → E′F (ζ) are linear. A vector bundle

isomorphism is a bijective vector bundle.

Definition 15. A section of a vector bundle E
π−→ M is a map M

s−→ E such that π(s(ζ)) = ζ for

each ζ ∈M . We denote the set of sections by C∞(M ;E). Note that C∞(M ;E) ⊂ C∞(M,E).

Example 8 (Tangent bundle). Let M be an F-manifold of dimension n and (Uα, φα : Uα → Vα) be an

atlas. So Uα ⊂M , Vα ⊂ Fn and {Uα} forms a cover of M . The restriction maps on overlaps

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

are diffeomorphisms. If we take derivatives, we obtain

D(φα ◦ φ−1
β ) : φβ(Uα ∩ Uβ)× Fn → φα(Uα ∩ Uβ)× Fn.

Define

TM =
(⊔

Uα × Fn
)
/ ∼,



4 MANIFOLDS AND BUNDLES 17

where (u, v) ∼ (u′, v′) if for any u, u′ ∈ Uα ∩ Uβ, we have D(φα ◦ φ−1
β )(φβ(u), v) = (φα(u′), v′). That

is, we take tangent vectors in each coordinate chart and identify them if they correspond to each other

under the chain rule.

Remark 3. We have a Meta-theorem here: any canonical construction in linear algebra gives rise to

a geometric version for smooth (or holomorphic) vector bundle.

Example 9. Let E,F be vector bundles over a manifold M .

1. E ⊕ F →M is the vector bundle where the fiber (E ⊕ F )ζ is canonically isomorphic to Eζ ⊕ Fζ .

2. E ⊗ F →M is the vector bundle where the fiber (E ⊗ F )ζ is canonically isomorphic to Eζ ⊗ Fζ .

3. Taking alternating or symmetric parts of
⊗k

i=1E → M produces
∧k

E → M (known as k-th

exterior power) or SkE →M (known as k-th symmetric power).

4. Hom(E,F )→M has fiber canonically isomorphic to Hom(Eζ , Fζ).

5. E∗ →M is the vector bundle Hom(E,F).

Example 10. If E has transition maps gαβ, F has transition maps hαβ, then E ⊕ F is the vector

bundle with transition maps
( gαβ 0

0 hαβ

)
, and E∗ is the vector bundle with transition maps fαβ = (g−1

βα)∗.

4.3 Tangent vectors

There are several ways to define a tangent vector. We hereby give two models of doing this.

4.3.1 Algebraic Approach

Another way of thinking about manifolds, real or complex, in line with modern algebraic geometry

is through ”geometric structures”.

Definition 16. Let F ∈ {R,C}, X be a topological space. The for any open U ⊂ X, let C(U) = C0(U)

denote the continuous functions U → F. Then a geometric structure A on X is a collection of

subrings A(U) ⊂ C(U) such that for any open U ⊂ X, we have

1. The constant functions are in A(U);

2. If f ∈ A(U), the for any open V ⊂ U , f |V ∈ A(V );

3. If {Ui} is a collection of open subsets of X, U = ∪iUi, and we are given fi ∈ A(Ui) such that

fi |Uj= fj |Ui whenever Ui ∩ Uj 6= ∅, then there exists a unique f ∈ A(U) such that for any i,

f |Ui= fi.

We call the pair (X,A) a geometric space, and functions in A(U) distinguished. 2 and 3 in the

conditions above imply that being distinguished is an open property.

Example 11. Differentibility and analyticity.
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Remark 4. In the language of sheaves, A is a subsheaf of the sheaf of continuous functions.

Example 12. 1. Let U ⊂ Rn be open and C∞ be the geometric structure V 7→ C∞(V ), then

(U,C∞) is a geometric space.

2. Let U ⊂ Cm be open and θ be the geometric structure V 7→ θ(V ), where θ(V ) is the set of

holomorphic functions V → C, then (U, θ) is a geometric space.

3. Let X be a real (or complex) manifold with atlas {ϕα : Uα → Vα} for Uα ⊂ X and Vα ⊂ Fn. We

define a geometric structure C∞X (or θX , respectively) as follows: For U ⊂ X open, define

C∞X (U) = {f ∈ C(U) : (f |U∩Uα) ◦ ϕ−1
α : ϕα(U ∩ Uα)→ R smooth for any U ∩ Uα 6= ∅},

θX(U) = {f ∈ C(U) : (f |U∩Uα) ◦ ϕ−1
α : ϕα(U ∩ Uα)→ C holomorphic for any U ∩ Uα 6= ∅}.

A equivalent definition can be stated as follows: A smooth (or complex) manifold of F-dimension

n is a geometric structure (X,A) in which every point x ∈ X has a neighborhood U such that

(U,A |U ) ' (Ω, C∞Ω ), where Ω ⊂ Rn open, or such that, (U,A |U ) ' (Ω, θU ), where Ω ⊂ Cn open,

respectively.

Definition 17. A morphism of geometric spaces f : (X,AX) → (Y,AY ) is a continuous map f :

X → Y with the property that if g ∈ AY (U) then g ◦ f ∈ AX(f−1(U)). From now on, we will write

this map f∗ : AY (U)→ AX(f−1(U)). f is further an isomorphism if there is an inverse morphism.

Example 13. 1. f : (U,C∞U )→ (V,C∞V ) is the same as f ∈ C∞(U, V ).

2. f : (U, θU )→ (V, θV ) is the same as f ∈ θ(U, V ).

3. Let U ⊂ X be open, then (U,A |U )→ (X,A) is a morphism.

Definition 18. Given a geometric space (X,A). Let ξ ∈ X be a point. We define the localization of

A to ξ as follows:

1. There is a ring of equivalence classes of functions associated to the point ξ, denoted as Aξ;

2. Each [f ] = [f ]ξ ∈ Aξ is represented by f ∈ A(U), where U ⊂ X is open and ξ ∈ U ;

3. Two representatives f1 ∈ A(U1), f2 ∈ A(U2) are equivalent, if there is an open W with ξ ∈ W
such that f1 |W= f2 |W .

We call Aξ the stalk of A at ξ, and [f ]ξ the germ of f at ξ.

Definition 19. A derivation of the algebra Aξ is an F-linear map D : Aξ → F that satisfies the

Leibniz rule at ξ, i.e.

D([f ][g]) = f(ξ)D([g]) +D([f ])g(ξ),

for any [f ], [g] ∈ Aξ. The real tangent space of X at ξ is the R-vector space of derivations of C∞X,ξ

and the complex tangent space of X at ξ is the C-vector space of derivations of θX,ξ.

Example 14. 1. For U ⊂ Rn open, Dj : C∞ξ → F, Dj([f ]) = ∂f
∂xj

(ξ) is a derivation.
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2. For U ⊂ Cn open, Dj : θξ → F, Dj([f ]) = ∂f
∂zj

(ξ) is a derivation.

Remark 5. For a manifold, the stalk of A at ξ is the same as the stalk of AU at ξ, for a coordinate

chart U containing ξ.

Let Jξ ⊂ Aξ be the ideal of germs that vanish at ξ. Naturally,

J2
ξ = {[f ] ∈ Aξ : [f ] = [g][h] for some [g], [h] ∈ Jξ}.

The map Aξ → Aξ/Jξ given by [f ] 7→ f(ξ) is the evaluation at ξ. The map Jξ → Jξ/J
2
ξ for a manifold

is the total derivation, or exterior derivation. Given f ∈ A(U), where U ⊂ Fn, we can write

f(ω) = f(ξ) + (∂ω1
f)(ξ)(ω1 − ξ1) + (∂ω2

f)(ξ)(ω2 − ξ2) + · · ·+ (∂ωnf)(ξ)(ωn − ξn) +O((ω − ξ)2).

If [f ] ∈ Jξ, then f(ξ) = 0, while the reminder is in J2
ξ . So [f ] ∈ Jξ/J2

ξ , and [f ] is the class of j=1

[f ] = [(∂ω1
f)(ξ)(ω1 − ξ1) + · · ·+ (∂ωnf)(ξ)(ωn − ξn)] =

n∑
j=1

(∂ωjf)(ξ) [ωj − ξj ] .

Denote the last one by
n∑
j=1

(∂ωjf)(ξ)dωj ,

then Jξ/J
2
ξ
∼= Fn with each choice of coordinates inducing a basis of Jξ/J

2
ξ .

Lemma 2.

Der(Aξ) ∼=
(
Jξ/J

2
ξ

)∗
,

where the right hand side is the annihilator of J2
ξ in J∗ξ , and the left hand side is the collection of all

derivations of Aξ.

Proof. (=⇒): Define the map G : Der(Aξ) → (Jξ)
∗

by restriction. By Leibniz’s rule, elements in the

image will vanish on J2
ξ .

(⇐=): Given φ ∈ J∗ξ with φ |J2
ξ
≡ 0. Define D ∈ Der(Aξ) by D([f ]) = φ([f ]− [f(ξ)]). Then by

D([f ][g]) =φ([f · g]− [(f · g)(ξ)])

=φ([f − f(ξ)][g − g(ξ)] + [f(ξ)(g − g(ξ))] + [g(ξ)(f − f(ξ))])

= f(ξ)φ([g − g(ξ)]) + g(ξ)φ([f − f(ξ)])

= f(ξ)D([g]) + g(ξ)D([f ]),

we are done.

4.3.2 Geometric Approach

In Lecture 4.3.1, we actually defined TpM at p ∈M to be the derivation ofAp, which is independent

of the choice of coordinate charts. The tangent bundle is then the collection of all tangent spaces:

TM = ∪pTpM , and the derivation D is well-defined on tangent bundles. An alternative way of

thinking about the tangent vectors to M (smooth or complex) at p ∈ M is as an equivalence class of

paths through p. For that, we first need the notation of a path.
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Definition 20. Let F ∈ {R,C}. A path through p ∈ M is a pair (U, γ) with U ⊂ F being a

neighborhood of the origin, and γ : U → M with γ(0) = p being a smooth map if F = R and a

holomorphic map if F = C. Two paths (W,γ1), (V, γ2) through p are equivalent if there is a coordinate

chart ϕ : W → V , p ∈W such that

∂t |t=0 (ϕ ◦ γ1) = ∂t |t=0 (ϕ ◦ γ2), F = R

∂z |z=0 (ϕ ◦ γ1) = ∂z |z=0 (ϕ ◦ γ2), F = C

Now define the equivalence class of paths through p to be the tangent vector at p.

Exercise 2. Check the definition of equivalence class of paths is well-defined, i.e. it is not determined

by the choice of charts.

Given a smooth (or holomorphic) map F : M → N between smooth (or complex) manifolds.

Define its derivation, a smooth (or holomorphic) map DF : TM → TN , by

DpF : TpM → Tf(p)N

[γ] 7→ [F ◦ γ].

Exercise 3. Prove that the tangent space Tp(−) is functorial for every p ∈M .

Definition 21. A section of the tangent bundle is a map M → TM that assigns to each point a

tangent vector at that point. Sections of the tangent bundle are called vector fields.

Example 15. Let U ⊂M be an open set and V ∈ C∞(U, TM |U ). One can think of V as assigning to

each p ∈ U a derivation of C∞M,p (or θM,p). Put these together, we obtain the next important definition.

Definition 22. The Lie derivative of the vector field V is

LV : A(U)→ A(U),

such that LV (f)(ξ) = V (ξ)[f ]ξ. This define a derivation of A(U) with Leibniz’s rule

LV (fg) = fLV (g) + gLV (f),

and every derivation of A(U) arises in this way.

Definition 23. Given vector fields V,W , the Lie bracket [V,W ] : A(U)→ A(U) of them is given by

[V,W ](f) = LV (LW (f))−LW (LV (f)).

Exercise 4. Prove that the Lie bracket is a derivation. Hence the Lie bracket is a Lie derivative of a

vector field.

In local coordinates, if V =
∑
aj∂ξj , W =

∑
bj∂ξj , then

[V,W ] =
∑
j

∑
k

(ak∂ξkbj − bk∂ξkaj)∂ξj
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4.4 Covariant Derivatives

Definition 24. Given a smooth (or holomorphic) map F : M → N between smooth (or holomor-

phic) manifolds and a smooth (or holomorphic) vector bundle E
π−→ N . We can obtain a smooth (or

holomorphic) vector bundle F ∗E →M along the diagram

F ∗E E

M N

π

F

This bundle is called the pullback of E
π−→ N , or a pullback bundle in short. In fact, we can write

F ∗E = {(m, v) ∈M × E : F (m) = π(v)}

This “pullback” lives up to its name. It satisfies the universal property of pullback in category of

corresponding manifolds. Namely, given the pullback bundle

Ξ E

M N

there exists a unique bundle morphism ψ : Ξ→ F ∗E such that the following diagram commutes:

Ξ

F ∗E E

M N

∃!ψ

π

F

Note that the pullback of a trivial bundle is the trivial bundle. So we can obtain local trivialization of

F ∗E by pulling back local trivialization of E.

A vector bundle E → [0, 1] ×M gives us a family of vector bundles over M , namely j∗tE → M ,

where jt : M ↪→ [0, 1] ×M being the inclusion into (t,m) ∈ [0, 1] ×M . We want to know if these are

all isomorphic.

Note 1. This is not true for holomorphic bundles in general. (Why?)

In order to find the answer, we first need the tool called partition of unity.

Definition 25. Let M be a smooth manifold and {Uα} be an open cover of M . A partition of unity

(subordinate to {Uα}) is a collection of smooth functions {xi} such that

1. Each xi : M → [0, 1] has compact support contained in some Uα.

2. For each ξ ∈M , there are only finitely many nonzern xi at ξ.

3.
∑

i xi(ξ) = 1 for every ξ ∈M .
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Lemma 3. For every smooth manifold M , and any open cover {Uα} of M , there is a partition of unity

subordinate to {Uα}.

Proof. Exercise. Also, does there exist any similar results holding for holomorphic manifolds?

Recall that given a F-vector bundle ξ → M , there is a dual vector bundle ξ∗ = Hom(ξ,F) → M .

The dual of the tangent bundle is called the cotangent bundle, denoted by T ∗M → M . At each

point ξ ∈M , elements of T ∗ξM are known as covectors. Sections of T ∗M are known as 1-forms, and

sections of
∧k

T ∗M are known as k-forms.

Note 2. We use the notation Ω1(M) := C∞(M,T ∗M) to denote the set of 1-forms, and Ωk(M) :=

C∞(M,
∧k

T ∗M) to denote the set of k-forms. When k = 0, 0-forms are the same as functions on M ,

i.e. Ω0(M) = C∞(M).

Now thinking of M as a geometric space (M,A). Then T ∗ξM = Jξ/J
2
ξ is the stalk of functions

vanishing at ξ modulo stalks vanishing to second order at ξ. If U ⊂ M is open, then any f ∈ A(U)

defines a section of T ∗M |U , denoted by df ∈ Ω1(U), df(ξ) = [f − f(ξ)]ξ ∈ Jξ/J2
ξ . In local coordinates

x1, · · · , xn, dxi’s form a local frame for T ∗M |U , and

df =
∑
i

∂f

∂xi
dxi.

If V ∈ C∞(M,TM) is a vector field, then df(V ) = LV (f) ∈ C∞(M). However, considering a section

s of a vector bundle E → M , there is no canonical way to differentiate s. So we need to construct

a “covariant derivative” ∇ which, for each of vector field V ∈ C∞(M,TM), gives us a F-linear map

∇V : C∞(M,E)→ C∞(M,E). Alternately, we ought to find ∇ satisfying

• ∇ : C∞(M,E)→ C∞(M,T ∗M ⊗ E) = Ω1(M,E) with Leibniz’s rule

∇V (fs) = LV (f)s+ f∇V s (1)

Or:

•
∇(fs) = df ⊗ s+ f∇s ∈ Ω1(M,E). (2)

To construct such covariant derivatives, first cover the manifold M with coordinate charts that

trivialize E and let {xi} be a subordinate partition of unity. On the support of each xi, E is trivial.

Thus it is natural that we choose to work with U ×Fk → U , and a section is a smooth map s : U → Fk

i.e. a vector with k smooth functions as its entries. We could take ds by its first differentiation for

each entry. More generally, we could take (d+Aj)(s), where Aj is a function associated to each vector

field V (resulting in a family of k × k-matrices Aj(V )). One can see

Aj ∈C∞(U, T ∗M |U ⊗Mk×k(F))

=C∞(U, T ∗M |U ⊗End(E |U ))

= Ω1(U,End(E) |U ).
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The Leibniz’s rule is satisfied by d+Aj (Check!) and this is the most general solution.

Choosing d+Aj on the support of xj for each j, we can put them together and define

∇V : C∞(M,E)→ C∞(M,E)

by

s 7→
∑

(d+Aj)(xj · s). (3)

Exercise 5. Check that the definition (3) satisfies properties (1) and (2).

If ∇ and ∇′ are two covariant derivations, then ∇−∇′ ∈ Ω1(M,End(E)) because

(∇−∇′)(fs) = (df)⊗ s+ f∇s− ((df)⊗ s+ f∇′s) = f(∇−∇′)s,

which is in Ω1(M,End(E)).

4.5 Parallel Transport

Given a covariant derivative ∇ on sections of a vector bundle E → N and a map between base

spaces F : M → N , we have a pullback covariant derivative F ∗∇ on the pullback bundle F ∗E → M

determined by (F ∗∇)V (F ∗s) = ∇DF (V )s. In particular, if E →M is a vector bundle and γ : [0, 1]t →M

is a path on M , then any covariant derivative ∇ on sections of E induces a covariant derivative on

F = γ∗E → [0, 1]t. We can use this to construct an isomorphism Pγ from the fiber over 0 to the fiber

over 1. This is called the parallel transport. A section s of F is called parallel if ∇∂ks = 0.

Lemma 4. Let Par(F ) denote the vector space of parallel sections of F . Evaluation at t = 0, i.e.

Par(F )→ F0 sending s to s(0) is an isomorphism of F-vector spaces.

To prove the lemma, we need to recall the fundamental theorem of ODEs:

Theorem 14 (Uniqueness and Existence Theorem). The initial value problem
∂y
∂t

= F (t, y) on (a, b)

y(0) = y0

where F is continuous with respect to t and Lipschitz with respect to y (in some region containing

(a, b)). Then there exists a unique solution to this problem on a smaller open set, which depends

continuously on y0.

We will not prove this theorem and the reader can find it in any books of ODEs. Now we are

ready to prove the previous lemma.

Proof of Lemma 4. Assume F is trivializable, and pick a local frame (e1, · · · , en) for it. Define Akj :
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[0, 1]→ F by ∇∂kej =
∑
Akj ek. Then a section s =

∑
f jej is parallel iff

0 = ∇∂ks = ∇∂k
∑

f jej

=
∑

[(f j∇∂kej) + ej(∂tf
j)]

=
∑

(∂tf
j)ej + f j

∑
Akj ek

=
∑
j,`

(∂tf
j + f `Aj`)ej .

Hence s is parallel iff (∂tf
j + f `Aj`) = 0 for any j. By Theorem 14, regarding the equation as a first

order ODE of f j with respect to t, we are done with this case. In general, using local triviality and

compactness of [0, 1], we can find 0 = t0 < t1 < t2 < · · · < tN−1 < tN = 1 such that F |[ti,ti+1] is

trivializable (over corresponding interval). Composing the parallel transport gives the conclusion.

Theorem 15. Let E
π−→ [0, 1]×M be a vector bundle and let jt : M → [0, 1]×M be the inclusion of

{t} ×M , then j∗0E ' j∗1E.

We present two ways to prove this theorem.

Proof of Theorem 15, Method I. Let ∇ be a covariant derivative on sections of E → [0, 1]×M . Use

parallel transport along the family of paths [0, 1]×{ξ} for a chosen ξ ∈M . Since the coefficients Akj of

the ODEs vary smoothly with respect to ξ, so do the solutions of the ODEs. That is to say, the various

isomorphisms of the fibers over {0}×M and {1}×M fit together into a vector bundle isomorphism.

Proof of Theorem 15, Method II. This method is in a more topological view. Here we add an as-

sumption that M is compact. Start with two observations:

1. Any trivialization U ×Fk → U gives isomorphisms between the fibers Ep → Eq, varying smoothly

with respect to p, q ∈ U .

2. If we have trivializations ϕj : π−1(U × (aj , bj)) → U × (aj , bj) × Fk with a1 < a2 < b1 <

b2, j = 1, 2, then there is a trivialization ψ : π−1(U × (a1, b2)) → U × (a1, b2) × Fk. Indeed,

ϕ2(u, t) = G(u, t)ϕ1(u, t), where G(u, t) ∈ GL k(F) for any (u, t) ∈ U × (a2, b1). Define Φ(u, t) =

G̃(u, t)ϕ1(u, t), where

G̃(u, t) =

G(u, t) if t > b1 − ε

± id if t < a2 + ε

Cover [0, 1]×M with open sets over which E is trivial and use compactness to find a finite subcover.

Through the second observation we can find a finite over {Uj} of M such that E |[0,1]×Uj is trivializable.

From the first observation, we have continuous (actually smooth) isomorphisms E |{a}×Uj' E |{b}×Uj
for any a, b ∈ [0, 1].

Choose a partition of unity {xj} subordinate to {Uα}, and define φ0 = 0, φ` = x1 + · · ·+x` for any

` ∈ N. Let Γ` ⊂ [0, 1]×M be the graph of φ`. The trivialization on [0, 1]× U` gives an isomorphism

ρ` : E |Γ`−1

'−→ E |Γ` .
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The composition · · · ◦ ρ2 ◦ ρ1 is well-defined by the local finiteness of {xj}. This gives the desired

isomorphism.

Corollary 2. Given a vector bundle E → N and maps f0, f1 : M → N . If f0 is homotopic to f1, then

f∗0E ' f∗1E.

Proof. Let H : [0, 1]×M → N be the homotopy between f0 and f1 such that H |{0}×M= f0, H |{1}×M=

f1. Let jt : M × [0, 1]→M be the inclusion of M × {t} into M × [0, 1]. Then

f∗0E = (H ◦ j0)∗E = j∗0H
∗E ' j∗1H∗E = (H ◦ j1)∗E = f∗1E.

This lead to the following direct corollary.

Corollary 3. If M is contractible, then every smooth bundle over M is smoothly trivializable.

4.6 Line Bundle

Consider the C-line bundles over CP 1 ' S2. We can choose two charts on S2, namely S2\{N} ' C
and S2\{S} ' C. There is a transition map C\{0} → C\{0}, sending z to 1

z
. The standard atlas on

CP 1 is similar. We have U1 = {(z1 : z2) ∈ CP 1 : z1 6= 0} ' C (ismorphism through (z1 : z2) 7→ Z2

z1
,

similar for the second chart), and U1 = {(z1 : z2) ∈ CP 1 : z2 6= 0} ' C. There is a transition map

ω 7→ 1
ω

. Since a C-line bundle will be trivial over these charts, a rank k bundle will be determined by

a map from the overlap to GL k(C).

In particular, this is true for the tangent bundle. TCP 1 is trivial on each of these charts and its

transition map

C\{0} × C→ C\{0} × C

(z, v) 7→
(
−1

z
,

1

z2
v

)
.

This line bundle is denoted OCP 1(2). For all k ∈ Z, we denote by OCP 1(k) the line bundle with

transition map

(z, v) 7→
(
−1

z
,

1

zk
v

)
.

These form a group G (CP 1) with ⊗ as the operation: OCP 1(k)⊗OCP 1(`) = OCP 1(k + `).

Consider a holomorphic section s of OCP 1(k). Let (z+, s+(z+)) and (z−, s−(z−)) denote the repre-

sentations of s in the coordinate charts. Since s is holomorphic, we have

s+(z+) =
∞∑
j=0

a+,jz
j
+.

Writing this in the other coordinates, it becomes

ϕ(z+, s+(z+)) =

(
−z−1

+ ,
∞∑
j=0

a+,jz
j−k
+

)
.
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So the function z− →
∑

j≥0 a+,jz
k−j
− needs to be analytic, implying a+,j = 0 if j > k. Hence we

conclude that the C-dimension of the space of holomorphic section of OCP 1(k) is k+ 1 for k ≥ 0 and 0

for k < 0.

For k = 0, OCP 1(0) is the trivial line bundle C : CP 1 ×C→ CP 1, so a holomorphic section is just

a holomorphic function CP 1 → C, hence a constant function by Liouville’s theorem.

Definition 26. For each point [z] ∈ CP 1, let `[z] be the C-line in C2 represented by this point. Define

L = {([z], v) ∈ CP 1 × C2 : v ∈ `[z]}
π−→ CP 1.

This is a line bundle. (Check!) We denote it by OCP 1(−1), and call it a tautological line bundle

over CP 1.

It is worth considering the other projection L
β−→ C2 sending ([z], v) to v. β maps the “zero section”

to the origin 0 ∈ C2 and maps the complement biholomorphically onto C2\{0}. Thus the total space

of L is obtained from C2 by removing the origin and gluing in a CP 1. The geometric effect is to give

each line through the origin its own distinct origin. The total space of L is called the blow-up of C2

at the origin.

Proposition 3. On CPn with {Uα} the standard atlas, the line bundle OCPn(k) is defined by the

transition functions gαk([z]) =
(
zβ
zα

)k
.

Tautological bundles are more interesting over the Grassmannian.

Definition 27. The Grassmannian, or Grassmann manifold, Grn(Fn+k) is the set of n-dimensional

subspaces in Fn+k. The collection Vn(Fn+k) = {(v1, · · · , vn) ∈ (Fn+k)n : (v1, · · · , vn) orthonormal} is

an open subset of (Fn+k)n, called the Stiefel manifold, where (v1, · · · , vn) is called an n-frame.

Remark 6. The terminology “manifold” lives up to its name. In fact, Stiefel manifold Vn(Fn+k) can

actually be viewed as {M ∈ Fn+k : M∗M = In}, where M∗ is the conjugate transpose of M . It can be

topologized as a subspace of the product of n copies of the unit sphere in Fn+k, and there is a natural

surjection p : Vn(Fn+k) → Grn(Fn+k) sending an n-frame to the subspace it spans. This topologizes

the Grassmannian as a quotient space of Vn(Fn+k) via p. Moreover, Vn(Fn+k) is closed and bounded,

thus compact.

To see these two “manifolds” are truly manifolds, first note that these two topological spaces are

Hausdorff and second countable since they are the subspaces of some Hausdorff and second countable

spaces. Consider the map

p : Vn(Fn+k)→ Grn(Fn+k)

(v1, · · · , vn) 7→ Span{v1, · · · , vn}

Any n-space W in the neighborhood U of Grn(Fn+k) can be uniquely represented by graph of function

W 7→ W⊥, so one can find a one-to-one correspondence U 7→ Rnk, which implies a natural atlas on

Grn(Fn+k). Pulling back along p, one obtains the atlas for Vn(Fn+k).
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Another way of seeing Stiefel manifolds is as follows: consider the function f : Fnk → Sys(n)

sending A to A∗A− In, where Sys(n) is the set of symmetric n× n-matrices, which is a vector space.

One can show that f is a submersion. Then Vn(Fn+k) = f−1(0n), an embedded submanifold of Rnk.

Proposition 4. If F = R, then

Vn(Rn+k) ∼=
O(n+ k)

O(k)
, Grn(Rn+k) ∼=

O(n+ k)

O(n)×O(k)
;

if F = C, then

Vn(Cn+k) ∼=
U(n+ k)

U(k)
, Grn(Cn+k) ∼=

U(n+ k)

U(n)× U(k)
.

Let γn(Fn+k)
π−→ Grn(Fn+k) be a tautological bundle over a Grassmannian, γn(Fn+k) = {(W, v) ∈

Grn(Fn+k)×Fn+k : v ∈W}. Choose W0 ∈ Grn(Fn+k) and let p0 : Fn+k →W0 be the projection. Write

U0 = {W ∈ Grn(Fn+k) : p0(W ) = W0}. Then W ∈ U0 is the graph of a linear map TW : W0 7→ W⊥0 ,

and T : U0 → Hom(W0,W
⊥
0 ) ∼= Fnk is a coordinate chart. γn is trivial in each of these charts

h : π−1(U0)→ U0 × Fn

(W, v) 7→ (W,p0(v)).

Consider the tangent bundle of a manifold M embedded in FN . If dimFM = n, at each point p ∈M , we

have TpM ⊂ TpFN = {p}×FN . So TM = ∪p(p, TpM) ⊂ FN×FN is the graph of a map M → Grn(FN ).

The pullback of γn(FN )→ Grn(Fn+k) to M gives a bundle isomorphic to TM →M . This phenomenon

can be generalized in the following sense.

Theorem 16. Let M be a compact F-manifold and E → M be a rank n F-bundle. For large k > 0,

there is a vector bundle map F : E → γn(Fn+k) that is an isomorphism on fibers. Hence, E is the

pullback of tautological bundle γn(Fn+k)
F−→ Grn(Fn+k), i.e. the diagram below commutes.

E γn(Fn+k)

M Grn(Fn+k)

F

F

Proof. It is sufficient to construct a map F̂ : E → Fm for some m which is linearly injective on each

fiber of E →M . Having F̂ in hand, we can take F (v) = (F̂ (Fv), F̂ (v)), where Fv is the fibers through

v. F is well-defined, following from the local triviality of E. Similar to the tangent bundle case we

discussed above, we are done with the proof.

It remains to construct the map F̂ . First choose finite cover {Uj}1≤j≤r of M , trivializing E.

Choose another covers {Vj}, {Wj} of M , 1 ≤ j ≤ r, such that Vj ⊂ Uj and Wj ⊂ Vj . Let λj : M → R
denote a smooth function equal to 1 on Wj and equal to 0 outside Vj . Since E |Uj is trivial, there is a

map hj : π−1(Uj)→ Fn linear on the fibers. Define h′j : E → Fn by

h′j(v) =

0 if π(v) /∈ Vj

λj(π(v))hj(v) if π(v) ∈ Uj
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Clearly h′j is linear on fibers. Define F̂ : E → (Fn)r by F̂ (v) = (h′1(v), h′2(v), · · · , h′r(v)). This F̂ is the

desired one.

Corollary 4. Every line bundle E → M is the pullback of the tautological line bundle over FPN for

some N.

Note that as soon as we find some k that works in Theorem 16, then any K > k will also work in the

same setting. This is true because we have the inclusions Fn+k ∼= Fn+k×{0} ↪→ Fn+k+1 ↪→ · · · , inducing

inclusions Grn(Fn+k) ↪→ Grn(Fn+k+1) ↪→ · · · . The tautological bundle γn(Fn+k+1) then restricts to

γn(Fn+k), i.e.

γn(Fn+k) γn(Fn+k+1)

Grn(Fn+k) Grn(Fn+k+1)

p

as a pullback bundle. To get a single n-bundle that works for all situations, we can take the direct

limit

F∞ := lim−→
k

Fn+k =
⋃
k

Fn+k
/
∼,

where “∼” is given by Fs 3 u ∼ v ∈ Fs′ iff (u, 0) = (v, 0) in FN for some N > 0. Similarly we define

Grn := Grn(F∞) = lim−→
k

Grn(Fn+k),

γn := γn(F∞) = lim−→
k

γn(Fn+k).

Since the maps γn(Fn+k)→ Grn(Fn+k) are compatible with the maps Grn(Fn+k)→ Grn(Fn+k+1) and

the maps γn(Fn+k)→ γn(Fn+k+1), they induce a map γn → Grn. One can check this is locally trivial.

The bundle γn → Grn is the universal bundle. Every vector bundle E → M of F-rank n is the

pullback of γn → Grn along some map M → Grn, and that map is called the classifying map of E.

Note 3. In Theorem 16, we ask the manifold M to be compact since we need the finite covers of M .

However, this restriction does NOT apply once we pass to the universal bundle. Even if M is not

compact, we can find a countable cover of M by local trivialization of E with each point of M contained

in only finitely many of the open sets. The proof of Theorem 16 still works but with F̂ mapping into

F∞, one copy for each of the open sets in the cover.

Proposition 5. Any two classifying maps of E →M are homotopic.

Proof. As we discussed above, the bundle map E
F−→ γn is equivalent to a map F̂ : E → F∞ whose

restriction to each fiber is injective and linear. Let F,G : E → γn be two bundle maps, fiberwise

isomorphisms.

Case 1 :

Assume that for each nonzero vector v ∈ E, F̂ (v) is never equal to a negative multiple of Ĝ(v).

Then Ĥt(v) = (1 − t)F̂ (v) + tĜ(v), t ∈ [0, 1] is a continuous homotopy between them with Ĥt

injective and linear on fibers.
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Case 2 :

Consider the bundle maps so, se : γn → γn, sending (W, v) to (W,Lo(v)) and (W,Le(v)), respec-

tively, where

Lo(a, b, c, d, · · · ) = (a, 0, b, 0, c, 0, d, 0, · · · ),

Le(a, b, c, d, · · · ) = (0, a, 0, b, 0, c, 0, d, · · · ).

Now F̂ (v) and so ◦ F̂ (v) are always homotopic, so do so ◦ F̂ (v) and se ◦ Ĝ(v), se ◦ Ĝ(v) and Ĝ(v).

Therefore, we can find F̂ ∼ so ◦ F̂ ∼ se ◦ Ĝ ∼ Ĝ by Case 1.

4.7 Almost Complex Structures

Notice that a complex vector space is the same as a real vector space together with a “complex

structure” in the form of an endomorphism J such that J2 = − id. Indeed, given J , we can define

(a+ ib)v = av+ bJ(v), making R-vector spaces the C-vector spaces. If we start with a C-vector space,

then multiplication by i is an R-linear endomorphism of the underlying R-vector space that squares to

− id. In general, if we have V which is a R-vector space of dimension 2n with a C-structure J , then

V ⊗ C is a C-vector space of dimension 2n with two complex structures:

1. J extends to V ⊗ C by J(v ⊗ α) = J(v)⊗ α

2. i from the C-factor acts on V ⊗ C by i(v ⊗ α) = v ⊗ iα.

Since J2 = − id, J is diagonalizable with two eigenvalues i and −i. Denote the eigenspaces by V ⊗C =

V 1,0 ⊕ V 0,1, where

V 1,0 = {ω ∈ V ⊗ C : J(ω) = iω},

V 0,1 = {ω ∈ V ⊗ C : J(ω) = −iω}.

Thus V 1,0 is the subspace where the two complex structures coincide and V 0,1 is the subspace where

they don’t.

Notice that we can define conjugation on V ⊗ C by v ⊗ α = v ⊗ α. Then V 1,0 = V 0,1. So

dimC V
1,0 = dimC V

0,1 =
1

2
dimC V ⊗ C = n.

We have an isomorphism of C-vector spaces:

(V, J)
'−→ (V 1,0, i)

v 7→ 1

2
(v − iJv).

Example 16. If we start with Cn = {(ω1, · · · , ωn) : ωj ∈ C} and decompose ωj = aj + ibj with

aj , bj ∈ R, then we have the natural identification with R2n = {(a1, b1, · · · , an, bn) : aj , bj ∈ R}. Scalar
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multiplication by i in Cn induces the complex structure J : R2n → R2n sending (a1, b1, · · · , an, bn)

to (−b1, a1, · · · ,−bn, an). Now consider the complexification R2n ⊗ C ' C2n. The standard basis of

R2n : (x1, y1, · · · , xn, yn) induces the standard basis of C2n : (X1, Y1, · · · , Xn, Yn), where Xj = xj⊗1 and

Yj = yj ⊗ 1. J extends to C2n: J(Xk) = Yk, J(Yk) = −Xk. Hence its i-eigenspace is Span{Xk − iYk(=
xk⊗1−yk⊗i)}, and its (−i)-eigenspace is Span{Xk+iYk(= xk⊗1+yk⊗i)}. Note Xk − iYk = Xk+iYk,

so these two eigenspaces are conjugate. Every R-vector space of even dimension can be given a complex

structure.

Definition 28. An almost complex structure on a smooth manifold M is a vector bundle isomor-

phism J : TM → TM such that J2 = − id.

This turns TM into a C-vector bundle, but does not turn M into a C-manifold. Clearly if M

admits an almost C-structure, it must be even dimension and orientable.

Theorem 17 (Borel-Serre). The only spheres that admit an almost complex structure are S2 and S6.

Definition 29. A map between smooth manifolds with almost complex structures F : (M,J) →
(M ′, J ′) is called almost complex, or pseudo-holomophic, if DF ◦ F = J ′ ◦DF .

Proposition 6. If U ⊂ Cm, V ⊂ Cn are open sets, a map F : U → V is pseudo-holomophic iff it is

holomorphic.

In particular, a complex manifold M induces an almost complex structure on its underlying smooth

manifold, i.e. a complex structure implies an almost complex structure. We say that an almost complex

structure is integrable iff it comes from a complex structure.

Example 17. If M is a C-manifold, then T holM ∼= T 1,0M = (TM ⊗ C)1,0.

What it means to be integrable? On R2, a complex structure is a way to decide which functions

are holomorphic:

f is holomorphic ⇐⇒ ∂zf = (∂x + i∂y)f = 0.

Suppose we are given two real vector fields

Qj = aj(x, y)∂x + bj(x, y)∂y, j ∈ {1, 2},

and let Pf = (Q1 + iQ2)f . Can we find coordinates u = u(x, y), v = v(x, y) such that in these

coordinates, Pf = 0 is equivalent to (∂u + i∂v)f = 0?

A necessary condition is that Q1, Q2 are linearly independent. It turns out that this is sufficient

(hence T 1,0M is always closed under Lie bracket). Suppose we can solve Pω = 0 with ω = u + iv,

where u, v are R-valued and ∇u,∇v are linearly independent. Then we will use u and v as the new

coordinates. On the one hand, by the chain rule

P = α(u, v)∂u + β(u, v)∂v
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for some C-functions α, β, through

∂x 7→
∂u

∂x
∂u +

∂v

∂x
∂v,

∂y 7→
∂u

∂y
∂u +

∂v

∂y
∂v.

On the other hand, since Pω = 0 = P (u+ iv) = α+ iβ, P = −iβ(∂u + i∂v), and so

Pf = 0⇐⇒ (∂u + i∂v)f = 0,

by the fact that β 6= 0 by linear independence. To solve Pω = 0, we will need the elliptic equations

(See 6.1).

Not every almost complex structure is integrable. There is a nice characterization. Recall that

we have Lie bracket for vector fields: for V,W ∈ C∞(M,TM), [V,W ] is the vector field satisfying

L[V,W ] = [LV ,LW ]. This easily extends to sections of TM ⊗ C. The Newlander-Nirenberg Theorem

says that an almost complex structure is integrable iff Lie bracket of two sections of T 0,1M is another

section of T 0,1M . In order to state the theorem, we need to review some knowledge in differentiable

manifolds.

Definition 30. Suppose M is a smooth manifold and E ⊂ TM is a subbundle of rank k. We say

1. E is involutive if the Lie bracket of two sections of E is a section of E.

2. E is integrable if each point of M has a neighborhood U and a map φU : U → Rn−k such

that E |U= kerDφU . That is to say, each fiber φ−1
U (v) is a submanifold of U with target space

E |φ−1
U (v).

Theorem 18 (Frobenius, Smooth Manifolds). E is involutive iff E is integrable.

Given the Frobenius Theorem for smooth manifolds, we can deduce a Frobenius Theorem for

complex manifolds.

Theorem 19 (Frobenius, Complex Manifolds). Let M be a complex manifold of C-dimension n,

E ⊂ T holM be a holomorphic subbundle of C-rank k. Then E is involutive iff E is holomorphically

integrable (i.e. we have local holomorphic maps φU : U → Cn−k such that Eξ = ker(DξφU ) for every

ξ ∈M).

Proof. Note that < : T 1,0M = T holM
'−→ TM sending ω − iJ(ω) to ω is an isomorphism of C-vector

spaces. If E is involutive, then so is <E. Then the smooth Frobenius Theorem gives us smooth

local map φU : U → R2n−2k with <E |U= ker(DξφU ). Next we want to put a complex structure on

im (φU ) = V ⊂ R2n−2k for which φU is holomorphic. We can identify TφU (ξ)V = TξU
/
<Eξ. Since E is

a holomorphic subbundle, the integrable almost C-structure on TM preserves <E because J descends

to TV . Thus TφU (ξ)V inherits a complex structure. By construction, DφU commutes with J , so it is

holomorphic.

Definition 31. (M,J)dimension is real analytic if M has an atlas whose transition maps are real

analytic, and in each of these coordinate charts, J is a real analytic family of matrices.
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Now we can state the Newlander-Nirenberg Theorem as follows:

Theorem 20 (Newlander-Nirenberg). If J is an almost complex structure on M and (M,J) is real

analytic, then J is integrable iff T 0,1M (or T 1,0M) is involutive.

Proof. (Weil) It is enough to work locally. Assume M = U ⊂ R2n is open, 0 ∈ U , and J is a local

analytic matrix-valued map satisfying J−2 = − id given by a convergent power series. Hence there is a

neighborhood of the origin Ũ ⊂ C2n on which this power series converges. Denote the extension by J̃ .

Let Ẽ be the −i eigen-bundle of J̃ , so

E = Ẽ |U= T 0,1U ⊂ TU ⊗ C ' C2n.

Sections of Ẽ over Ũ are vector fields of the form v+iJ(v), where V is a C-vector field over Ũ . Hence the

involutivity of T 0,1U implies the involutivity of Ẽ. Thus, up to shrinking the neighborhood, we know

that there exists a holomorphic function φŨ : Ũ → Cn where fibers are the integrable submanifolds of

Ẽ, such that Ẽ = ker(DφŨ ). Now note that U sits in Ũ like (<z1,<z2, · · · ,<zn) in (z1, z2, · · · , zn), and

this space TU is transverse to Ẽ. Therefore, the restriction φŨ |U= φ : U → Cn is a diffeomorphism.

Finally, note that the derivative of φ, Dφ : TξU → Tφ(ξ)Cn identifies J with the complex structure on

Cn. This follows from C-linearity of TξU ↪→ TξŨ → TξŨ
/
<Eξ. In the quotient TξŨ

/
<Eξ, we have

V = −iJ(V ), i.e. iV = J(V ).
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5 Complex and Cohomology

We will talk about the complexes in this chapter. They are useful in the computation, and they

are important tools to observe the topological and algebraic properties associated to various manifolds

and bundles.

5.1 de Rham Complex

Recall that Ωk(M) = C∞(M,
∧k

T ∗M). We have a ma d : Ωk → Ωk+1 called differential. When

k = 0, Ωk(M) = C∞(M). In this case, for V a vector field, Df : TM → TR = R × R, at each point

ξ ∈M , Df sends V to (f(ξ),LV f(ξ)). Thus d : C∞(M)→ Ω1(M) is given by

df(V ) = LV (f) = V f = Proj2Df(V ).

In local coordinates (x1, · · · , xn), df =
∑
∂xjfdxj . When k > 0, d extends to a map

d : Ωk(M)→ Ωk+1(M)

k∑
j=1

ajdxj 7→
k∑
j=1

daj ∧ dxj

in local coordinates. In general, the coordinate-free description for d is given as follows: let ω ∈ Ωk(M),

then dω ∈ Ωk+1(M), and

dω(V0, V1, · · · , Vk) =
k∑
j=0

(−1)jLVj (ω(V0, · · · , V̂j , · · ·Vk))

+
∑
j<`

(−1)j+`ω([Vj , V`], V0, · · · , V̂j , · · · V̂k, · · ·Vk).

If k = 1,

dω(V0, V1) = LV0
(ω(V1))−LV1

(ω(V0))− ω([V0, V1]).

Proposition 7. d satisfies the following properties:

1. d2ω = 0 for any ω ∈ Ω•(M).

2. (Leibniz’s Rule) If ω ∈ Ωk(M) and η ∈ Ω`(M), then

d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ dη.

3. (Chain Rule) If F : M → N is smooth, then

• there is a natural map F ∗ : Ωk(N)→ Ωk(M) with

(F ∗ω)ξ(V1, · · · , Vk) = ωF (ξ)(DξF (V1), · · · , DξF (Vk));

• for any ω ∈ Ω•(N), dMF
∗ = F ∗dN , and

d(F ∗ω) = F ∗(dω);
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on functions,

d(F ∗f)(V ) = d(f ◦ F )(V ) = Proj2D(f ◦ F )(V )

= Proj2Df(DF (V )) = df(DF (V ))

= F ∗(df)(V ).

Exercise 6. Check the previous properties.

Definition 32. A k-form ω is closed if dω = 0 and is exact if ω = dη for some η ∈ Ωk−1(M).

Remark 7. Since d2ω = 0, all exact forms are closed. If dimM > 0, then Ωk(M), sets of exact forms

and sets of closed forms are all infinite dimensional R-vector spaces. However, if M is a closed manifold

(i.e. compact and without boundary), then the quotient vector space (closed k-forms)
/

(exact k-forms)

is finite dimensional.

Definition 33. The above quotient vector space defined in a closed manifold M , i.e.

Hk
dR(M) :=

closed k-forms

exact k-forms
=

ker(d : Ωk(M)→ Ωk+1(M))

im (d : Ωk−1(M)→ Ωk(M))

is called the kth de Rham cohomology group of M .

The de Rham Theorem discussed later identifies these groups with the topological cohomology of

M with R-coefficients. Given F : M → N , since the maps F • : Ω•(N) → Ω•(M) commutes with the

exterior derivative d, they induce maps F ∗ : H∗dR(N) → H∗dR(M). It turns out that this map only

depends on the homotopy class of F .

Proposition 8. If H : M × [0, 1]→ N is smooth and Ft = H |M×{t}, then the induced map F ∗t on de

Rham cohomology is independent of t.

Proof. Abusing the notation, we can write

Ωk(M × [0, 1]) = Ωk(M) + dt ∧ Ωk−1(M).

In fact, this is short for the following process:

M × [0, 1]

M [0, 1]

p1 p2

and

Ωk(M × [0, 1]) = C∞

(
M × [0, 1], p∗1

k∧
T ∗M

)
+ p∗2dt ∧ C∞

(
M × [0, 1], p∗1

k−1∧
T ∗M

)
.

Consider F ∗t [ω] = [F ∗t ω] ∈ Hk(M), where ω ∈ Ωk(M) and dω = 0. Write H∗ω = ω0 + dt ∧ ω1, so

F ∗s ω = ω0 |t=s. Note

H∗dω = 0 = dH∗ω = dMω0 + dt ∧ (∂tω0 − dMω1),
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so dMω0 = 0 and ∂tω0 = dMω1. Hence

F ∗1 ω − F ∗0 ω = ω0(1)− ω0(0) =

∫ 1

0

∂ω0

∂t
dt

=

∫ 1

0

dMω1dt = dM

∫ 1

0

ω1dt,

and

[F ∗0 ω] =

[
F ∗0 ω + dM

∫ 1

0

ω1dt

]
= [F ∗1 ω].

Theorem 21 (Poincaré’s Lemma). If U ⊂ Rn is smoothly contractible, then Hk
dR(U) = 0 for any

k > 0.

Proof. Let u0 ∈ U and H : U × [0, 1]→ U be such that for any u ∈ U , H(u, 0) = u0 and H(u, 1) = u.

Then F ∗1 : Hk
dR(U) → Hk

dR(U) is the identity, hence so is F ∗0 by Property 8. But F ∗0 ω = 0 on Ωk(U)

for k 6= 0, implying the theorem.

Corollary 5. Let N be the number of connective components of M . Then

H0
dR(M) ∼= RN .

Given a vector bundle E →M , we can define differential forms with coefficients in E, i.e.

Ωk(M,E) = C∞

(
M,

k∧
T ∗M ⊗ E

)
.

Recall that a covariant derivative on E is a map

∇E : C∞(M,E)→ C∞(M,T ∗M ⊗ E),

which is equivalent to

∇E : Ω0(M,E)→ Ω1(M,E),

satisfying the Leibniz’s rule: for any f ∈ C∞(M),

∇E(fs) = df ⊗ s+ f∇Es.

We can extend ∇E to the “E-valued exterior derivative”

dE : Ωk(M,E)→ Ωk+1(M,E)

by declaring that, on elementary tensors ω ⊗ s where ω ∈ Ωk(M) and s ∈ C∞(M,E),

dE(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧∇Es.

However, this is generally not a differential, since (dE)2 6= 0.
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Definition 34. Let M be a smooth manifold, E → M be a smooth vector bundle with covariant

derivative ∇E . Give s ∈ C∞(M,E) the value of the section R∇(s) = dE(dEs) = dE(∇Es) at the point

ξ ∈ M . Hence the correspondence s(ξ) → R∇(s)(ξ) defines a smooth section of the vector bundle

Hom(E,
∧2

T ∗M ⊗ E). R∇ is called the curvature of ∇E , and ∇E is called flat if its curvature

vanishes.

Proposition 9. The above definition is well-defined, i.e. independent of the choice of the point ξ.

Proof. For any f ∈ C∞(M),

dE(dE(fs)) = dE(df ⊗ s+ f∇Es) = d2f ⊗ s− df ∧∇Es+ df ∧∇Es+ fdE(∇Es)

= fdE(∇Es).

Exercise 7. Prove that dE is actually a differential, provided ∇E is flat.

If we pick a local frame s1, · · · , sn for E |U , where U ⊂M is open, then

∇Esj =
∑

ωjk ⊗ sk, ωjk ∈ Ω1(U)

R∇sj = dE
(∑

ωjk ⊗ sk
)

=
∑

Ωjk ⊗ sk,

where Ωjk = dωjk −
∑

` ωj` ∧ ω`k. In matrix notation,

Ω = dω − ω ∧ ω.

Exercise 8. ∇E is flat iff there are local frames that are parallel, i.e. ∇Esj = 0.

5.2 Dolbeault Complex

If (M,J) is a manifold with an almost complex structure, then TM ⊗ C = T 1,0M︸ ︷︷ ︸
J=i

⊕T 0,1M︸ ︷︷ ︸
J=−i

.

J induces a bundle map T ∗M → T ∗M by J(ω)(V ) = ω(J(V )) and a decomposition T ∗M ⊗ C =

T ∗M1,0⊕T ∗M0,1. In local coordinates x1, y1, · · · , xn, yn on M , T 1,0 is spanned by ∂zj = 1
2
(∂xj − i∂yj ),

and T 0,1 is spanned by ∂zj = 1
2
(∂xj + i∂yj ). Correspondingly, T ∗M1,0 is spanned by dzj = dxj + idyj ,

and T ∗M0,1 is spanned by dzj = dxj − idyj . We have

dzj(∂zk) = δjk, dzj(∂zk) = 0,

dzj(∂zk) = 0, dzj(∂zk) = δjk,

where δ is the Kronecker symbol. Similarly,

k∧
T ∗M ⊗ C =

⊕
p+q=k

p,q∧
T ∗M

=
⊕
p+q=k

p∧
(T ∗M)1,0 ∧

q∧
(T ∗M)0,1.
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A form of type (p, q) in local holomorphic coordinates can be written in the form∑
aj1,··· ,jp,`1,··· ,`qdzj1 ∧ · · · ∧ dzjp ∧ dz`1 ∧ · · · ∧ dz`q =

∑
|α|=p
|β|=q

aα,βdzα ∧ dzβ,

where α, β ∈ Nm, m = dimM .

Remark 8. If M is a complex manifold, then T 1,0M is a holomorphic vector bundle, so are
⊗p

T 1,0M

and
∧p

T 1,0M . On the other hand, T 0,1M is just a smooth vector bundle, the composition of anti-

holomorphic maps is not anti-holomorphic, so there is no notion of “anti-holomorphic” vector bundle.

Write

Ωp,q(M) := C∞

(
M,

p,q∧
T ∗M

)
.

On an arbitrary manifold with an almost complex structure, the exterior derivative has four types of

components

d : Ωp,q(M)→ Ωp−1,q+2(M)⊕ Ωp,q+1(M)⊕ Ωp+1,q(M)⊕ Ωp+2,q−1(M).

Example 18. Consider a 1-form ω ∈ Ω1(M). ω has type (1, 0) if it vanishes on vector fields V of type

(0, 1), i.e.

ω(V ) = ω(π1,0V ), (π1,0ω)(V ) = ω(π1,0V ),

where πi,j denotes the projection onto (i, j)-type. Then

dω(V1, V2) = LV1
(ω(V2))−LV2

(ω(V1))− ω([V1, V2]).

Note that

π2,0dω(V1, V2) = dω(π1,0V1, π1,0V2),

π1,1dω(V1, V2) = dω(π1,0V1, π0,1V2) + dω(π0,1V1, π1,0V2),

π0,2dω(V1, V2) = dω(π0,1V1, π0,1V2),

none of these can be guaranteed to vanish.

Remark 9. If ω has type (1, 0), then π0,2dω(V1, V2) = −ω([π0,1V1, π0,1V2]). So if T 0,1 is involutive,

i.e. J is integrable, then π0,2dω = 0. On the other hand, if π0,2dω = 0 for all ω of type (1, 0), then

π1,0[π0,1V1, π0,1V2] = 0 for any V1, V2, i.e. T 0,1M is involutive.

Theorem 22. Let (M,J) be a manifold with an almost complex structure. The following are equiva-

lent:

1. M has a complex structure inducing J .

2. T 1,0M is involutive.

3. T 1,0M is involutive.
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4. d : Ω1,0(M)→ Ω2,0(M)⊕ Ω1,1(M).

5. d : Ω0,1(M)→ Ω0,2(M)⊕ Ω1,1(M).

6. d : Ωp,q(M)→ Ωp+1,q(M)⊕ Ωp,q+1(M) for any p, q.

In the preceding setting, we write d = ∂ + ∂, where

∂ : Ωp,q(M)→ Ωp+1,q(M),

∂ : Ωp,q(M)→ Ωp,q+1(M).

It is easy to see ∂ω = ∂ω. These satisfy their own Leibniz’s rule: if ω ∈ Ωk(M), η ∈ Ω`(M), then

∂(ω ∧ η) = ∂ω ∧ η + (−1)kω ∧ ∂η,

∂(ω ∧ η) = ∂ω ∧ η + (−1)kω ∧ ∂η.

Moreover, since d2 = 0, we have (∂ + ∂)2 = 0 = ∂2 + ∂
2

+ ∂∂ + ∂∂. Comparing types, we obtain

∂
2

= 0, ∂2 = 0, ∂∂ + ∂∂ = 0.

Definition 35. The Dolbeault complex of holomorphic p-forms is

0→ Ωp,0(M)
∂−→ Ωp,1(M)

∂−→ · · · ∂−→ Ωp,m−p(M)→ 0.

The Dolbeault cohomology groups are

Hp,q

∂
(M) :=

∂-closed (p, q)-forms

∂-exact (p, q)-forms
=

ker(∂ : Ωp,q(M)→ Ωp,q+1(M))

im (∂ : Ωp,q−1(M)→ Ωp,q(M))
.

In particular,

H0,0

∂
(M) = holomorphic sections of

p∧
(T ∗M)1,0.

Proposition 10. If M is a closed complex manifold, then Hp,q

∂
(M) is a finite dimensional complex

vector space.

Remark 10. There is NO natural map between Dolbeault cohomology groups and de Rham coho-

mology groups on general complex manifolds. However, we can relate them through other theories.

From ∂∂ + ∂∂ = 0, we notice that

1. ∂∂(∂ + ∂) = ∂∂∂ = −∂∂2 = 0. So we define Bott-Chern cohomology groups:

Hp,q
BC(M) :=

ker(∂ + ∂ : Ωp,q(M)→ Ωp+1,q(M)⊕ Ωp,q+1(M))

im (∂∂ : Ωp−1,q−1(M)→ Ωp,q(M))
=

ker(∂ + ∂)

im (∂∂)
.

2. (∂ + ∂)∂∂ = 0. So we define Aeppli cohomology groups:

Hp,q
A (M) :=

ker(∂∂ : Ωp,q(M)→ Ωp+1,q+1(M))

im (∂ + ∂) ∩ Ωp,q(M)
=

ker(∂∂)

im (∂ + ∂)
.
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There are natural maps

⊕
Hp′,q′

BC (M)

⊕
Hp′,q′

∂ (M) Hp+q
dR (M)

⊕
Hp′,q′

∂
(M)

⊕
p′+q′=p+qH

p′,q′

A (M)

ϑ

There is a theorem that if ϑ is injective, then all maps in the diagram are isomorphism. It used some

cohomological algebra to prove. The readers can see [1] for a reference.

Lemma 5. The map ϑ is injective if (ker ∂ ∩ ker ∂ ∩ im d) ⊂ im ∂∂.

We say that a manifold satisfies the ∂∂-lemma (Lemma 12, see Lecture 6.4) if this is true. Hence,

if a manifold satisfies the ∂∂-lemma, then

Hk
dR(M) ∼=

⊕
p+q=k

Hp,q

∂
(M),

which is the relation between de Rham cohomology and Dolbeault cohomology. This is called the

Hodge-Dolbeault decomposition.

Similar to de Rham cohomology, we have a Poincaré’s lemma for Dolbeault cohomology. In order

to get the theorem, we first prove a useful theorem.

Theorem 23. Let D ⊂ Cn be a polydisc, f ∈ Ωp,q+1(D) such that ∂f = 0. If D′ is another bounded

polydisc with D′ ⊂ D, then there is a form u ∈ Ωp,q(D′) satisfying ∂u = f in D′.

Proof. We shall prove inductively that the theorem is true if f does not involve dzk+1, · · · , dzn.

For k = 0, clearly f ≡ 0 and the theorem is trivial. Assume we know the theorem for k − 1. Let

f = dzk ∧ g + h with g ∈ Ωp,q(M) and h ∈ Ωp,q+1(M). Both g and h don’t involve dzk+1, · · · , dzn.

Write

g =
′∑

|α|=p

′∑
|β|=q

gαβdz
α ∧ dzβ.

Since ∂f = 0, we know that ∂zjgαβ = 0 if j > k, i.e. gαβ is holomorphic in zk+1, · · · , zn. Next we will

find Gαβ such that ∂zkGαβ = gαβ. Pick φ ∈ C∞c (C) such that φ(zk) ≡ 1 in a neighborhood D′′ of D′

in D, and take

Gαβ =
1

2πi

∫
C

φ(ξ)

ξ − zk
gαβ(z1, · · · , zk−1, ξ, zk+1, · · · , zn)dξdξ.

This satisfies Gαβ ∈ C∞(D) satisfying ∂zkGαβ = gαβ in D′′ and satisfying ∂zjGαβ = 0 for any j > k.

Set

G =
′∑

|α|=p

′∑
|β|=q

Gαβdz
α ∧ dzβ.
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Note that in D′′,

∂G =
′∑
∂zjGαβdzj ∧ dzα ∧ dzβ = dzk ∧ g + h1,

where h1 does not involve dzk+1, · · · , dzn. Hence h−h1 = f −∂G does not involve dzk, dzk+1, · · · , dzn.

By inductive hypothesis, since ∂(h− h1) = 0, there exists v ∈ Ωp,q(D′) such that ∂v = f − ∂G on D′.

Thus f = ∂(v +G) on D′ as required.

Theorem 24 (∂-Poincaré’s Lemma). If D = D(ε1, · · · , εn) ⊂ Cn is a polydisc (possibly unbounded),

then every ω ∈ Ωp,q(D), q > 0, is ∂-closed and ∂-exact.

Proof. For each j, choose strictly monotonic sequence εj(m) with εj(m) → ε when m → ∞. Let

Dm = D(ε1(m), · · · , εn(m)), so D1 ⊂ D2 ⊂ · · · ⊂ ∪Dm = D. From Theorem 23, for every m, there is

an η′m ∈ Ωp,q−1(Dm+1) such that ∂η′m = ω on Dm. Pick φm ∈ C∞c (D) for each m, with φm ≡ 1 on Dm

and vanishing outside Dm+1. Then ηm = φmη
′
m ∈ Ωp,q−1(D) such that ∂ηm = ω on Dm. It is easy to

see ∂ηm+1 = ω on Dm ⊂ Dm+1 by definition.

Case 1 : q > 1.

We claim that there exists (βm) ⊂ Ωp,q−1(D) satisfying ∂βm = ω on Dm and βm+1 = βm on Dm−1.

Assume we have constructed β1, · · · , βm. Since ∂(βm−ηm+1) = 0 onDm, we can apply Theorem 23

to find γm ∈ Ωp,q−2(Dm) such that ∂γm = βm−ηm+1 on Dm−1. Define βm+1 = ηm+1 +∂(φm−1γm)

to establish the claim. The sequence βm converges to β ∈ Ωp,q−1(D) such that ∂β = ω.

Case 2 : q = 1.

We claim that there exists (βm) ⊂ Ωp,0(D) satisfying ∂βm = ω on Dm and |βm+1−βm| < 2−m on

Dm−1. Assume we have constructed β1, · · · , βm. Since ∂(βm − ηm+1) = 0 on Dm, we can write

βm − ηm+1 =
′∑

|α|=p

(γα + rα)dzα,

where γα are polynomials and supDm |rα(ξ)| < 2−m. Take

βm+1 = ηm+1 +

′∑
|α|=p

γαdz
α ∈ Ωp,0(D).

Since γα are holomorphic, ∂βm+1 = ∂ηm+1. The sequence βm converges (locally uniformly) to

β ∈ Ωp,0(D) such that ∂β = ω.

5.3 Chern Connection

If M is a complex manifold, E →M is a complex vector bundle, then a covariant derivative

∇E :C∞(M,E)→ C∞(M,T ∗M ⊗ E)

Ω0(M,E) 7→ Ω1(M,E)
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extends to complexified differential forms, which is the sum of

(∇E)1,0 : Ω0(M,E)→ Ω1,0(M,E)

and

(∇E)0,1 : Ω0(M,E)→ Ω0,1(M,E),

with Leibniz’s rules

(∇E)1,0(fs) = ∂f ⊗ s+ f(∇E)1,0s,

(∇E)0,1(fs) = ∂f ⊗ s+ f(∇E)1,0s.

The curvature R∇ ∈ Ω2(M,End(E)) can be written as

R∇ =
(
(dE)1,0

)2︸ ︷︷ ︸
type (2,0)

+ (dE)1,0(dE)0,1 + (dE)0,1(dE)1,0︸ ︷︷ ︸
type (1,1)

+
(
(dE)0,1

)2︸ ︷︷ ︸
type (0,2)

.

Proposition 11. If M is a complex manifold and E →M is a holomorphic vector bundle, then there

is a canonical differential operator

∂
E

: C∞(M,E)→ Ω0,1(M,E)

that vanishes on holomorphic sections.

Proof. Let U be any trivializing neighborhood for E and {ej}rj=1 be a local holomorphic frame. Any

other local holomorphic frame {ẽj} on U is of the form ẽj =
∑
gkj ek for a non-singular matrix (gkj ) of

holomorphic functions on U . Let s =
∑
sjej =

∑
s̃kg

j
kej =

∑
s̃kẽk be a local holomorphic section of

E. Then the expression ∂
E
s =

∑
∂sj ⊗ ej is independent of the choice of local frame. Hence ∂

E
is

independent of the choice of charts of the vector bundle.

It is natural to extend ∂
E

: Ωp,q(M,E)→ Ωp,q+1(M,E) by requiring the Leibniz’s rule

∂
E

(ω ⊗ s) = ∂ω ⊗ s+ (−1)p+qω ⊗ ∂Es.

It is straightforward to check (∂
E

)2 = 0. So we can define

Hp,q

∂
(M,E) =

ker ∂
E

im ∂
E
.

This is the complex analogue of the de Rham cohomology of flat vector bundles. If E → M is a

holomorphic vector bundle and ∇E is a covariant derivative, then we say that it is holomorphic if

(∇E)0,1 = ∂
E

. Equivalently, ∇E is holomorphic if whenever s is a local holomorphic section of E, ∇Es
has type (1, 0).

Lemma 6. Any holomorphic vector bundle admits holomorphic covariant derivatives.

Proof. Let {Uα} be a locally finite cover of M by trivializing charts of E. Let {xα} be a partition of

unity subordinate to the cover. Identify E |Uα= Uα × Cr using a holomorphic frame and let ∇α = d

(acting on Cr-valued functions). Then set ∇E =
∑
xα∇α.
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Conversely, we have:

Proposition 12. Let E → M be a complex vector bundle over a complex manifold M . If ∇E is a

covariant derivative on sections of E such that ((∇E)0,1)2 = 0, then there is a unique holomorphic

vector bundle structure on E with (∇E)0,1 = ∂
E

.

Proof. We will define an almost complex structure on E by specifying a splitting of the C-cotangent

spaces into (1, 0) and (0, 1)-forms, and then verify their integrability.

Fix a local trivialization E |U= U × Cr. Let z1, · · · , zn be coordinates on U and ω1, · · · , ωr be

the natural coordinate system on Cr. Let A = (Ajk) be the connection form in this trivialization and

Ajk = (A′)jk + (A′′)jk be the splitting into (1, 0) and (0, 1)-types. Then ((∇E)0,1)2 = 0 is equivalent

to ∂(A′′)jk =
∑

(A′′)j` ∧ (A′′)`k. Now define an almost complex structure on E by taking {dzα.dωj +∑
(A′′)kjωk} as a basis for the space of (1, 0)-forms on E. We will check that d sends (1, 0)-forms to

(2, 0) + (1, 1)-forms. Note

d(dzα) = 0,

d
(
dωj +

∑
(A′′)kjωk

)
=
∑

d(A′′)kjωk −
∑

(A′′)kjdωk

=
∑

∂(A′′)kjωk +
∑

∂(A′′)kjωk −
∑

(A′′)kjdωk

=
∑

∂(A′′)kjωk +
∑∑

(A′′)j` ∧ (A′′)`kωk −
∑

(A′′)kjdωk

=
∑

∂(A′′)kjωk −
∑

(A′′)j` ∧
[
dω` −

∑
(A′′)k`ωk

]
≡ 0,

where the last step uses the basis defined before. Hence the almost complex structure is integrable, i.e.

it is a complex structure. To see that this has the desired property, we will check that if s : U → E

is a local section with (∇E)0,1s = 0, then it pulls back every (1, 0)-form on E to a (1, 0)-form on M .

Indeed, if locally s is generated by

U → U × Cr

z 7→ (z, ξ(z)),

then the condition (∇E)0,1s = 0 is given by ∂ξj +
∑

(A′′)kj ξk = 0. Pulling back the (1, 0)-forms in the

basis defined before, we obtain

s∗(dzα) = dzα,

s∗
(
dωj +

∑
(A′′)kjωk

)
= dξj +

∑
(A′′)kj ξk = ∂ξj .

These are all of type (1, 0) on M .

Definition 36. The operator ∂
E

is called a holomorphic structure on E →M .

Note 4. There are many holomorphic covariant derivatives on E → M . We will usually choose one

by adding the requirement that it preserves lengths of vectors.
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Definition 37. Let E → M be a complex vector bundle over a smooth manifold M . A Hermitian

metric hE on E is a smooth family of Hermitian inner products on the fibers of E. That is, for each

ξ ∈M , hEξ : Eξ × Eξ → C satisfies

1. hE(u, v) is C-linear in u for each v ∈ Eξ.

2. hE(u, v) = hE(v, u).

3. hE(u, u) ≥ 0 and hE(u, u) = 0 iff u = 0.

4. If s1, s2 ∈ C∞(M,E), then hE(s1, s2) ∈ C∞(M).

Actually, hE is equivalent to a C-anti-linear bundle isomorphism h[ : E → E∗ with

h[(u)(v) = hE(v, u).

Lemma 7. Every complex vector bundle admits a Hermitian bundle metric.

Proof. On the trivial bundle U × Cr, we can take the inner product on Cr: (u, v) 7→ v∗u. Since

convex linear combinations of Hermitian metric are again Hermitian metric (Why?), it suffices to patch

together these local metrics using a partition of unity.

Definition 38. A covariant derivative ∇E and a Hermitian metric hE are compatible if, for any

sections s1, s2 ∈ C∞(M,E), we have

d(hE(s1, s2)) = hE(∇Es1, s2) + hE(s1,∇Es2),

i.e.

LV (hE(s1, s2)) = hE(∇EV s1, s2) + hE(s1,∇EV s2)

for any vector field V ∈ C∞(M,TM).

Theorem 25. If M is a complex manifold and E →M is a holomorphic vector bundle, then for every

Hermitian metric hE on E, there is a unique holomorphic connection ∇E on E compatible with hE .

This connection is called the Chern connection of (E, hE).

Proof. Recall ∇E is a holomorphic connection iff (∇E)0,1 = ∂
E

(Proposition 12). If E → M is

holomorphic, then so is E∗ →M . Given a connection ∇E on E, we obtain one on E∗ by demanding

d(ω(s)) = (∇E
∗
ω)(s) + ω(∇Es)

for any s ∈ C∞(M,E) and ω ∈ C∞(M,E∗). In particular, if ∇E is a holomorphic, then ∇E∗ is

a holomorphic connection on E∗ (sending holomorphic sections to (1, 0)-forms). An equivalent way

of expressing the compatibility of ∇E or ∇E∗ is to say that h[(∇Es) = ∇E∗h[(s) for any section of

E. But note that the C-anti-linearity of h[ implies that whenever z ∈ C∞(M,TM ⊗ C), we have

h[(∇Ez s) = ∇E∗z h[(s). Hence

(∇E)1,0s = (h[)−1((∇E
∗
)0,1h[(s)) = (h[)−1(∂

E∗

h[(s)).
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Thus a holomorphic connection compatible with hE must be equal to

∇E = (h[)−1 ◦ ∂E
∗

◦ h[︸ ︷︷ ︸
(0,1)-part

+ ∂
E︸︷︷︸

(1,0)-part

.

Conversely, this formula gives existence.

Remark 11. It follows from the formula for the Chern connection that R∇ has type (1, 1). Indeed,

the (0, 2)-part vanishes since (∂
E

)2 = 0, and the (2, 0)-part vanishes since (∂
E∗

)2 = 0.

5.4 Kähler Manifolds

On the complex manifolds, previous discussion in Lecture 5.3 applies to the holomorphic tangent

bundle T holM . We want to understand how it relates to the underlying smooth structure. In order to

do that, we need to introduce some important definitions.

Definition 39. A Riemannian metric g on a smooth manifold M is a smoothly varying family of

inner products on the fibers of the tangent bundle. Explicitly, for each ξ ∈M , a map gξ : TξM×TξM →
R satisfying

1. g(u, v) is R-linear in u for all v.

2. g(u, v) = g(v, u) for any u, v ∈ TξM .

3. g(u, u) ≥ 0 and g(u, u) = 0 iff u = 0.

4. If s1, s2 ∈ C∞(M,TM), then g(s1, s2) ∈ C∞(M).

Remark 12. If (M,J) is an almost complex manifold and h = hTM is a Hermitian metric on TM

(viewed as a C-vector bundle), separating h into real and imaginary parts gives h(u, v) = g(u, v) +

iω(u, v), then g is a Riemannian metric on M and ω is a 2-form (Check!), i.e. ω ∈ Ω2(M). Since

h(J(u), J(v)) = i · (−i) · h(u, v) = h(u, v),

we have

g(J(u), J(v)) = g(u, v),

ω(J(u), J(v)) = ω(u, v).

Similarly, h(J(u), v) = ih(u, v) implies g(J(u), v) = ω(u, v) and ω(J(u), v) = −g(u, v). In particular,

having a Hermitian metric on TM as a C-vector bundle is equivalent to having a Riemannian metric

on TM compatible with J in that g(J(u), J(v)) = g(u, v). In fact, if (g, J, ω) are compatible, then any

two determine the third. We sometimes refer to (g, J, ω) as a Hermitian structure.

Exercise 9. Prove that both g and ω are non-degenerate.

Remark 13. The volume form of g is equal to ωn

n!
. In particular,

Vol(M, g) =

∫
M

ωn

n!
.
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Definition 40. A Kähler manifold is a Hermitian manifold in which dω = 0. Here ω is called the

Kähler form and [ω] ∈ H2
dR(M) is called the Kähler class.

Definition 41. A non-degenerate closed 2-form is called a symplectic form.

Thus, a Kähler manifold is a smooth manifold M together with (g, J, ω) a compatible choice of a

Riemannian metric, a C-structure and a symplectic form. In other words, a complex manifold M is

Kähler if it is Hermitian with a compatible symplectic form.

Now to see a Hermitian structure in local holomorphic coordinates {zj}. Let H ∈ GL n(C) be the

matrix with entries hjk = h(∂zj , ∂zk), then H = H∗ and H is positive definite. Recall that the natural

C-vector bundle isomorphism

(TM, J)
ξ−→ T 1,0M

v 7→ 1

2
(v − iJ(v)).

To find the Riemannian metric, write zj = xj + iyj . Note that ξ(∂xj ) = ∂zj and ξ(∂yj ) = ξ(J(∂xj )) =

i∂zj . Thus we have, for instance,

g(∂xj , ∂xk) = <h(∂zj , ∂zk) = <hjk,

g(∂xj , ∂yk) = <h(∂zj , i∂zk) = <(−ih(∂zj , ∂zk)) = =hjk.

So in the basis ∂x1
, · · · , ∂xn , ∂y1 , · · · , ∂yn , g is the 2n× 2n-matrix

G =

[
<H =H
−=H <H

]
.

Next consider the 2-form ω. It is not hard to find

ω(∂xj , ∂xk) = −=h(∂zj , ∂zk) = −=hjk,

ω(∂xj , ∂yk) = −=h(∂zj , i∂zk) = <hjk,

ω(∂yj , ∂yk) = −=h(i∂zj , i∂zk) = −=hjk.

This looks nicer if we view ω as a C-valued 2-form by extending it bilinearly to the complexified tangent

spaces TM ⊗ C (be very carefully about the difference between J and i!) We want to express ω in

terms of dzj and dzk. Note that

ω(∂zj , ∂zk) = ω(∂xj − i∂yj , ∂xk + i∂yk)

= ω(∂xj , ∂xk)− iω(∂yj , ∂xk) + iω(∂xj , ∂yk) + ω(∂yj , ∂yk)

= −=hjk + i<hjk + i<hjk −=hjk
= 2ihjk.

Similar computations show that ω(∂zj , ∂zk) = 0, ω(∂zj , ∂zk) = 0. So

ω =
i

2

∑
hjkdzj ∧ dzk.

In particular, note that ω is of type (1, 1), ω ∈ Ω2(M) ∩ Ω1,1(M), so we say ω is a real form of type

(1, 1).
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Example 19. C with the standard metric so that ∂z1 , · · · ∂zn is a unitary basis. Then H = idn,

G = ( id 0
0 id ) is the standard metric on R2n, and

ω =
i

2

∑
dzj ∧ dzj =

∑
dxj ∧ dyj

is the standard symplectic form on R2n. Note dω = 0, so this is Kähler.

Example 20. The Kähler structure on Cn is translation invariant. So it descends to a Kähler structure

on C-tori.

Example 21. Any Hermitian structure on a Riemann surface is automatically Kähler.

Example 22. If N ⊂ M is a complex submanifold, then a Hermitian structure on M restricts to a

Hermitian structure on N , which is Kähler if the one on M is.

Example 23. CPn admits a (U(n+1)-invariant) Kähler metric, known as the Fubini-Study metric.

Let z1, · · · , zn+1 be the standard coordinates on Cn+1 and ρ = ‖z‖2 =
∑

j z
2
j . Set

ω̃ =
i

2π
∂∂ log ρ =

i

2π

[
∂∂ρ

ρ
− ∂ρ ∧ ∂ρ

ρ2

]
=

i

2π

[
‖z‖2

∑
dzj ∧ dzj − (

∑
zjdzj) ∧ (

∑
zjdzj)

‖z‖4

]
.

This is U(n + 1)-invariant since it only depends on ρ, and C×-invariant since the numerator and

denominator are homogeneous of degree 4. Hence ω̃ pushes forward to a 2-form ω on CPn. To see that

it is positive definite (i.e. ω(J(·), ·) > 0), evaluate it at the point (1 : 0 : 0 : · · · : 0), where it is clearly

positive. Then appeal to U(n+ 1)-invariance to see that it is positive definite at all points.

Let (M,h) be a complex manifold with a Hermitian metric. We can always find a local frame for

h, i.e. smooth sections of T 1,0M whose values give a unitary basis at each point. For such a frame

s1, · · · , sn, we would have

h(sj , sk) = δjk.

Indeed, let’s start with any frame and then apply Gram-Schmidt. If s1, · · · , sn is a local unitary frame

and s′1, · · · , s′n is a local dual coframe, s′j(sk) = δjk, then we have

ω =
i

2

∑
s′j ∧ s′j ,

and so

ωn = ω ∧ · · · ∧ ω = n!
in

2n
(s′1 ∧ s′1 ∧ · · · ∧ s′n ∧ s′n) = n!Vol(g).

In particular, if dω = 0 and M is compact, then ω is not exact and neither is ωk for k ≤ n. Indeed, if

ω were exact, then ωn is exact (since if α is closed and β is exact, then α ∧ β is exact, Check this!),

but if ωn were exact, then Stokes Theorem tells us
∫
M
ωn = 0. However,∫

M

ωn = n!Vol(M) 6= 0.

Contradiction! Thus [ωk] ∈ H2k
dR(M) are not zero for all 1 ≤ k ≤ n.
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Proposition 13. (M, g, J, ω) is a Hermitian manifold, it is Kähler iff for each ξ ∈ M , there are local

holomorphic coordinates z1, · · · , zn centered at ξ such that the Hermitian metric satisfies

h = idn +O
(∑

|zi|2
)
.

Proof. We prove it from two directions.

(=⇒) :

Start with any holomorphic coordinates z1, · · · , zn centered at ξ. By a constant linear change of

coordinates, we can assume that h(0) = idn. Write

ω =
i

2

∑
(δjk + ωjk)dzj ∧ dzk +O(|z|2),

where ωjk is a Hermitian matrix whose entries are linear functions of {zj} and {zj}. We can

decompose ωjk into its C-linear and C-anti-linear parts:

ωjk = ωhol
jk + ωant

jk ,

and since ω = ω∗, we have ωhol
jk = ωant

kj . Being Kähler implies that dω = 0, giving

∂
(∑

ωhol
jk dzj ∧ dzk

)
= 0

at the origin. Since this is a linear function, this holds on all of the chart. Hence ∂z`ω
hol
jk =

∂zjω
hol
`k . After possible shrinking of the neighborhood, We can apply the Poincaré’s Lemma to

find holomorphic functions φj (assume φj(0) = 0 for simplicity) satisfying ωhol
jk = ∂zkφj . Set

z′j = zj + φj(z). Since φj(0) = 0, again after possible shrinking of the neighborhood, these are

still holomorphic coordinates. Moreover, note

dz′j = dzj +
∑

∂zkφjdzk = dzj +
∑

ωhol
jk dzk,

so ∑
dz′j ∧ dz′j =

∑
dzj ∧ dzj +

∑
ωjkdzj ∧ dzk +O(|z|2)

=
2

i
ω +O(|z|2).

Thus,

ω =
i

2

∑
dz′j ∧ dz′j +O(|z′|2)

as required.

(⇐=) :

Given these coordinates, saying any identity involving the metric and its first derivatives is valid

on M is equivalent to say it is valid on Cn. In particular, since dω = 0 on Cn, it is valid on M .
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We now want to compare the Hermitian geometry with the Riemannian geometry. We know that

T 1,0 is holomorphic, so the Hermitian metric induces a Chern connection. However, T 1,0M ' TM ,

and the Riemannian metric induces a connection on TM . How are these related?

A special feature of connections on TM is that vector fields show up both as the directions in

which we differentiate and the sections that are setting differentiated.

A covariant derivative ∇ on sections of TM →M has torsion

T : C∞(M,TM)→ C∞(M,TM)

(V,W ) 7→ ∇VW −∇WV − [V,W ].

This can be interpreted as follows: id : TM → TM is a section of T ∗M ⊗ TM , i.e. id ∈ Ω1(M,TM),

and

d∇( id) ∈ Ω2(M,TM), d∇( id)(V,W ) = T (V,W ).

Theorem 26. For each Riemannian metric g on a smooth manifold, there is a unique connection ∇LC ,

called the Levi-Civita connection, that is a metric and is torsion-free.

Proof. Let U, V,W be vector fields on M . Starting with

Ug(V,W ) + Vg(W,U)−Wg(U, V ),

and using that ∇LC is metric and torsion-free, we find the Koszul form:

2g(∇LCU V,W ) = Ug(V,W ) + Vg(W,U)−Wg(U, V ) + g(U, [V,W ]) + g(V, [W,U ])− g(W, [U, V ]).

On the other hand, this formula defines a connection that is metric and torsion-free.

Lemma 8. If α ∈ Ω1(M) is parallel with respect to a connection ∇T∗M on T ∗M which is torsion-free,

then dα = 0.

Proof. Through direct computation:

dα(V,W ) = LV α(W )−LWα(V )− α([V,W ])

= (∇T
∗M

V α)(W ) + α(∇TMV W )− (∇T
∗M

W α)(V )− α(∇TMW V )− α([V,W ])

= (∇T
∗M

V α)(W )− (∇T
∗M

W α)(V ) + α(∇TMV W −∇TMW V − [V,W ])

= (∇T
∗M

V α)(W )− (∇T
∗M

W α)(V ) + α(T (V,W ))

= (∇T
∗M

V α)(W )− (∇T
∗M

W α)(V ). (torsion-free)

Corollary 6. If ∇LCω = 0, then dω = 0.

Let (M, g, J, ω) be a Hermitian manifold. The map

ξ : TM → T 1,0M

v 7→ 1

2
(v − iJ(v))
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is a C-bundle isomorphism. A connection ∇ on T 1,0M induces a connection ξ∗∇ on TM . So is makes

sense to compare ξ∗∇C (Chern connection) with ∇LC (Levi-Civita connection). Notice that on Cn with

the standard metric, these coincide since they can both be identified with d. In a coordinate chart, we

have d+ AC and d+ ALC . The value of AC and ALC at a point only depends on the first derivatives

of the metric at that point. So they coincide on Kähler manifold. In general, we have the following

theorem:

Theorem 27. Let (M, g, J, ω) be a Hermitian manifold. The following are equivalent:

1. It is Kähler.

2. For each p ∈M , there exists local holomorphic coordinates such that H = id +O(|z|2).

3. ξ∗∇C = ∇LC .

4. ξ∗∇C is torsion-free.

5. ∇LCJ = 0.

6. ∇LCω = 0.

7. For each p ∈M , there exists a neighborhood of p and f : U → R smooth, such that

ω = i∂∂f on U.

Here f is called a local Kähler potential.

Proof. By Proposition 13, 1 and 2 are equivalent. By Corollary 6, 6 implies 1. Also, from previous

discussion, 3 and 4 are equivalent, and 1 implies them.

(3 =⇒ 5) :

Since ∇C is C-linear, we know

∇LCV (J(ω)) = (∇LCV J)(ω) + J(∇V ω),

and

(∇LCV J)(ω) = ∇V (J(ω)) = ∇V (J(ω))− J(∇V ω).

Combining these, we get ∇LCJ = 0.

(5 =⇒ 6) :

Since ω(V,W ) = g(J(V ),W ), by definition we get the result.

(7 =⇒ 1) :

Note that dω = (∂ + ∂)(i∂∂f) = 0.
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(1 =⇒ 7) :

Let U be a coordinate chart identified with polydisc. By Poincaré’s Lemma, we know that dω = 0,

and ω = dη for some η on U . Extending ω and η to C-vector fields and letting η be real, i.e.

η1,0 = η0,1. ω is of type (1, 1), yielding

dη = ∂η1,0 + ∂η0,1.

So ∂η1,0 = 0 = ∂η0,1. Applying the ∂-Poincaré’s Lemma, we know that there exists ϕ on U with

∂ϕ = η1,0 and ∂ϕ = η0,1. Let f = 2=ϕ = i(ϕ− ϕ), then

i∂∂f = −∂∂ϕ+ ∂∂ϕ = ∂η1,0 + ∂η0,1 = dη = ω.
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6 Hodge Theory

We will introduce the Hodge Theory in this chapter.

6.1 Elliptic Operators

We first set up the adjoint of a differential operator. If M is a smooth manifold, a linear differential

operator of order k: L ∈ Diffk(M) is a F-linear map L : C∞(M,F)→ C∞(M,F) that for any choice of

local coordinates takes the form

Lf =
∑
|α|≤k

aα(ξ)Dαf =
∑

α1+α2+···+αn≤k

aα1,··· ,αn(ξ)∂α1
x1
∂α2
x2
· · · ∂αnxn f,

so L is a polynomial in vector fields.

In fancier language, L is an element of the enveloping algebra of vector fields, or equivalently, by

Peetre’s Theorem L is a linear map that does not increase support, i.e. suppLf ⊂ supp f . Another

approach by Grothendieck is to define Diffk(M) inductively with respect to k. When k = 0, Diffk(M)

is just the multiplication by a smooth function. When k > 0, L ∈ Diffk(M) iff [L, f ] ∈ Diffk−1(M) for

any f ∈ C∞(M).

If E → M and F → M are vector bundles over M , then L ∈ Diffk(M ;E,F ) is a linear map

L : C∞(M,E) → C∞(M,F ) that in local coordinates has the same form as above, with aα(ξ) ∈
Hom(Eξ, Fξ). The explicit expression for L in local coordinates depends strongly on the choice of

coordinates, but the highest order part can be defined invariantly. This is called the principal symbol

of L.

Example 24. If L ∈ Diffk(M ;E,F ), its principal symbol σk(L) is the map

T ∗ξM → Hom(Eξ, Fξ)

ξ 7→
∑
|α|=k

aα(ξ)(iξ)α

obtained from the highest order derivatives by replacing ∂
αj
xj with iξ

αj
j .

Remark 14. The motivation comes from Fourier transform. If M = Rn and for f ∈ C∞c (Rn)

F(f)(ξ) =

∫
Rn
e−ix·ξf(x)dx,

then

F(∂xjf)(ξ) = iξjF(f)(ξ).

So for any constant coefficient differential operator L on Rn, we have

F(Lf)(ξ) = ϕL(ξ)F(f)(ξ)

for some polynomial ϕL (called the full symbol of L). Its homogeneous part of degree k is the principal

symbol of L.
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Example 25. Set ∆ = −
∑
∂2
xj

. It satisfies

F(∆f)(ξ) = −
∑

(iξj)
2F(f)(ξ) = |ξ|2F(f)(ξ).

So

σ2(∆)(ξ) = |ξ|2.

To check that the notion “principal symbol” is well-defined, first set L ∈ Diffk(M ;E,F ), which is

defined as before. Let ξ ∈ T ∗pM . Pick f ∈ C∞(M) such that df(p) = ξ. Note that

σk(L)(ξ) = lim
t→∞

e−itfL(eitf )

tk
.

Indeed,

∂xje
itf = (it∂xjf)eitf ,

∂αjxj e
itf = (it∂xjf)αjeitf + ψ(t)eitf ,

where ψ(t) is some lower order terms in t. So

e−itfL(eitf ) = tkσ`(L) + ψ(t).

Remark 15. If k = 1, then σ1(L)(ξ) = i[L, f ](p) for any smooth function f such that df(p) = ξ. If

k = 2, then σ2(L)(ξ) = − 1
2
[[L, f ], f ](p) for any smooth function f such that df(p) = ξ.

The principal symbol is local in that, if ϕ ∈ C∞(M), then for any ξ ∈ T ∗pM ,

σk(ϕL)(ξ) = ϕ(p)σk(L)(ξ).

Hence

σk(L) ∈ C∞(T ∗M,π∗Hom(E,F )),

with π : T ∗M →M .

Definition 42. An operator L is called elliptic if σk(L)(ξ) is invertible for any ξ ∈ TpM\{0}, where

p ∈M .

Example 26. ∆ on Rn, and σ2(∆)(ξ) = |ξ|2. It is the Example 25.

Proposition 14. The (formal) adjoint of an elliptic differential operator is again elliptic.

In order to prove the proposition, we need some setting-ups. On a Riemannian manifold (M, g),

there is an L2-pairing on C∞(M):

C∞c (M)× C∞c (M)
(·,·)M−−−→ F

(f1, f2) 7→
∫
M

f1 · f2dVg,

and the norm

‖f‖2L2 = (f, f)L2(M) =

∫
M

|f |2dVg.
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L2(M) is the completion of C∞c (M) with respect to ‖ ·‖L2 . If E is an F-vector bundle over M equipped

with an F-bundle metric hE , then there is an L2-pairing on C∞c (M,E):

C∞c (M,E)× C∞c (M,E)
(·,·)E−−−→ F

(s1, s2) 7→
∫
M

hE(s1, s2)dVg,

which yields the completion L2(M,E).

Definition 43. Let L ∈ Diffk(M ;E,F ). Equip M with a Riemannian metric g, and E,F with bundle

metrics hE , hF , then the (formal) adjoint of L is the operator L∗ ∈ Diffk(M ;F,E) determined by

(Ls, s̃)F = (s, L∗s̃)E ,

where s ∈ C∞c (M0, E) and s ∈ C∞c (M0, F ), and if M is closed then C∞c (M0, E) = C∞(M,E) (same

for F ).

Proof of Proposition 14. The principal symbol of L∗ satisfies

hF (σ(L)(ξ)u, v) = hE(u, σ(L∗)(ξ)v)

for any ξ ∈ T ∗pM , u ∈ Ep and v ∈ Fp. That is,

σ(L∗) = σ(L)∗.

In particular, L is elliptic iff L∗ is elliptic.

Remark 16. The principal symbol is a homomorphism:

σ(L ◦ L′) = σ(L) ◦ σ(L′).

Theorem 28. Let M be a closed smooth manifold, E →M and F →M be two vector bundles, and

L ∈ Diffk(M ;E,F ). If L is elliptic, then

1. kerL = kerC∞ L = {u ∈ C∞(M,E) : Lu = 0} is finite dimensional.

2. imL = L(C∞(M,E)) is a closed subspace of C∞(M,F ).

3. Cokernel of L, which is C∞(M,F )
/
L(C∞(M,E)) ∼= kerL∗ is finite dimensional.

Corollary 7.

C∞(M,E) ∼= kerL⊕ imL∗,

C∞(M,F ) ∼= kerL∗ ⊕ imL.

This is also true if we replace all instances of C∞ with L2-spaces. Moreover,

kerC∞ L = kerL2 L.

This is called the elliptic regularity. In this case, L : C∞(M,E)→ C∞(M,F ) and L : L2(M,E)→
L2(M,F ) are Fredholm operators.
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6.2 Hodge Cohomology

Start with the de Rham complex:

0→ Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)→ 0,

where d ∈ Diff1(M ;
∧k

T ∗M,
∧k+1

T ∗M). A natural question is: What is σ1(d)?

If ξ ∈ T ∗pM , then

σ1(d)(ξ) = i[d, f ](p)

for any f ∈ C∞(M) such that f(p) = ξ. We have σ1(d)(ξ) :
∧k

T ∗pM →
∧k+1

T ∗pM , and

σ1(d)(ξ)(ω) = i[d, f ](p)(ω) = i(d(fω)− fd(ω)) = idf ∧ ω

= iξ ∧ ω.

That is,

σ1(d)(ξ) = iξ ∧ − =: iext(ξ).

Consider the (formal) adjoint of d, denoted by d∗ = δ. Notice that an inner product on V induces

one on
⊗k

V and
∧k

V by demanding, on
⊗k

V ,

〈v1 ⊗ v2 ⊗ · · · ⊗ vk, v′1 ⊗ v′2 ⊗ · · · ⊗ v′k〉 =
∏〈

vj , v
′
j

〉
;

or on
∧k

V ,

〈v1 ∧ v2 ∧ · · · ∧ vk, v′1 ∧ v′2 ∧ · · · ∧ v′k〉 = det
(〈
vj , v

′
j

〉)
,

and extending linearly according to each factor. Another way of saying this is to declare that, if

v1, · · · , vn is an orthonormal basis of V , then {vj1 ∧ · · · ∧ vjk : j1 < j2 < · · · < jk} is an orthonormal

basis of
∧k

V . In particular, any ω ∈
∧k

V can be written uniquely as ω = v1 ∧ω′+ω′′, or, if η ∈ V is

nonzero, can be written uniquely as ω = η ∧ v′ + ω′′, where ω′ and ω′′ have nothing to do with η.

Given a Riemannian metric on M , we obtain bundle metrics on
∧k

T ∗M for all k, and it makes

sense to discuss d∗ = δ : Ωk(M)→ Ωk−1(M).

Definition 44. If V is a vector field and ω ∈ Ωk(M), then the interior product of V and ω is

int(V )(ω) = V y ω ∈ Ωk−1(M),

where

(V y ω)(V1, · · · , Vk−1) = ω(V, V1, · · · , Vk−1).

Recall that a Riemannian metric is equivalent to a bundle isomorphism g[ : TM → T ∗M . We

denote the inverse by g] : T ∗M → TM . If ∂x1
, · · · , ∂xn is a g-orthonormal basis of T ∗pM , then

dxj = g[(∂xj ) is a g-orthonormal basis of TpM , and is the dual basis since

dxj(∂xk) = g[(∂xj )(x∂xk) = g(∂xk , ∂xj ) = δjk.
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Given a nonzero η ∈ T ∗pM , any ω ∈
∧k

T ∗pM can be written uniquely as ω = η ∧ ω′ + ω′′. Notice that

int(g]η)(ω) = |η|2ω′,

so

ext(η)int(g]η)(ω) = |η|2η ∧ ω′,

and

ext(η)(ω) = η ∧ ω′′,

int(g]η)ext(η)(ω) = |η|2ω′′.

Hence

(ext(η)int(g]η) + int(g]η)ext(η))(ω) = |η|2ω.

Similarly, for any vector field V and 1-form η,

(ext(η)int(V ) + int(V )ext(η))(ω) = η(V )ω.

In particular,

g(η ∧ α, β) = g(η ∧ α, η ∧ β′ + β′′)

= g(η ∧ α, η ∧ β′) = g(η, η)g(α, β′)

= g(α, int(g]η)β),

i.e. the adjoint of ext(η) is int(g]η). So

σ1(δ)(ξ) =
1

i
int(g]η).

Definition 45. The Hodge Laplacian, also known as the Laplace–de Rham operator, on k-forms

on a Riemannian manifold is the differential operator

∆k : Ωk(M)→ Ωk(M),

defined as

∆k = dδ + δd = (d+ δ)2 |Ωk .

Since the principal symbol is a homomorphism,

σ2(∆)(ξ) = (σ1(d)σ1(δ) + σ1(δ)σ1(d))(ξ)

= ext(ξ)int(g]ξ) + int(g]ξ)ext(ξ) = |ξ|2,

yielding ∆k is elliptic. Formally, ∆k is self-adjoint:

(dδ)∗ = δ∗d∗ = dδ, (δd)∗ = d∗δ∗ = δd.

Also,

d∆k = dδd = ∆k+1d, δ∆k = δdδ = ∆k−1δ.
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Notice that ker ∆ = ker d ∩ ker δ on C∞-forms. Indeed, we have ker d ∩ ker δ ⊂ ker ∆. To prove the

converse, let u ∈ ker ∆, then

0 = 〈∆u, u〉 = 〈dδu, u〉+ 〈δdu, u〉 = 〈δu, δu〉+ 〈du, du〉 = ‖δu‖2 + ‖du‖2,

which reveals the result.

Theorem 29 (Maximum Principle). The only functions f satisfying ∆f = 0 (called the harmonic

functions) on a closed, connect and oriented Riemannian manifold are the constant functions.

Theorem 30 (Hodge’s Theorem for the de Rham Complex). Let M be a closed Riemannian manifold.

For each k, we have

Ωk(M) = ker ∆k ⊕ im ∆k = ker ∆k ⊕ im d⊕ im δ.

In particular,

Hk
Hod(M) = ker ∆k

∼= Hk
dR(M) =

ker d

im d
=

ker ∆k ⊕ im d

im d

is finite dimensional. Here Hk
Hod is called the Hodge cohomology.

Remark 17. One way of saying this is that for each choice of Riemannian metric, a de Rham coho-

mology class has a unique representation ω ∈ Ωk(M) satisfying both dω = 0 and δω = 0.

We need to justify im ∆k = im d ⊕ im δ. Indeed, note 〈du, δv〉 = 0 for any u, v, since d2 = 0.

Clearly im ∆k ⊂ im d⊕ im δ. On the other hand, using Ωk(M) = ker ∆k ⊕ im ∆k, we see that

du = d(πku+ ∆ku
′) = d∆ku

′ = dδdu′.

Hence im d ⊂ im (dδ) and im δ ⊂ im (δd). This implies

im ∆k = im (dδ)⊕ im (δd) = im d⊕ im δ.

Similarly, we have the L2 version of Theorem 30 as follows.

Theorem 31 (Hodge’s Theorem for the de Rham Complex, L2-Version). Let M be a closed Rieman-

nian manifold. For each k, denote

∆k : Dk ⊂ L2(M,
k∧
T ∗M)→ L2(M,

k∧
T ∗M),

and says

L2(M,
k∧
T ∗M) = kerL2 ∆k ⊕∆k(Dk) = kerL2 ∆k ⊕ d(Dk−1)⊕ δ(Dk+1).

Moreover,

kerL2 ∆k = kerC∞ ∆k = kerC∞ d ∩ kerC∞ δ,

so

Hk
L2(M) =

kerL2 ∆k

im L2d
∼= Hk

Hod,L2(M) = Hk
Hod,C∞(M) ∼= Hk

dR(M).
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6.3 Hodge Star Operator

We first give the statement of the Poincaré Duality.

Theorem 32 (Poincaré Duality). Let M be a closed and orientable manifold and dimM = m. Then

its de Rham cohomology satisfies

Hk
dR(M) ∼= Hm−k

dR (M),

for any 0 ≤ k ≤ m.

In order to prove this theorem, we need some setting-ups.

Definition 46. Let (M, g) be a closed and orientable Riemannian manifold with dimM = m. For any

α, β ∈ Ωk(M), 0 ≤ k ≤ m, we define the Hodge star ? : Ωk(M)
'−→ Ωm−k(M) by

α ∧ ?β = g(α, β)dVg,

where Vg is the volume form. In general coordinate chart,

dVg =
√
|det g|dx1 ∧ · · · ∧ dxn.

Example 27. Consider (R3, gR3), where gR3 is the standard metric, with the volume form dVg =

dx1 ∧ dx2 ∧ dx3. Then

? 1 = dx1 ∧ dx2 ∧ dx3,

? dx1 = dx2 ∧ dx3, ?dx2 = −dx1 ∧ dx3, ?dx3 = dx1 ∧ dx2,

? (dx1 ∧ dx2) = dx3, ?(dx2 ∧ dx3) = dx1, ?(dx1 ∧ dx3) = −dx2,

? (dx1 ∧ dx2 ∧ dx3) = 1.

Example 28. Let p ∈ M . For any positively oriented basis dx1, dx2, · · · , dxm of T ∗pM , we can define

the Hodge star as

?(dxα1
∧ dxα2

∧ · · · ∧ dxαk) = dxβ1
∧ dxβ2

∧ · · · ∧ dxβm−k ,

where α1 < α2 < · · · < αk and dxα1
∧ · · · ∧ dxαk ∧ dxβ1

∧ · · · ∧ dxβm−k = dx1 ∧ · · · ∧ dxm.

Exercise 10. ?2 |Ωk= ± id. In fact,

?2 |Ωk= (−1)k(m−k).

Remark 18. The L2-pairing on Ωk(M) is

〈α, β〉 =

∫
M

α ∧ ?β,

which is an inner product. On can use this to express δ = d∗ through ? and d. Let α ∈ Ωk(M) and
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β ∈ Ωk+1(M), and M be a closed manifold, then

〈dα, β〉 = 〈α, δβ〉 =

∫
M

dα ∧ ?β

=

∫
M

d(α ∧ ?β)− (−1)k
∫
M

α ∧ d(?β)

= (−1)k+1

∫
M

α ∧ d(?β) (Stokes’ Theorem)

= (−1)k+1 · (−1)k(m−k)

∫
M

α ∧ ? ? d(?β) (Exercise 10)

= (−1)km+1+k(1−k)

∫
M

α ∧ ?(?d ? β)

= (−1)km+1 〈α, ?d ? β〉 .

Thus,

δβ = d∗β = (−1)km+1(?d?)β.

Corollary 8. We have the relationship:

?∆k = ∆m−k ? .

Exercise 11. Prove this Corollary.

Remark 19. The Hodge star operator commutes with the Hodge Laplacian (Exercise 11), thus defines

an isomorphism between Hk
dR(M) and Hm−k

dR (M). So we prove the Poincaré Duality (Theorem 32).

Suppose M is a complex manifold with Hermitian metric h, with dimM = m being its complex

dimension and n = 1
2
m being its real dimension. Extend J to differential forms, i.e. ω ∈ Ωk(M) giving

Jω ∈ Ωk(M),

(Jω)(V1, · · · , Vk) = ω(JV1, · · · , JVk).

In other words, this means that after complexifying, J acts on Ωp,q(M) by ip−q. Denote another first

order operator by

dc = J−1 ◦ d ◦ J : Ωk(M)→ Ωk+1(M).

In polar coordinates on C, z = reiθ, we have

d = ∂rext(dr) + ∂θext(dθ),

dc = r∂rext(dθ) +
1

r
∂θext(dθ),

ddc = (∂2
x + ∂2

y)ext(dx ∧ dy).

After complexifying, if ω ∈ Ωp,q(M), then

dcω = J−1(∂ + ∂)Jω = J−1(∂ + ∂)ip−qω

= ip−q(J−1∂ω + J−1∂ω) = ip−q
(

1

ip+1−q∂ω
+

1

ip−(q+1)
∂ω

)
=

1

i
∂ω + i∂ω = i(∂ − ∂)ω.
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In particular,

ddc = (∂ + ∂)i(∂ − ∂) = 2i∂∂ = −dcd.

On the other hand, (dc)2 = J−1dJJ−1dJ = 0. So we have a complex

0→ Ω0(M)
dc−→ Ω1(M)

dc−→ · · · d
c

−→ Ωm(M)→ 0

and associated cohomology

Hk
dc =

ker dc |Ωk
im dc |Ωk−1

.

Exercise 12. Check that the (formal) adjoint of dc is − ? dc?.

Next, we extend ? operator to complexified differential forms by requiring

ω ∧ ?η = h(ω, η)dVg.

If u =
∑
uα,βdz

α ∧ dzβ and v =
∑
vα,βdz

α ∧ dzβ both have type (p, q), then

h(u, v) =
∑

uα,βvα,β,

and so (here we choose an orthogonal frame)

u ∧ ?v = h(u, v)dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn.

In particular, since dVg has type (n, n), ? is a C-linear isometry Ωp,q(M)→ Ωn−q,n−p(M).

Note that the decomposition Ωk(M) =
⊕

p+q=k Ωp,q(M) is orthogonal with respect to the L2-

product. The (formal) adjoints of ∂ and ∂ are

∂∗ : Ωp,q(M)→ Ωp−1,q(M), ∂
∗

: Ωp,q(M)→ Ωp,q−1(M).

Lemma 9. ∂∗ = − ? ∂?, and ∂
∗

= − ? ∂?.

Proof. For any ω ∈ Ωp−1,q(M) and η ∈ Ωp,q(M),

〈∂ω, η〉Ωp,q = 〈ω, ∂∗η〉Ωp−1,q

=

∫
∂ω ∧ ?η =

∫
∂(ω ∧ ?η)− (−1)p−1

∫
ω ∧ ∂(?η)

=

∫
d(ω ∧ ?η)− (−1)p−1

∫
ω ∧ ∂(?η)

= (−1)p
∫
ω ∧ ∂(?η) (Stokes’ Theorem)

= (−1)p · (−1)(p−1)(m−p+1)

∫
ω ∧ ? ? ∂(?η) (Exercise 10)

= (−1)p(1+m−p)−m−1

∫
ω ∧ ?

(
?∂(?η)

)
.

Note that m is even, so if p is even, p(1 + m − p) is even, p(1 + m − p) −m − 1 is odd; if p is odd,

p(1 +m− p) is even, p(1 +m− p)−m− 1 is also odd. This implies the sign to be −1. So ∂∗ = − ? ∂?
follows. The other part is the same (omitted).
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Now for operators p ∈ {d, dc, ∂, ∂}, define a new operator ∆p = pp∗ + p∗p. We want to find

the principal symbols of these operators. If ξ ∈ T ∗pM and f ∈ C∞(M,R) satisfies df(p) = ξ, then

σ1(∂)(ξ) :
∧p,q

T ∗pM →
∧p+1,q

T ∗pM is given by

σ1(∂)(ξ)(α) = i[∂, f ](α) = i[∂(fα)− f∂(α)] = i∂f ∧ α = iπ1,0ξ ∧ α.

Hence

σ2(∆∂)(ξ)(α) = ‖π1,0ξ‖2α =

∥∥∥∥1

2
(ξ + iJ(ξ))

∥∥∥∥2

α

=
1

4

(
‖ξ‖2 + ‖J(ξ)‖2

)
α =

1

2
‖ξ‖2α.

Similarly,

σ2(∆∂)(ξ)(α) = ‖π0,1ξ‖2 =
1

2
‖ξ‖2α.

Finally, note that

σ1(dc)(ξ)(α) = σ1(i(∂ − ∂))(ξ)(α) = i (ext(π0,1ξ)− ext(π1,0ξ))α,

this implies

σ2(∆dc)(ξ) = (i(ext(π0,1ξ)− ext(π1,0ξ))) (−i(int(π0,1ξ)− int(π1,0ξ))) + (−i(int(π0,1ξ)− int(π1,0ξ))) (−i(ext(π0,1ξ)− ext(π1,0ξ)))

= ext(π0,1ξ)int(π0,1ξ) + int(π0,1ξ)ext(π0,1ξ) + ext(π1,0ξ)int(π1,0ξ) + int(π1,0ξ)ext(π1,0ξ)− ext(π0,1ξ)int(π1,0ξ)− int(π1,0ξ)ext(π0,1ξ)− ext(π1,0ξ)int(π0,1ξ)− int(π0,1ξ)ext(π1,0ξ)

= (g(π0,1ξ, π0,1ξ) + g(π1,0ξ, π1,0ξ)− g(π0,1ξ, π1,0ξ)− g(π1,0ξ, π0,1ξ))

=
(
‖π0,1ξ‖2 + ‖π1,0ξ‖2

)
= ‖ξ‖2.

Similarly, we find σ2(∆d) = σ2(∆dc) = 2σ2(∆∂) = 2σ2(∆∂). Thus, all of these are elliptic. Therefore,

we have Hodge’s Theorem (on closed manifolds) for them, i.e.

Theorem 33 (Hodge’s Theorem for Elliptic Operators). Let M be a closed Riemannian manifold,

whose C-dimension is m = 2n, where n is its corresponding R-dimension. For each k, the cohomology

1. Hp,q
Hod,∂(M) = ker ∆∂ |Ωp,q∼= Hp,q

dR,∂(M)

2. Hp,q

Hod,∂
(M) = ker ∆∂ |Ωp,q∼= Hp,q

dR,∂
(M)

3. Hk
Hod,dc(M) = ker ∆dc |Ωk∼= Hk

dR,dc(M)

are finite dimensional. Moreover,

Ωp,q(M) = ker ∂ ∩ ker ∂
∗ ⊕ ∂

(
Ωp,q−1(M)

)
⊕ ∂∗

(
Ωp,q+1(M)

)
,

and the Hodge star operator ? induces Poincaré Duality isomorphisms:

? : Hp,q
Hod,∂(M)

∼=−→ Hn−p,n−q
Hod,∂ (M).

Similar results hold for other operators ∂, dc (omitted).
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6.4 Lefschetz Operator

On Kähler manifolds (M, g, J, ω), there is an important result revealing the properties of differential

operators called the Kähler identities. To start with, we first give the definition of the Lefschetz

operator.

Definition 47. The Lefschetz operator L on a Kähler manifolds (M, g, J, ω) is defined as

L : Ωk(M)→ Ωk+2(M)

α 7→ ω ∧ α

After complexifying, it restricts to

L : Ωp,q(M)→ Ωp+1,q+1(M).

Lemma 10. The (formal) adjoint of L, denoted by Λ : Ωk(M)→ Ωk−2(M), is given by Λ = (−1)k?L?.

Proof. Indeed, for α ∈ Ωk(M) and β ∈ Ωk+2(M),

〈Lα, β〉 = 〈α,Λβ〉

=

∫
Lα ∧ ?β =

∫
ω ∧ α ∧ ?β

= (−1)2k

∫
α ∧ ω ∧ ?β

= (−1)(k+2)(m−k−2)

∫
α ∧ ? ? (ω ∧ ?β) .

Note (k + 2)(m − k − 2) = k(m − k) + 2(m − 2k − 2). If k is odd, then k(m − k) is odd; if k is even,

then k(m− k) is even. Hence (−1)(k+2)(m−k−2) = (−1)k, which implies the lemma.

Lemma 11. If the open set U ⊂ Cn is endowed with the standard metric h with

ω =
i

2

∑
dzj ∧ dzj ,

then [∂
∗
, L] = i∂.

Proof. First note the fact: since dzj = dxj − udyj , and ∂zj = 1
2
(∂xj + i∂yj ), we have

ext(dzj)
∗ = 2int(∂zj ).

Now, for a form u = uα,β dz
α ∧ dzβ,

∂u =
∑

ext(dzj)∂zjuα,β dz
α ∧ dzβ.

So

∂
∗
u = −2

∑
int(∂zj )∂zjuα,β dz

α ∧ dzβ.
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Therefore,

∂
∗
(Lu) = −2

∑
j

int(∂zj )∂zj

(
i

2

∑
k

uα,β dzk ∧ dzk ∧ dzα ∧ dzβ
)

= −i
∑
j,k

∂zjuα,β int(∂zj )
(
dzk ∧ dzk ∧ dzα ∧ dzβ

)
= −i

∑
j,k

∂zjuα,β
[
int(∂zj ) (dzk ∧ dzk) ∧ dzα ∧ dzβ + dzk ∧ dzk ∧ int(∂zj )

(
dzα ∧ dzβ

)]
= −i

∑
j

∂zjuα,β
[
−dzj ∧ dzα ∧ dzβ

]
−
∑
j

∂zjuα,β ω ∧ int(∂zj )
(
dzα ∧ dzβ

)
= i∂u+ ω ∧ ∂∗u.

Hence

∂
∗
Lu− L∂∗u = i∂u.

We give the statement of the Kähler identities.

Theorem 34 (Kähler Identities). Let (M, g, J, ω) be a Kähler manifold, then

1. [∂
∗
, L] = i∂.

2. [∂, L] = −i∂, [Λ, ∂] = −i∂∗, [Λ, ∂] = i∂
∗
.

3. ∂∂
∗

= −∂∗∂ and ∂∂∗ = −∂∗∂.

4. ∆∂ = ∆∂ = 1
2
∆d = 1

2
∆dc .

5. dcd∗ = −d∗dc, d(dc)∗ = −dc∗d, [Λ, d] = −(dc)∗.

Proof. 1. The relation at each point of M only involves the metric h and its first derivatives at this

point. Hence it follows from Lemma 11.

2. Derived directly from 1 by taking conjugates or adjoints.

3. From 2, ∂
∗

= −i[Λ, ∂], thus

∂∂
∗

= −i∂[Λ, ∂] = −i∂ (λ∂ − ∂Λ)

= −i∂Λ∂,

and

−∂∗∂ = i[Λ, ∂]∂ = i (λ∂ − ∂Λ) ∂

= −i∂Λ∂.

Thus ∂∂
∗

= −∂∗∂. The other part can be proved in the same way.
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4. Note ∆∂ = ∂∂∗ + ∂∗∂. From 2, ∂∗ = i[Λ, ∂] = i
(
Λ∂ − ∂Λ

)
. So

∆∂ = ∂ · i
(
Λ∂ − ∂Λ

)
+ i
(
Λ∂ − ∂Λ

)
∂

= i
(
∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂

)
.

On the other hand, one can easily find

∆∂ = ∂ · (−i) (Λ∂ − ∂Λ)− i (Λ∂ − ∂Λ) ∂

= −i
(
∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂

)
.

So

∆∂ −∆∂ = i
(
∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂ + ∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂

)
= i
[
−
(
∂∂ + ∂∂

)
Λ + Λ

(
∂∂ + ∂∂

)]
= 0. (By ∂∂ = −∂∂)

For ∆d, we have

∆d = dd∗ + d∗d =
(
∂ + ∂

) (
∂∗ + ∂

∗)
+
(
∂∗ + ∂

∗) (
∂ + ∂

)
= ∂∂∗ + ∂∗∂ + ∂∂

∗
+ ∂

∗
∂ (Use 3)

= ∆∂ + ∆∂ = 2∆∂ = 2∆∂ .

Since ∆dc preserves (p, q)-type, we have ∆dc = J−1∆dJ = ∆dc .

5. To prove the first equation, note that

dcd∗ + d∗dc = i
(
∂ − ∂

) (
∂
∗

+ ∂∗
)

+ i
(
∂
∗

+ ∂∗
) (
∂ − ∂

)
= i
(
∂∂
∗

+ ∂∂∗ − ∂∂∗ − ∂∂∗ + ∂
∗
∂ − ∂∗∂ + ∂∗∂ − ∂∗∂

)
= i
(
∂∂
∗ − ∂∂∗ + ∂

∗
∂ − ∂∗∂

)
(Use 3)

= i (∆∂ −∆∂)

= 0.

To prove the second equation, note that

(dc)
∗
d = −i

(
∂
∗ − ∂∗

) (
∂ + ∂

)
= −i

(
∂
∗
∂ + ∂

∗
∂ − ∂∗∂ − ∂∗∂

)
,

also

d (dc)
∗

= −i
(
∂ + ∂

) (
∂
∗ − ∂∗

)
= −i

(
∂∂
∗

+ ∂∂
∗ − ∂∂∗ − ∂∂∗

)
.

These imply

d (dc)
∗

+ (dc)
∗
d = −i (∆∂ −∆∂) = 0.

To prove the third equation, note that

[Λ, d] = [Λ, ∂ + ∂] = [Λ, ∂] + [Λ, ∂] = i∂
∗ − i∂∗ = i

(
∂
∗ − ∂∗

)
= −i (dc)

∗
.
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Exercise 13. Prove [∆∂ , L] = 0.

Corollary 9. If (M, g, J, ω) is a Kähler manifold, then

dω = ∂ω = ∂ω = dcω = δω = ∂∗ω = ∂
∗
ω = (dc)

∗
ω = 0.

Proof. dω = 0 is the definition. Since ω has type (1, 1), from dω = 0 we know ∂ω = 0 = dcω = ∂ω.

Now from Theorem 34, ∂∗ω = i[Λ, ∂]ω = iΛ∂ω−i∂Λω. We claim Λω = 1. Indeed, for any f ∈ C∞c (M),

〈Λω, f〉M = 〈ω,Lf〉 = 〈ω, fω〉 =

∫
M

fω ∧ ?ω =

∫
M

fdVg = 〈1, f〉M .

This implies ∂∗ω = 0. Similarly one can check (dc)
∗

= 0 (Check).

Definition 48. For any operator p ∈ {d, dc, ∂, ∂}, a form α is called p-harmonic if pα = 0.

Corollary 10. If (M, g, J, ω) is a Kähler manifold, then

Hk
dR(M) ∼= Hk

dc(M) ∼=
⊕
p+q=k

Hp,q
∂ (M) ∼=

⊕
p+q=k

Hp,q

∂
(M).

Moreover, conjugation induces an isomorphism Hp,q
∂ (M) ∼= Hq,p

∂ (M), and ? operator induces an iso-

morphism

? : Hp,q

∂
(M)→ Hn−q,n−p

∂
(M).

Proof. Since ∆d = ∆dc = 2∆∂ = 2∆∂ , we can deduce

ker ∆d |Ωk= ker ∆dc |Ωk= ker ∆∂ |⊕p+q=k Ωp,q= ker ∆∂ |⊕p+q=k Ωp,q .

Also, for any harmonic form α of type (p, q), α has type (q, p), and ∆∂α = ∆∂α = 0. So α is also

harmonic.

Corollary 11 (ddc-Lemma). If α is a differential form such that dα = 0, dcα = 0 and α = dγ for some

γ, then α = ddcβ for some β.

Proof. Write γ = γ0 + dcγ1 + (dc)
∗
γ2 using Ωk−1(M) = ker ∆dc ⊕ im (dc)⊕ im (dc)

∗
(Theorem 33). So

α = dγ = dγ0 + ddcγ1 + d (dc)
∗
γ2.

Since ker ∆dc = ker ∆d = ker d ∩ ker d∗, dγ0 = 0. On the other hand,

0 = dcα = dcddcγ1 + dcd (dc)
∗
γ2 = −(dc)2dγ1 − dc (dc)

∗
dγ2 = −dc (dc)

∗
dγ2.

Thus, − (dc)
∗
dγ2 = d (dc)

∗
γ2 ∈ ker dc ∩ im (dc)

∗
= {0}. So α = ddcγ1. Write β = γ1 and we are

done.

A linear statement like

ker d ∩ ker dc ∩ im d = im ddc

holds over R, then it continues to hold over C. Over C, ddc = 2i∂∂. This is equivalent to the following

lemma:
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Lemma 12 (∂∂-Lemma). If (M, g, J, ω) is a Kähler manifold, and if α ∈ Ωp,q(M) is d-closed and either

∂ or ∂-exact, then there exists β ∈ Ωp−1,q−1(M) such that α = ∂∂β.

Exercise 14. Prove the ∂∂-Lemma. This is much similar to the proof of ddc-Lemma (Corollary 11).

From the Exercise, one can convince himself or herself that the Hodge-Dolbeault decomposition

Hk
dR(M) ∼=

⊕
p+q=k

Hp,q

∂
(M)

does not depend on the specific Kähler structure of M .

Example 29. Consider M = CPn. Through induction and the Mayer-Victoris Theorem, one can

show

Hk
dR(CPn) =

C , if 0 ≤ k ≤ 2n for even k

0 , otherwise

Let (M, g, J, ω) be the Fubini-Study Kähler structure. We know that [ω`] ∈ H2`
dR(M) is a nonzero

cohomology class for any 0 ≤ 2` ≤ 2n. Thus it is a basis of harmonic forms. After complexifying,

ω` ∈ Ωp,q(M), we see that

Hp,q

∂
(CPn) =

C , if p = q ≤ n

0 , otherwise

Corollary 12. Let M be a closed Kähler manifold and m = dimM be its C-dimension. Let bk =

dimHk
dR(M), hp,q = dimHp,q

∂
(M). We have the following consequences:

1. bk =
∑

p+q=k h
p,q.

2. hp,q = hq,p = hm−q,m−p = hm−p,m−q.

3. hp,p 6= 0 for any p ∈ {1, · · · , n}.

4. bk is even if k is odd.

Proof. 1 ∼ 3 are trivial. 4 follows from 1 and 2.

With this corollary in hand, we can show that a manifold with a complex structure, and possibly

with a symplectic structure, need NOT to be Kähler.

Example 30. Take C2\{0}
/
∼, where (z1, z2) ∼ (λz1, λz2) for any λ ∈ Z\{0}. It is homeomorphic

to S1 × S3. It inherits a complex structure from C2, but it is not Kähler. This is because b1 = 1,

contradicting to consequence 4 in Corollary 12. Also b2 = 0, so it is not even symplectic!

Exercise 15 (Iwasawa Manifold). Let G ⊂ GL 3(C) be the subgroup of matrices of the form
1 z1 z3

0 1 z2

0 0 1

 .

Let Γ ⊂ G be the subgroup with z1, z2, z3 ∈ (Z + iZ). Show that:
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1. G
/

Γ is a C-manifold.

2. The forms dz1, dz2, dz3 − z1dz2 on G are invariant under the left action of Γ. So they descend to

holomorphic (1, 0)-forms α1, α2, α3 on G
/

Γ such that dα3 = −α1 ∧ α2.

Since ∂
∗

: Ωp,q(M)→ Ωp,q−1(M), ∂
∗ |Ω1,0≡ 0, a (1, 0)-form being holomorphic is equivalent to it being

∆∂-harmonic. If G
/

Γ were Kähler, then ∆∂α3 = 0, yielding ∆dα2 = 0, which implies dα3 = 0. Hence

G
/

Γ with the induced complex structure is not Kähler. However, its Betti numbers DO satisfy the

Corollary 12.

The following identity is important:

Lemma 13 (Lefschetz Identity). [L,Λ] : Ωk(M)→ Ωk(M) satisfies

[L,Λ]α = (k −m)α,

for any α ∈ Ωk(M), where M has C-dimension m.

Proof. Since the identity only involves the value of the metric at a given point, so it suffices to prove

it for Cm with the standard Hermitian metric.

Induction on m. For the base case m = 1 with the standard coordinate z = x+ iy, we have that

L acts as 1 7→ ω on
∧0

(Cm)∗ and coincides with the zero map otherwise. Likewise, Λ acts as ω 7→ 1

on
∧2

(Cm)∗ and coincides with the zero map otherwise. Thus, [L,Λ] acts as −ΛL = −1 on
∧0

(Cm)∗

and as LΛ = 1 on
∧2

(Cm)∗, as needed (zero maps on
∧1

(Cm)∗).

Inductively, suppose Cm = W1 ⊕W2 is an orthogonal splitting into two complex subspaces, com-

patible with the Kähler structure. Then
∧•

(Cm)∗ =
∧•

W ∗1 ⊗
∧•

W ∗2 with W1
∼= Cm1 , W2

∼= Cm2 ,

and the symplectic form ω on Cm decomposes into ω1 ⊕ ω2, where ω1 and ω2 are symplectic forms on

W1,W2, respectively. Correspondingly, L = L1 +L2 as operators on
∧•

(Cm)∗, where L1 acts on
∧•

W ∗1

by L1 ⊗ id and L2 acts on
∧•

W ∗2 by id ⊗ L2. Similarly we can proceed the same with Λ = Λ1 + Λ2.

Let α ∈
∧•

(Cm)∗, then we can WLOG suppose that it is split, i.e. α = α1 ⊗ α2 for αj ∈ Ωkj (M).

Thus,

[L,Λ]α = [L,Λ](α1 ⊗ α2)

= (L1 + L2)(Λ1α1 ⊗ α2 + α1 ⊗ Λ2α2)− (Λ1 + Λ2)(L1α1 ⊗ α2 + α1 ⊗ L2α2)

= [L1,Λ1]α1 ⊗ α2 + α1 ⊗ [L2,Λ2]α2

= (k1 −m1)α1 × α2 + (k2 −m2)α1 ⊗ α2

= (k1 + k2 − (m1 +m2))α1 ⊗ α2.

Hence by induction, we conclude our proof.

Remark 20. Let  : Ω•(M)→ Ω•(M) satisfy α = kα for any α ∈ Ωk(M). Then

[L,Λ] = (−m) id.

We call  a number operator.
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We can generalize the Lefschetz Identity as follows:

Proposition 15 (Generalized Lefschetz Identity). For 0 ≤ k ≤ m and 0 ≤ r ≤ m− k, we have

[Lr,Λ]α = (r(k −m) + r(r − 1))Lr−1α,

for any α ∈ Ωk(M), where M has C-dimension m.

Proof. Inductively, from the fact [Lr,Λ] = L[Lr−1,Λ] + [L,Λ]Lr−1, we know

[Lr,Λ]α = L[Lr−1,Λ]α+ [L,Λ]Lr−1α

= L ((r − 1)(k −m) + (r − 2)(r − 1))Lr−2α+ (2r − 2 + k −m)Lr−1α

=
(
(r − 1)(k −m) + r2 − 3r + 2 + (k −m) + 2r − 2

)
Lr−1α

= (r(k −m) + r(r − 1))Lr−1α.

The base case was proved in Lemma 13. Hence we conclude the proof.

Remark 21. Let (M, g, J, ω) be a Kähler manifold of C-dimension m. With generalized Lefschetz

Identity in hand, one can show that for k ≤ m, the map Lm−k : Ωk(M)→ Ω2m−k(M) is an isomorphism.

(Check!)

6.5 Lefschetz Decomposition

Our current theme is to understand how the three compatible structures of a Kähler manifold

(M, g, J, ω) interact with cohomology. We have observed how g will act in Hodge Theorem (Theorem

30, 31 and 33) and how J will act in Hodge-Dolbeault decomposition (Exercise 14). We will see how

ω acts (called the Lefschetz decomposition) in this section.

Definition 49. A form α is called primitive if it is not in the image of L, i.e. α 6= ω ∧ α̃ for any α̃.

We are interested in those who is not primitive because they come from a lower-degree form.

One can write Ω• = imL⊕ kerL∗ = imL⊕ ker Λ. Thus, a form α is primitive if Λα = 0.

Lemma 14. For k ≤ m, m = dimM , α ∈ Ωk(M) is primitive iff Lm−k+1α = 0.

Proof. We know [Lm−k+1,Λ]α = 0 by Proposition 15. This implies Lm−k+1Λα = ΛLm−k+1α. Now

Λα ∈ Ωk−2(M), and Lm−(k−2) is an isomorphism on Ωk−2(M). So Lm−(k−1) is injective on Ωk−2(M),

yielding that Lm−(k−1)Λα = 0 is equivalent to Λα = 0. Also, Lm−k+1α ∈ Ω2m−k+2(M) and Λm−k+2 :

Ω2m−k+2(M)→ Ωk−2(M) is an isomorphism. So Λ is injective on Ω2m−k+2(M), yielding that ΛLm−(k−1)α =

0 is equivalent to Lm−(k−1)α = 0. Hence, α is primitive iff Λα = 0, iff Lm−k+1α = 0.

Theorem 35 (Lefschetz Decomposition of Differential Forms). Every α ∈ Ωk(M) admits a unique

decomposition of the form α =
∑
Lrαr with αr being of degree k−2r ≤ min(2m−k, k) and primitive.
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Proof. WLOG, we assume k ≤ m. Start with uniqueness. Suppose
∑

r≥0 L
rαr = 0. We want to show

αr = 0. If α0 = 0, then L (
∑
Lr−1αr) = 0 implies

∑
Lr−1αr = 0 and we are done by induction. Now

suppose α0 6= 0. Since α0 ∈ Ωk(M) and it is primitive, we know Lm−k+1α0 = 0. From

Lm−k+1
(∑

Lrαr

)
= 0 = Lm−k+2

(∑
r>0

Lr−1αr

)
︸ ︷︷ ︸

degree k−2

,

and the fact that Lm−k+2 is an isomorphism on Ωk−2, we know
∑

r>0 L
r−1αr = 0. Induction on k, we

get αr = 0 for all r > 0, implying α0 = 0. Combining the previous result, we are done.

To prove the existence, first note

Lm−k+1α ∈ Ω2m−k+2(M) = Lm−k+2
(
Ωk−2(M)

)
.

Thus, there exists β ∈ Ωk−2(M) such that Lm−k+1α = Lm−k+2β. So α0 = α − Lβ is primitive and

α = α0 + Lβ. Induction on degrees, we can assume that β has a Lefschetz decomposition and so does

α.

Remark 22. If α =
∑
Lrαr, then we may complexify it into

πp,qα =
∑

Lrπp−r,q−rαr.

Lemma 15. On a Kähler manifold (M, g, J, ω), we have [∆d, L] = 0.

Proof. We know that [∂, L]α = ∂(ω ∧ α)− ω ∧ ∂α = ∂ω ∧ α = 0 and [∂∗, L] = −i∂. Hence

[∆d, L] = 2[∆∂ , L] = 2 ([∂∂∗, L] + [∂∗∂, L])

= 2 (∂[∂∗, L] + [∂∗, L]∂) = −2i(∂∂ + ∂∂) = 0.

The Lefschetz decomposition (Theorem 35) descends to cohomology. We have the following theo-

rem to describe the consequence:

Theorem 36 (Hard Lefschetz Theorem). Let (M, g, J, ω) be a Kähler manifold of complex dimension

m. For all k ≤ m, Lm−k induces an isomorphism Hk
dR(M)→ H2m−k

dR (M).

Proof. Denote Hk(M) = ker ∆d |Ωk(M)
∼= Hk

dR(M). From Lemma 15, [∆d, L] = 0, Lm−k : Hk(M) →
H2m−k(M) is injective. On the other hand, dimHk(M) = dimH2m−k(M) since ? is an isomorphism.

Thus, Lm−k is also surjective.

Corollary 13 (Lefschetz Decomposition of Cohomology). If Hk(M)prim = kerLm−k+1 ⊂ Hk(M) for

k ≤ m, then for any k, Hk(M) =
⊕

r L
rHk−2r(M)prim.

Exercise 16. Prove this corollary.

Remark 23. If k ≤ m, bk ≤ bk+2 (hp,q ≤ hp+1,q+1, respectively); and if k ≥ m, bk ≥ bk+2 (hp,q ≥
hp+1,q+1, respectively). Thus dimHk(M)prim = bk − bk−2.
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We see that Lm−k and ? play similar roles in decomposition and duality. Naturally, we would ask

if there is any relationship between these two operators. To state the relation, recall that J extends

to a map on differential forms by pulling back along TM → T ∗M . After complexifying, J |Ωp,q is

multiplication by ip−q. We have the following proposition.

Proposition 16. If α ∈ Ωk(M) is primitive, then

?
Ljα

j!
= (−1)

k(k+1)
2

Lm−k−jJ(α)

(m− k − j)!
.

Proof. It suffices to see that this holds for Cm with standard metric.

Induction on m. For m = 1, pick an orthonormal basis x, y such that J(dx) = −dy. One can

check that

k = 0, j = 0 : ?α = αdx ∧ dy = LJ(α),

k = 0, j = 1 : ?Lα = ?(αdx ∧ dy) = α = LJ(α),

k = 1, j = 0 : ?dx = dy = −J(dx), ?dy = −dx = −J(dy).

Assume inductively that the proposition holds on W = Cm−1. Let V = Cm = W ⊕ C. We can write∧•
V ∗ =

∧•
W ∗ ⊗

∧•C∗, and correspondingly L = L1 + L2, Λ = Λ1 + Λ2, where L1 = LW ⊗ id,

L2 = id⊗ LC, Λ1 = ΛW ⊗ id and Λ2 = id⊗ ΛC. One can WLOG suppose α is split, i.e. α = α1 ⊗ α2

for α1 ∈
∧k1 W ∗ and α2 ∈

∧k2 C∗. So

?α = ?(α1 ⊗ α2) = (−1)k1k2(?Wα1 ⊗ ?Cα2),

and J(α1⊗α2) = J(α1)⊗J(α2). Any α ∈
∧k

V ∗ decomposes as α = β+β′⊗dx+β′′dy+β′′′⊗dx∧dy.

So

Λα = ΛWβ + ΛWβ
′ ⊗ dx+ ΛWβ

′′dy + ΛWβ
′′′ ⊗ dx ∧ dy + β′′′.

Since α is primitive, Λα = 0. This yields ΛWβ + β′′′ = 0 and ΛWβ
′ = ΛWβ

′′ = ΛWβ
′′′ = 0, i.e.

β′, β′′, β′′′ are primitive. Since Λ2
Wβ = 0, the Lefschetz decomposition of β is β = γ + LWγ

′ with γ, γ′

primitive, one have

ΛWβ = ΛWLWγ
′ = [ΛW , LW ]γ′ = (dimCW − (k − 2)) γ′.

Hence β′′′ = (k−m−1)γ′. Thus α being primitive implies α = γ+LWγ
′+β′⊗dx+β′′⊗dy+(k−m−1)γ′⊗

dx∧dy, with γ, γ′, β′, β′′ primitive. Since C is 1-dimensional, Lj = (L1 +L2)j = LjW ⊗ id+ jLj−1
W ⊗LC.

So

Ljα =LjWγ + jLj−1
W γ ⊗ dx ∧ dy + Lj+1

W γ′ + jLjWγ
′ ⊗ dx ∧ dy

+ LjWβ
′ ⊗ dx+ LjWβ

′′ ⊗ dy + (k −m− 1)LjWγ
′ ⊗ dx ∧ dy

=LjWγ + jLj−1
W γ ⊗ dx ∧ dy + Lj+1

W γ′ − (m+ 1− k − j)LjWγ′ ⊗ dx ∧ dy

+ LjWβ
′ ⊗ dx+ LjWβ

′′ ⊗ dy.
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From the inductive hypothesis,

(−1)
k(k+1)

2 (m− k − j)! ?L
jα

j!
= (m− k − j)Lm−1−k−j

W JW (γ)⊗ dx ∧ dy − (j + 1)Lm−k−jW JW (γ′)⊗ dx ∧ dy

+ Lm−k−jW JW (γ) + Lm+1−k−j
W JW (γ′)− Lm−k−jW JW (β′)⊗ ?Cdx− Lm−k−jW JW (β′′)⊗ ?Cdy

(#)

On the other hand, Lm−k−jJ(α) can be computed similarly (Exercise!), which coincides (#). By

induction, we are done.

6.6 Hodge-Riemann Bilinear Relations

Definition 50. Define a bilinear form Q on Ω∗(M) by

1. Q(α, β) = 0 if the degree of α does not equal to the degree of β.

2. If α, β ∈ Ωk(M), then

Q(α, β) = (−1)
k(k+1)

2

∫
M

Lm−k(α ∧ β) = (−1)
k(k+1)

2

∫
M

ωm−k ∧ α ∧ β.

We call Q an intersection form on Ω∗(M).

Lemma 16. 1. Q is symmetric for k even and anti-symmetric for k odd.

2. Q(Lα,Lβ) = −Q(α, β) for all α, β ∈ Ωk(M).

3. The Lefschetz decomposition Hk(M) =
⊕
LrHk−2r(M)prim is orthogonal for Q.

Proof. 1. Follows from α ∧ β = (−1)kβ ∧ α for any α, β ∈ Ωk(M).

2. Note

Q(Lα,Lβ) = (−1)
(k+2)(k+3)

2

∫
M

Lm−k−2(Lα ∧ Lβ) = (−1)
(k+2)(k+3)

2

∫
M

ωm−k ∧ α ∧ β.

So it suffice to check the sign. Since

(k + 2)(k + 3)

2
− k(k + 1)

2
=

4k + 6

2
= 2k + 3

is odd, (−1)
(k+2)(k+3)

2 = −(−1)
k(k+1)

2 .

3. Suppose α = Lrα0, β = Lsβ0 with α0, β0 primitive and r < s. Since α0 ∈ Ωk−2s(M)prim,

Lm−k+2r+1α0 = 0. We see

Q(α, β) = Q(Lrα0, L
sβ0) = (−1)rQ(α0, L

s−rβ0) = ±
∫
Lm−k+2r(α0 ∧ Ls−rβ0)

= ±
∫
Lm−k+2r+1α0 ∧ Ls−r−1β0 = 0.
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Theorem 37 (Hodge-Riemann Bilinear Relations). Let (M, g, J, ω) be a closed Kähler manifold with

complex dimension m. We have the following consequences:

1. Hp,q(M)prim and Hr,s(M)prim are orthogonal with respect to Q, unless (p, q) = (r, s).

2. If α ∈ Hp,q(M)prim is nonzero, then

ip−qQ(α, α) > 0.

In particular, Q is non-degenerate.

Proof. Note that Q descends to cohomology since, by Stokes Theorem, if α and β are closed and either

of them is exact, then ∫
M

Lm−k(α ∧ β) = 0.

1. If α ∈ Ωp,q(M) and β ∈ Ωr,s(M), then Lm−k(α∧β) has type (m−k+ p+ r,m−k+ q+ s), where

the volume form has type (m,m). So the integral vanishes, unless −k + p+ r = 0 = −k + q + s,

i.e. p+ r = k = q + s. But k = p+ q, yielding r = q, s = p.

2. If α ∈ Ωp,q(M), then Λα = Λα = 0. Then α ∈ Ωq,p(M)prim. So, ?α = (−1)
k(k+1)

2 ip−q L
m−kα

(m−k)!
by

Proposition 16. Observe

ip−qQ(α, α) = (−1)
k(k+1)

2 ip−q
∫
Lm−k(α ∧ α)

= (−1)
k(k+1)

2 ip−q
∫
α ∧ Lm−kα

= (m− k)! ‖α‖2 ≥ 0.

This reveals the desired result and shows that Q is non-degenerate.

In other word, the second result of Theorem 37 is to say that the form ip−qQ is positive definite

on the complex subspace Hp,q(M)prim. The Hodge index theorem is an immediate of Theorem 37.

This theorem describes the index (or the signature) of the intersection form Q on Hm(M,R), where

m = dimCM is assumed to be even and M is closed Kähler. In order to give the statement of the

theorem, we first define the index (or the signature) of Q.

Definition 51. Diagonalize Q gives a set of positive and negative eigenvalues. The signature of Q is

then defined to be the number of positive eigenvalues minus number of negative eigenvalues. That is,

one can find a basis {αj}j≤N such that

(Q(aj , a`))j,`≤N =

(
idr 0

0 − ids

)

for some r, s. The signature of Q is then defined to be r − s.
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Note 5. Note that on Hm(M), Q doesn’t use ω or J , and Q(α, β) = ±
∫
M
α ∧ β. Define

Q̃(α, β) =

∫
M

α ∧ β.

If M is orientable, Q̃ is non-degenerate since Q̃(α, ?α) =
∫
M
α ∧ ?α = ‖α‖2 ≥ 0. The signature of M

is then defined to be the signature of Q̃, denoted by σ(M). It vanishes unless the real dimension of M

is a multiple of 4.

Theorem 38 (Hodge Index Theorem). Let (M, g, J, ω) be a closed Kähler manifold with complex

dimension m, which is assumed to be even, then

σ(M) =
∑
p,q

(−1)php,q.

(We defined hp,q in Corollary 12.)

Proof. Extend Q̃ to a Hermitian form on Hm(M,C), Q̃(α, β) =
∫
α ∧ β. We have an orthogonal

decomposition Hm(M,C) =
⊕
LrHp,q(M)prim. From the Hodge-Riemann bilinear relations, (−1)pQ̃

is positive definite on LrHp,q(M)prim (note m is even). Thus

σ(M) =
∑

p+q=m−2r

(−1)p dimHp,q(M)prim

=
∑

p+q=m−2r

(−1)p
(
hp,q − hp−1,q−1

)
=

∑
p+q=m−2r

(−1)php,q + (−1)p−1hp−1,q−1

=
∑

p+q=m

(−1)php,q + 2
∑

p+q=m−2r
r 6=0

(−1)php,q

=
∑

p+q=m

(−1)php,q +
∑

p+q even
p+q 6=m

(−1)php,q

=
∑

p+q even

(−1)php,q.

On the other hand, by applying complex conjugation,∑
p+q odd

(−1)php,q =
∑

p+q odd

(−1)phq,p = −
∑

p+q odd

(−1)qhq,p = 0.

Hence,

σ(M) =
∑
p,q

(−1)php,q.

6.7 Cohomology with Holomorphic Coefficients

In this section, we will allow the cohomology to have coefficients in holomorphic vector bundle,

instead of F = R or C.
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Definition 52. If E → M is a C-vector bundle over a Hermitian manifold (M, g, J, ω) of complex

dimension m, p ∈ M , and hE is a Hermitian bundle metric on E inducing h[E : E → E∗, which is a

C-antilinear bundle isomorphism, then we define

?E :

p,q∧
T ∗pM ⊗ Ep →

m−p,m−q∧
T ∗pM ⊗ E∗p

by requiring ?E(α⊗ s) = ?α⊗ h[E(s).

Remark 24. ?E is a C-antilinear isomorphism such that for any α, β ∈ Ωp,q(M,E)

α ∧ ?Eβ = hE(α, β)dVg.

Indeed, ?E ? ?E = (−1)p+q on
∧p,q

T ∗pM ⊗ E.

If (E, hE)→M is also holomorphic, then we have

∂E : Ωp,q(M,E)→ Ωp,q+1(M,E),

∂
∗
E : Ωp,q(M,E)→ Ωp,q−1(M,E).

Exercise 17. Prove that the Laplacian ∆∂E
= ∂E∂

∗
E + ∂

∗
E∂E is elliptic. From this deduce that there

is a Hodge decomposition:

Ωp,q(M,E) = ker ∂E ∩ ker ∂
∗
E︸ ︷︷ ︸

ker ∆∂E

⊕im ∂E ⊕ im ∂
∗
E ,

and

Hp,q(M,E) ∼= ker ∆∂E
|Ωp,q(M,E) .

We can express ∂
∗
E as −?E∗∂E∗?E . This generalizes ∂

∗
= − ? ∂?, since

−?
(
∂?α

)
= −?

(
∂(?α)

)
= −?

(
∂ ? α

)
= − ? ∂ ? α.

Exercise 18. Show that ?E∆∂E
= ∆∂E∗

?E∗ . So we have a C-antilinear isomorphism

Hp,q(M,E)
?E−→ Hm−p,m−q(M,E∗).

A better way of thinking about this is that the natural pairing

Hp,q(M,E)⊗Hm−p,m−q(M,E∗)→ C

(α, β) 7−→
∫
M

α ∧E β

is non-degenerate since (α, ?Eα) 7→
∫
M
hE(α, α)dVg = ‖α‖2hE . This puts these vector spaces into

duality, i.e. we have a C-linear isomorphism(
Hm−p,m−q(M,E∗)

)∗ ∼= Hp,q(M,E).

This is the Poincaré duality. In this context, it is known as the Serre duality.
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Remark 25. From the Dolbeault Theorem (Exercise 14), the duality becomes

Hq(M,Ωp ⊗ E) ∼=
(
Hm−q(M,Ωm−p ⊗ E∗)

)∗
.

The sheaf Ωm
M is known as the structure sheaf of M , denoted by KM . It satisfies

Hq(M,E) ∼=
(
Hm−q(M,KM ⊗ E∗)

)∗
.

Recall that, if E → M is a holomorphic vector bundle, then for each Hermitian metric hE , there

is a unique Chern connection ∇E on E such that ∇0,1
E = ∂E . We can define

d∇ : Ωk(M,E)→ Ωk+1(M,E).

There is a form R∇ ∈ Ω2(M,End(E)) with
(
d∇
)2
α = R∇ ∧End α. Therefore, it is valid to talk about

Hk(M,E) only when ∇E is flat. In particular, if we want to generalize the Dolbeault decomposition,

the Lefschetz decomposition and so on, we need to restrict attention to holomorphic vector bundle with

a flat Chern connection.

For any holomorphic bundle E → M with a Hermitian structure over a Kähler manifold M , we

can generalize the idea of Lefschetz operator:

L : Ωk(M,E)→ Ωk+2(M,E)

(α⊗ s) 7→ (ω ∧ α)⊗ s

In the same way, we can generalize the adjoint Λ to Ωk(M,E).

Exercise 19. Check that the generalized Lefschetz operator L and its adjoint Λ satisfy

1. L commutes with d∇, ∂∇ and ∂E .

2. Λ commutes with
(
d∇
)∗

,
(
∂∇
)∗

and
(
∂E
)∗

.

3. [L,
(
∂∇
)∗

] = i∂E , [L, ∂
∗
E ] = −i∂∇

These properties again imply that

[L,∆∂E
] = −[L,∆∂∇ ] = −i

(
∂∇∂E + ∂E∂

∇) .
However, this doesn’t vanish. Instead, one can check it equals to R∇ ∧End −.

Corollary 14.

∆d∇ = ∆∂∇ + ∆∂E
, ∆∂E

− 2∆∂∇ =
[
iR∇ ∧End −,Λ

]
.

If the Chern connection is flat, then

∆d∇ = 2∆∂∇ = 2∆∂E
.

With this corollary, we can establish the generalized Dolbeault decomposition, Lefschetz decom-

position, ∂∇∂E-Lemma and so on, in a similar manner as before. (Exercise!)
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In order to obtain a full Hodge theory on holomorphic bundles E → M over a closed Kähler

manifold M , it suffices to find a Hermitian metric on E whose Chern connection is flat. However, there

is a topological obstruction here. It comes from the Bianchi Identity: d∇R∇ = 0, where d∇ uses the

induced connection on End(E). Indeed,

d∇R∇ ∧ α = d∇
(
R∇ ∧ α

)
−R∇ ∧ d∇α

= d∇
(
(d∇)2α

)
−
(
d∇
)2 (

d∇α
)

=
(
d∇
)3
α−

(
d∇
)3
α = 0.

For a holomorphic bundle E → M , this implies that ∂End(E)R
∇ = 0, where ∇ is a Chern connection.

Hence R∇ defines a cohomology class [R∇] ∈ H1,1(M,End(E)). If h̃E is a Hermitian metric with Chern

connection ∇̃, then ∇̃ − ∇ = a ∈ Ω1(M,End(E)). Since ∇̃0,1 −∇0,1 = ∂E − ∂E = 0, a has type (1, 0).

Also, R∇̃ = R∇ +∇a+ a ∧End a are both (1, 1)-forms. Thus,

∇a+ a ∧End a = (∇a+ a ∧End a)
1,1

= (∇a)
1,1

= ∂End(E)a,

yielding [R∇̃] = [R∇] in H1,1(M,End(E)). This cohomology class is known as the Atiyah class of E,

denoted by a(E).

A simpler version of the same argument works for line bundles. If E →M is a C-vector bundle of

rank 1, then End(E) is canonically the trivial C-bundle M×C. So R∇ ∈ Ω2(M) and d∇R∇ = dR∇ = 0

for any ∇. The cohomology class c1(E) := [R∇] ∈ H2(M,C) is known as the first Chern class of

E →M , and it is independent if the choice of ∇. Often, we take coefficients in Z instead of C; that is,

we prefer to define 1
2πi

[R∇] ∈ H2(M,Z) as the first Chern class.

Remark 26. Every C-vector bundle E → M of rank 1 is classified by a map M
φ−→ CP∞. This is

well-defined up to homotopy. From the knowledge of algebraic topology, we know H∗(CP∞;Z) ∼= Z[x],

where x ∈ H2(CP∞;Z). The first Chern class can be identified as

c1(E) =
1

2πi

[
R∇
]

= φ∗[x].

In general, for a C-vector bundle E → M of rank r, d∇R∇ = 0, [R∇] ∈ H2(M,End(E)). If

f : Grr(C)→ C is a polynomial function such that f(STS−1) = f(T ), then

f(R∇) ∈ Ωeven(M,C) =
⊕
k

Ω2k(M,C).

One can show that df(R∇) = 0. So we can show that [f(R∇)] ∈ Heven(M,C) is independent of the

choice of the connection.

Definition 53. These classes are called the characteristic classes of E. Define ck(x) by∑
ck(x)tn = det

(
Ir − t ·

x

2πi

)
.

Then ck(E) =
[
ck
(
R∇
)]
∈ H2k(M,C) is called the kth Chern class of E.

Recall the pullback

E γr

M Grr

p

φ
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i.e. E = φ∗γr. Hence, in terms of φ, c∗(E) = φ∗ (ck(γ
r)). Consequently, {ck(γr)} generate H∗(Grr).

Definition 54. We call a connection ∇E on E is compatible with the holomorphic structure if

∇0,1
E = ∂E . If furthermore, ∇E sends holomorphic sections to holomorphic sections (possibly locally),

then ∇E is said to be a holomorphic connection.

Corollary 15 (Atiyah). a(E) = 0 iff E →M admits a holomorphic connection.
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7 Kodaira Embedding Theorem

The aim of this chapter is to prove the following theorem:

Theorem 39 (Kodaira Embedding Theorem). A closed (or compact) Kähler manifold endowed with

a positive line bundle admits a projective embedding.

The main technique used is recasting local problems in global ones with the help of “blowing up”,

namely replacing a point of a complex manifold with a hypersurface. In order to tackle the problem,

we must introduce the important notion of “positivity”.

7.1 Kodaira Vanishing

Definition 55. We say that a (real) differential form α of type (1, 1) on a complex manifold M is

positive, if for all nonzero v in the real tangent space of M ,

α (v, J(v)) > 0,

where J is the complex structure of M .

Corollary 16. If α is closed and positive, then by setting g(ω1, ω2) = α(ω1, J(ω2)), the manifold

(M, g, J, α) is Kähler.

Definition 56. A cohomology class c ∈ H1,1(M,C) is positive if it has a positive representation.

Definition 57. A holomorphic line bundle E →M is positive if its first Chern class is positive.

For the start, consider the holomorphic line bundle over CPn. First note that the tautological

bundles have natural Hermitian metrics. Indeed, if E → M is γr(CN )→ Grr(CN ), then by definition

γr(CN ) = {(W, v) ∈ Grr(CN ) × CN : v ∈ W} is a subbundle of the trivial bundle CN → Grr(CN ).

The standard metric on CN induces a bundle metric on CN , which restricts to a bundle metric on

γr(CN ) → Grr(CN ). The Chern connection on CN is given by d, and the one on γr is the projection

of d onto γr. That is, if s : U → γr is a local section, then we can regard it as a map s : U → CN such

that s(w) ∈W , and ∇γ
r

V s = πγ
r

(ds(V )).

For the tautological bundle OCPn(−1) → CPn, this construction gives a metric |dz|2
dz2α

on Uα.

Working on the details, let’s equip CPn with a standard atlas {Uα = {(z0 : · · · : zn) ∈ CPn : zα 6= 0}}.
The tautological line bundle L = O(−1) has transition functions gαβ =

(
zβ
zα

)−1

= zα
zβ

. Let s : CPn → L

be a section of L. It can be decomposed into maps sα : Uα → C such that sbeta = gαβsα. A Hermitian

metric on L can similarly be decomposed into maps hα : Uα → R+ such that hβ = |gαβ|−2hα for which

if p ∈ Uα,

|s|2h(p) = |sα(p)|2hα(p).

It is well-defined. Given p ∈ Uα ∩ Uβ, we see

|sβ(p)|2hβ(p) = |gαβsα|2|gαβ|−2hα = |sα(p)|2hα(p).
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Now

hα(z0 : · · · : zn) = |zα|−2
(
|z0|2 + · · ·+ |zn|2

)
satisfies

hβ([z]) = |zβ|2|zα|−2hα([z]) = |gαβ|−2hα([z]).

So this defines a Hermitian metric on L. In particular, in the chart z 7→ (z0 : · · · : 1︸︷︷︸
αth position

: · · · : zn),

we have hα = 1 + |z|2 = 1 + zz.

Recall that, locally, the Chern connection associated to h is ∇ = h−1∂h and the corresponding

curvature is R∇ = ∂∇. Here we have

∇ = h−1∂h =
zdz

1 + |z|2
,

and the curvature is locally

R∇ = ∂∇ =
dz ∧ dz

(1 + |z|2)
2 = − dz ∧ dz

(1 + |z|2)
2 .

This shows that the tautological line bundle L→ CPn is not positive.

Remark 27. A metric on L = O(−1) induces metrics on O(−k) = O(−1)⊗k and O(k) = O(−k)∗ for

all k > 0. The corresponding Chern connection has a curvature on O(k):

R∇k = k · dz ∧ dz
(1 + |z|2)

2 ,

for all k ∈ Z. Thus O(k) is positive iff k is positive.

Note 6. For O(1), ωFS = i
2π
R∇1 is the “fundamental form” of the Fubini-Study metric.

Example 31. In general, let E → M be a Hermitian holomorphic line bundle with the Hermitian

metric h. For p ∈ M , let s be a nonzero local frame on a neighborhood U of p in M , then the

corresponding curvature is R∇ = ∂∂ log h̃, where h̃ = 〈s, s〉h. This is called the Chern curvature

of E. Indeed, in a holomorphic trivialization, connections compatible with the holomorphic structure

have the form ∇E = d + A by Proposition 12, where A is a (1, 0)-form. The Hermitian structure h is

given in the trivialization by a smooth real-valued positive function, which we continue to denote h.

Being compatible with the Hermitian metric h amounts to Ah+ hA = dh which, when combined with

the fact that A is of type (1, 0), gives A = ∂ log h. So R∇ = ∂A = ∂∂ log h.

Lemma 17. If M is a closed Kähler manifold and c ∈ H1,1(M,C) has a positive representation, then

it does not have a negative representation.

Proof. Suppose c has both a positive representation α1 and a negative representation α2. By definition,

ω = α1 − α2 is positive and closed, dω = 0. ω is then a Kähler form. We have shown in Lecture 5.4

that ωn = n!Vol(g), where g is the Riemannian metric of M . This implies that
∫
M
ωn > 0. However,

since ω is exact, ωn is exact. It follows from Stokes’ Theorem that
∫
M
ωn = 0. Contradiction!
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Lemma 18. If M is Kähler and E → M is a holomorphic line bundle, then E is positive iff there is

a Hermitian metric on E, denoted by hE , whose curvature of the corresponding Chern connection ∇
satisfies iR∇ > 0.

Proof. Since c1 =
[
i

2π
R∇
]
, it is clear that iR∇ > 0 implies the positivity of E. Conversely, suppose

E is positive, then c1(E) is positive. We can endow M with a Kähler structure (M, g, J, ω) such that

[ω] ∈ 2πc1(E). Let h̃E be any Hermitian metric on E and R̃∇ be the curvature of its Chern connection.

So R̃∇ = ∂∂ log h̃E(s, s), where s is any nonzero local section of E. In particular, ∂R̃∇ = 0. Now

[iR̃∇] = 2πc1(E) = [ω], so by ∂∂-lemma (Lemma 12), ω − iR̃∇ = i∂∂Φ for some Φ. Let h = h̃eΦ, then

the curvature of the Chern connection of h satisfies

iR∇ = i∂∂ log h = iR̃∇ +
(
ω − iR̃∇

)
= ω > 0.

Proposition 17. Let M be Kähler, E → M be a positive holomorphic line bundle endowed with hE

such that iλR∇ > 0 for some λ ∈ R. If (M, g, J, ω = iλR∇) is the resulting Kähler structure on M ,

then we have, for m = dimCM , (
∆∂E

−∆∂∇
)
|Ωp,q=

1

λ
(p+ q −m).

Exercise 20. Prove this Proposition. Hint: note that

∆∂E
−∆∂∇ = [iR∇ ∧End −,Λ].

The main result for this section is the following:

Theorem 40 (Kodaira Vanishing Theorem). Let M be a closed Kähler manifold and E → M be a

holomorphic line bundle. Denote m = dimCM , then

1. If E is positive, then Hp,q(M,E) = 0 for p+ q > m.

2. If E is negative (i.e. not positive), then Hp,q(M,E) = 0 for p+ q < m.

Proof. Serre duality (see Lecture 6.7) implies that case 1 and 2 are equivalent, since E being positive

is equivalent to say E∗ is negative. It suffices to prove case 2.

Pick a Hermitian metric hE on E such that the curvature of its Chern connection satisfies iR∇ < 0.

Pick the corresponding Kähler structure on M , i.e. (M, g, J, ω = −iR∇). If α is a ∆∂E
-harmonic form

with coefficients in E of type (p, q), then(
∆∂E

−∆∂∇
)
α = −∆∂∇α = −(p+ q −m)α.

Thus

(m− p− q)(α, α) = − (∆∂∇α, α)

= −
(
(∂∇(∂∇)∗ + (∂∇)∗∂∇)α, α

)
= −

[(
∂∇α, ∂∇α

)
+
(
(∂∇)∗α, (∂∇)∗α

)]
= −

[
‖∂∇α‖2 + ‖(∂∇)∗α‖2

]
≤ 0.
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Since (α, α) = ‖α‖2 ≥ 0, either m− p− q ≤ 0 or α = 0. However, Hp,q(M,E) ∼= ker ∆∂E
|Ωp,q(M,E), the

result follows.

Note 7. A differential form of type (p, q) with coefficients in E is the same as a differential form of

type (0, q) with coefficients in
∧p,0

T ∗M ⊗ E. Now for m = dimCM , we define

K :=

m,0∧
T ∗M.

Corollary 17. If M is closed and E → M is a holomorphic line bundle with K∗ ⊗ E being positive,

then H0,q(M,E) = 0 for any q > 1.

Proof. Observe that

H0,q(M,E) = H0,q(M,K ⊗K∗ ⊗ E) = Hm,q(M,K∗ ⊗ E).

By Kodaira Vanishing Theorem, this cohomology vanishes when m+ q > m, which is straightforward

since q > 1.

The Kodaira Vanishing Theorem is strong, but sometimes one might find a weaker version is more

practicable for use. Let (M, g, J, ω) be a Kähler manifold and (E, hE) be a Hermitian holomorphic line

bundle with Chern connection ∇E . For each p ∈ M , we can pick a local orthonormal frame of TM ,

say (x1, y1, · · · , xm.ym), with J(xj) = yj . Define zj = 1
2

(xj + iyj). So (z1, z1, · · · , zm.zm) is a local

orthonormal frame of TM ⊗ C.

Denote the dual frame of the chosen orthonormal frame by (θ1, θ1, · · · , θm, θm). Write

R∇ =
m∑
j=1

ajθj ∧ θj .

For a local section σ of E and a differential form α = θJ ∧ θJ′ ⊗ σ, we have

[
θj ∧ θj ∧ −,Λ

]
α =


α , if j ∈ J ∩ J ′

−α , if j /∈ J ∪ J ′

0 , otherwise

It follows that [
iR∇ ∧End −,Λ

]
=

 ∑
j∈J∩J′

aj −
∑

j /∈J∪J′
aj

α.
This refines the case [L,Λ]α = p+ q −m, which corresponds to aj = 1 for every j since

card(J ∩ J ′)− (m− card(J ∪ J ′)) = card(J ∩ J ′) + card(J ∪ J ′)−m = card(J) + card(J ′)−m.

Theorem 41 (Kodaira Vanishing Theorem, Weak Version). Let (M, g, J, ω) be a closed Kähler man-

ifold and E → M be a holomorphic line bundle with a Hermitian metric hE and its corresponding

Chern connection R∇. For every ε > 0 and vector fields V,W , define κ : M → R by∣∣R∇(V,W ) + iκω(V,W )
∣∣ < ε|V ||W |,
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then Hp,q(M,E) = 0 for all p, q satisfying

ε (m− |p− q|) < κ(p+ q −m).

Proof. Exercise.

7.2 Kodaira Embedding Theorem

First we restate our main theorem to a form we can get a hand on:

Theorem 42 (Kodaira Embedding Theorem). If M is a closed (or compact) Kähler manifold and

L → M is a holomorphic line bundle over M with Chern connection ∇ whose curvature equals −iω,

then M is projective.

In fact, there is an embedding ψ : M → CPN for some N such that ψ∗ωFS = `ω for some `.

Before we start to tackle the problem, we first introduce an useful tool.

Theorem 43 (Chow). Every closed analytic subset of CPn is an algebraic set.

We will not prove the theorem in this course.

Remark 28. The hypothesis is equivalent to saying that M is a Kähler manifold and [ω] ∈ H1,1(M,C)

is in the image of H2(M,Z) (after multiplying by 1
2π

). This comes from the long exact sequence in the

sheaf cohomology

· · · → H1(M,O×)→ H2(M,Z)→ H2(M,O)︸ ︷︷ ︸
equal to H0,2(M)

→ · · · .

This tells us that
[
ω
2π

]
is in the image of H1(M,O×). This classifies holomorphic line bundles.

Definition 58. We say that a Kähler manifold M is Hodge if
[
ω
2π

]
is integral; that is, in the image

of H2(M,Z).

So Kodaira embedding is equivalent to that M is Hodge iff it is a projective algebraic variety.

Remark 29. We know that VN = H0,0(M,L⊗N ) is a finite-dimensional complex vector space. The

proof of Kodaira embedding theorem proceed as follows:

Step 1. For N � 0, L⊗N is basepoint-free. That is, for any p ∈ M , there is a global holomorphic

section of L⊗N that does not vanish at p. Given this, we can define a map M
eN−−→ P(VN ),

where P(VN ) is the projective space of VN . Namely, choose a basis s1, · · · , s` of VN and set

eN (p) = [s1(p) : · · · : s`(p)] ∈ P(VN ). Since L⊗N has rank 1, this map is well-defined and

independent of the choice of basis.

Step 2. Show that eN is injective for N � 0 by showing that for any x, y ∈ M , there is a global

holomorphic section of L⊗N , denoted by s, such that s(x) 6= s(y).

Step 3. Show that eN has injective derivative for N � 0, i.e. global holomorphic sections of L⊗N separate

tangent vectors.
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The classical proof establishes these steps by using the Kodaira vanishing theorem. However, we

will discuss an approach of Donaldson who proved something similar for symplectic manifolds.

Let (M, g, J, ω) be a symplectic manifold, where J is a compatible almost complex structure so

that ω(J(u), J(v)) = ω(u, v), and g(u, v) = ω(u, J(v)) is a Riemannian metric. Let L → M be a

complex line bundle with covariant derivative ∇ whose curvature is −iω. First, we will consider the

trivial line bundle ξ → Cn. Here the standard symplectic form is ω0 = i
2

∑
dzj ∧ dzj , which is exact,

i.e. ω0 = idA0 for A0 = 1
4

∑
zjdzj − zjdzj . Let ∇ξ be the connection d + A0. The curvature of ∇ξ is

R∇ = dA0 +A0∧A0 = dA0 = −iω0. Since this has type (1, 1), we see that −∇ξ induced a holomorphic

structure on ξ. The ∂
ξ

operator is

∂
ξ
(f) = ∂f +A0,1

0 f.

Consider the section σ(z) = exp
(
− 1

4
|z|2
)

= exp
(
− 1

4
z · z

)
. This satisfies

∂σ =
∑(

−1

4
zj exp

(
−1

4
|z|2
))

dzj = −A0,1
0 σ,

∂σ =
∑(

−1

4
zj exp

(
−1

4
|z|2
))

dzj = A1,0
0 σ.

Hence ∂
ξ
σ = 0 and ∂∇σ = 2A1,0

0 σ. In particular we have a holomorphic section of ξ with exponential

decay.

For the line bundle ξ⊗k → Cn, the connection ∇ξ induced a connection ∇⊗k = d+A
(k)
0 = d+ kA0

with the curvature −ikω0, and the section σk(z) = exp
(
− 1

4
|z|2
)

is holomorphic. We want to think of

this as exp
(
− 1

4
|k1/2z|2

)
, and as “taking the kth tensor power of ξ locally has the same effect as scaling

the coordinates by k−1/2”, or “working with ξ → Bk−1/2(0) is like working with ξ⊗k → B1(0)”.

On an arbitrary symplectic manifold, it is possible to choose local coordinates around any point

p ∈ U such that ω |U= ω0 (known as the Darboux coordinates). However, in these coordinates

J = J0 +O(|z|). Intuitively, the closer we are to the origin of the coordinate chart, the more (M, g, J, ω)

looks like (Cn, g0, J0, ω0).

Example 32. Closed oriented surfaces are Hodge manifolds. To see this, first note that these surfaces

are Kähler manifold. H2(M,Z) ∼= Z is a lattice inside H2(M,R) ∼= R. So by scaling g if needed, we

can rearrange for
[
ω
2π

]
to be in the image of H2(M,Z). Obviously, the same argument works for any

Kähler manifold with second Betti number b2 = 1.

Definition 59. Let (M, g, J, ω) be a symplectic manifold, and L→M be a complex line bundle with

connection ∇. A sequence of sections sk ∈ C∞(M,L⊗k) is:

1. uniformly bounded, if for all r ∈ N, there exists a Cr such that supp∈M |∇rsk|g ≤ Crkr/2;

2. approximately holomorphic, if for all r ∈ N, there exists a Cr such that supp∈M |∇r−1∂sk|g ≤
Crk

(r−1)/2;
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3. uniformly concentrated at p ∈M , if for all r ∈ N, there exists a polynomial P and a constant

λ > 0 such that for every q ∈M ,

sup
0≤t≤r

|k−t/2∇tsk(q)| ≤ P
(√

kd(p, q)
)

exp
(
−λkd(p, q)2

)
.

Proposition 18. Let (M, g, J, ω) be a closed symplectic manifold and L→M be a C-line bundle with

connection ∇ whose curvature is R∇ = −iω.

1. For each p ∈ M , there exists a sequence of sections sk,p ∈ C∞(M,L⊗k) which is uniformly

bounded, approximately holomorphic and uniformly concentrated at p, satisfying |sk,p| ≥ c > 0

over Bk−1/2(p).

2. If in addition, ω is the symplectic form of a Kähler structure on M , then there exists a sequence

s̃k,p of holomorphic sections such that

sup
(
kr/2|∇rsk,p −∇s̃k,p|

)
≤ Ce−λk/3.

Proof. Assuming that (M, g, J, ω) is a Kähler manifold. Fix p ∈M and choose holomorphic coordinates

centered at p such that gjk = δjk +O(|z|).

1. Let u be a local holomorphic section of L with u(p) = 1. We have −iω = R∇ = ∂∂ log |u|2 near

p. Near p,

log |u|2 =
∑
j

ajzj + ajzj +
∑

bjkzjzk + cjkzjzk + cjkzjzk +O
(
|z|3
)
.

Replacing u with exp (−
∑
ajzj −

∑
cjkzjzk)u preserves holomorphicity and satisfies log |u|2 =∑

bjkzkzk + O(|z|3). Then ∂∂ log |u|2 = −iω, implying bjk = − 1
2

for any j, k (metric tensor on

TpM). So log |u|2 = − 1
2
|z|2g +O(|z|3). Using this section, we obtain local holomorphic sections of

L⊗k satisfying |u(k)| = exp
(
−k

4
|z|2 + kO(|z|3)

)
. Estimating the growth of derivatives of log |u|2

gives us uniform concentratedness as long as |z| � 1, which is sufficient since we care about u(k)

in a ball of radius k−1/3 and 0 outside the ball of radius 2k−1/3.

Since the cut-off occurs in the region where |z| ∼ k−1/3, we have |u(k)| ∼ exp
(
−k |z|

2

4

)
∼

exp
(
−k1/3

)
. Thus we get

sup |∂sk,p| = sup |u(k)∂xk| ≤ O
(
exp(−λk1/3)

)
,

since ∂xk ≡ 0 except for |z| ∼ k−1/3 and |∂xk| ≤ O(k1/3).

2. Before we prove the second part, we will need the following lemma:

Lemma 19. Given σ ∈ C∞(M,L⊗k), there exists ξ ∈ C∞(M,L⊗k) such that ‖ξ‖L2 ≤ c√
k
‖∂σ‖L2 ,

and σ + ξ is holomorphic.
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Apply the lemma to sk,p. Noticing that these are each supported in a ball of volume tending to

k−2n/3, we can find ξk,p satisfying

‖ξk,p‖L2 ≤ c√
k
‖∂sk,p‖L2 ≤ O

(
k−2n/3−1/2 exp

(
−λk−1/3

))
.

Through Cauchy’s formula for holomorphic functions ans these L2-estimates, one can get pointwise

estimates. At each point inside Bk−1/3(p), x 6= 1, so sk,p is holomorphic there, so is ξk,p. ‖ξk,p‖Cr
is controlled by ‖ξk,p‖ ∼ exp(−λk1/3). Finally, outside this ball we can use the same argument to

see that ‖sk,p + ξk,p‖ is controlled by exp(−λk1/3).

It remains to prove Lemma 19.

Proof. Start by recalling that for any holomorphic line bundle E → M with Chern connection ∇, we

have ∆∂E
− 2∆∂∇ =

[
iR∇ ∧End −,Λ

]
on Ω0,q(M,E) (Corollary 14). When working with Ω0,q(M,E),

we can use E ∼= K ⊗K∗ ⊗ E, where K = Ωn,0(M), to get an isomorphism

ϕ : Ω0,q(M,E)
∼=−→ Ωn,q(M,K∗ ⊗ E).

Since Ẽ := K∗ ⊗ E is also a holomorphic line bundle, we have

∆∂Ẽ
− 2∆∂∇̃ =

[
iR∇̃ ∧End −,Λ

]
. (∗)

But if we only look at the image of ϕ, then we only care about this identity on forms of type (n, ∗).
One can show that

ϕ−1∆∂Ẽ
ϕ = ∆∂E

,

ϕ−1∆∂∇̃ϕ ≥ 0,

ϕ−1
[
iR∇̃ ∧End −,Λ

]
ϕ =

∑
R∇̃ 〈ej , ek〉 ext(ek)int(ej) =: H∇̃,

where {ej} is a local orthonormal frame of T 1,0M and {ej} is the dual frame. Conjugating (∗) by ϕ,

we conclude that for any α ∈ Ω0,q(M,E), we have〈
∆∂E

α, α
〉

= 2
〈
ϕ−1∆∂∇̃ϕα, α

〉
+
〈
H∇̃α, α

〉
≥
〈
H∇̃α, α

〉
.

Note that id E = L⊗k, then this says that〈
∆∂E

α, α
〉
≥
〈
H∇Lα, α

〉
+
〈
H∇K∗α, α

〉
.

So if M is closed (or compact) and L is positive, we conclude that there exists some C0, C1 > 0, such

that 〈
∆∂k

α, α
〉
≥ (kC0 − C1)‖α‖2L2 ,

for any α ∈ Ω0,q(M,L⊗k) and q > 0. For k � 0, we see that ∆∂k
is invertible on its domain in L2, and

its inverse Gk has L2-norm O(1/k). Finally, given s ∈ C∞(M,L⊗k), set ξ = −∂∗kGk∂ks. Then
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1. s+ ξ is holomorphic, since

∂k(s+ ξ) = ∂ks− ∂k∂
∗
kGk∂ks

= ∂ks−
[(

∆∂k
− ∂∗k∂k

)
Gk∂ks

]
= ∂

∗
k∂kGk∂ks ∈ im ∂k ∩ im ∂

∗
k = {0}.

2. The L2-norm of ξ is given by

‖ξ‖2L2 =
〈
∂
∗
kGk∂ks, ∂

∗
kGk∂ks

〉
=
〈
∂k∂

∗
kGk∂ks,Gk∂ks

〉
=
〈
∂s,Gk∂ks

〉
≤‖Gk‖ · ‖∂ks‖ ≤

C

k
‖∂ks‖2L2 .

Now we finish the proof of the lemma.

Remark 30. Using the sections s̃k,p, one can prove Kodaire embedding following the steps in Remark

29.
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8 Overview on L2-Hodge Theory

This chapter is subject to introduce the Hodge decomposition for the L2-differential forms. Note

that differential operators are not a priori definition on L2, so the first thing is to describe how to make

a such definition. This leads us to the conception of Sobolev spaces.

8.1 Sobolev Spaces

The key of Sobolev spaces is the “weak derivatives” of a function. We present the formal definition

to this terminology.

Definition 60. If f ∈ C1(R,C), then for any ϕ ∈ C∞c (R), we have∫
ϕ(ξ)f ′(ξ)dξ = −

∫
ϕ′(ξ)f(ξ)dξ.

So we can identify f ′(ξ) with the functional Λ : C∞c (R) → C, sending ϕ to −
∫
ϕ′(ξ)f(ξ)dξ. We call

this functional Λ the weak derivative of f .

The advantage of using this functional expression is that it makes sense for f which is not differ-

entiable in the common sense.

Remark 31. If the functional Λ extends to all ϕ ∈ L2, then by Riesz Representation, there exists

h ∈ L2 such that

Λ(ϕ) = 〈ϕ, h〉 =

∫
ϕ(ξ)h(ξ)dξ.

That is, for all ϕ ∈ C∞c , there exists h ∈ L2 such that

−
∫
ϕ′(ξ)h(ξ)dξ =

∫
ϕ(ξ)h(ξ)dξ.

In this case, we identify Λ and h, and call h the weak derivative of f .

Example 33. Consider the function f : R → R, f(x) = |x|. If ϕ ∈ C∞c (R), then the weak derivative

of f applied to ϕ is

−
∫
ϕ′(x)f(x)dx = −

∫ 0

−∞
ϕ′(x) · (−x)dx−

∫ ∞
0

ϕ′(x) · xdx

= −
∫ 0

∞
ϕ(x)dx+

∫ ∞
0

ϕ(x)dx

=

∫ ∞
−∞

ϕ(x) · sign(x)dx,

where

sign(x) =

1 , if x > 0

−1 , if x < 0

We can keep going and find the weak derivative of sign(x) is the functional Λ : C∞c (R) → C, sending

ϕ to −
∫
ϕ′(x) · sign(x)dx. Now

Λ(ϕ) =

∫ 0

−∞
ϕ′(x)dx−

∫ ∞
0

ϕ′(x)dx = 2ϕ(0) =: 2

∫ ∞
∞

ϕ(x)δ0(x)dx,
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where δ0(x) is a formal definition, called the Dirac-δ function. We need to point out that this

definition is not an accurate description - δ0 is a functional rather than a function. For reasons why it

got a name “function”, readers are encouraged to look in Wikipedia to find some historical anecdotes.

Definition 61. The functionals on C∞c (R) are said to be distributions.

Definition 62. If u ∈ L1
loc(Rn), i.e. u is a locally integrable function, and α be a multi-index, we say

that v ∈ L1
loc(Rn) is the weak (or distributive) αth partial derivative of u if, for all ϕ ∈ C∞c (Rn),

we have ∫
Rn
Dαϕu = (−1)|α|

∫
Rn
ϕv.

Definition 63. The kth Sobolev space, for k ∈ N, is

Hk(Rn) = {f ∈ L2(Rn) : Dαf ∈ L2(Rn) for all multi-index α, |α| ≤ k}. (∗)

Using the Fourier transform

F(f)(ξ) =
1

(2π)n/2

∫
Rn
f(x)e−ix·ξdx,

an equivalent definition to (∗) is

Hk(Rn) = {f ∈ L2(Rn) : p(ξ)F(f)(ξ) ∈ L2(Rn) for all polynomial p,deg p ≤ k}. (#)

Proposition 19. Sobolev spaces are Hilbert spaces with respect to

〈f, g〉Hk =
∑
|α|≤k

(Dαf,Dαg) ,

for all f, g ∈ Hk(Rn). An equivalent Hilbert space structure is given by

〈f, g〉Hk =

∫
Rn
F(f)(ξ)F(g)(ξ)

(
1 + |ξ|2

)k/2
.

Proof. Exercise.

Remark 32. The inner product via integrals (second Hilbert space structure in the previous Propo-

sition) makes sense for k ∈ R. One can prove that the completion of C∞c (Rn) with respect to the

resulting norm is Hk(Rn) for k ∈ R.

If M is a compact manifold and E →M is a vector bundle, we choose a Riemannian metric on M

and a Hermitian metric on E. One can use these to define an L2-inner product on sections of E. The

topological space L2(M,E) is independent of these choices. We can now define the Sobolev spaces

on (M,E), denoted by Hs(M,E), in the two equivalent ways:

1. Pick a finite cover of charts trivializing E with subordinate partition of unity {xj} and declare

u ∈ Hk(M,E) if xju ∈ Hk(Rn, Cr) for any j. The norm is defined by ‖u‖2Hk =
∑
‖xju‖2Hk .

2. Pick a metric connection ∇E and take ‖u‖2Hk =
∑

j

∫
‖∇jEu‖2dVg for k ∈ N.

So it is clear that Hk(M,E) ⊂ Hk′(M,E) for k ≥ k′.
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Theorem 44 (Rellich–Kondrachov). If M is compact, then the inclusion Hk(M,E) ↪→ Hk′(M,E) is

a compact operator whenever k > k′.

Recall the Fourier inversion says that if

F∗(u)(x) =
1

(2π)n/2

∫
u(ξ)eixξdξ,

then F∗ is the inverse of F (and its adjoint, since F is self-adjoint) as maps between L2(Rn)→ L2(Rn)

or S(Rn)→ S(Rn). Here S(Rn) is the is the Schwartz space, that is,

S(Rn) = {f ∈ C∞(Rn) : sup
x∈Rn

|xαDβf(x)| <∞, α, β ∈ Nn},

where xα = xα1
1 · · ·xαnn and Dβ = ∂xβ1

1 · · · ∂xβnn , for x = (x1, x2, · · · , xn) ∈ Rn. Let S ′(Rn) be the dual

space of S(Rn). Elements in S ′(Rn) are known as the tempered distributions.

For any two functions f, g ∈ S(Rn), the L2-pairing satisfies 〈F(f), h〉 = 〈f,F∗(h)〉. So if Λ is a

tempered distribution, we define F(Λ) to be the tempered distribution F(Λ)(f) = Λ(F∗(f)). Thus if

Λ is given by Λ(h) = 〈h, f〉, then

F(Λ)(h) = Λ(F∗(h)) = 〈F∗(h), f〉 = 〈h,F(f)〉 .

Similarly extending F∗ to tempered distributions, we see that F∗F = id = FF∗ holds on distributions.

Remark 33. If s > n
2
, then Hs(Rn) ⊂ C0(Rn) ∩ L∞(Rn). This is because for any f ∈ Hs(Rn),

|f(x)| =
∣∣∣∣ 1

(2π)n/2

∫
F(f)(ξ)eixξdξ

∣∣∣∣
≤ 1

(2π)n/2

∫
|F(f)(ξ)| dξ

≤ 1

(2π)n/2

∫
|F(f)(ξ)|2

(
1 + |ξ|2

)s
dξ

∫ (
1 + |ξ|2

)−s
dξ,

where
∫

(1 + |ξ|2)
−s
dξ is finite precisely when s > n

2
. Similarly, if s > n

2
+ k for k ∈ N, then Hs(Rn) ⊂

Ck(Rn). In particular, ⋂
s

Hs(Rn) ⊂ C∞(Rn).

8.2 Pseudo-differential Operators

Suppose P ∈ Diff`(Rn), with

Pf(ξ) =
∑
|α|≤`

aα(ξ)D`f.

We use the convenient notation Dx = 1
2
∂x (similar for others) as we end up with fewer signs when

we integrate by parts or intertwine with Fourier transform. Let p(x, y) =
∑
|α|≤` aα(x)yα and σ(P ) =∑

|α|=` aα(x)yα. We can write P as an iterated integral

Pf(x) =
1

(2π)n/2

∫
eixyp(x, y)F(f)(y)dy

=
1

(2π)n

∫
ei(x−z)yp(x, y)f(z)dzdy.
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From which it is clear that P defines a continuous map Hk(Rn) → Hk−`(Rn) for any k. Similarly on

a manifold, P ∈ Diff`(M ;E,F ) defines map Hk(M,E)→ Hk−`(M,F ).

Remark 34. Alternatively, on Rn, we can express

Pf(x) =F∗F(Pf) = F∗
 1

(2π)n/2

∫
e−izy

∑
|α|≤`

aα(z)Dαf(z)dz


=F∗

 1

(2π)n/2

∫
e−izy

∑
|α|≤`

bα(z)yαf(z)dz


=

1

(2π)n

∫
ei(x−z)yp′(z, y)f(z)dzdy.

In these expression, p(x, y), p′(z, y) are smooth in x, y, z, especially are polynomials of degree ` in

y.

Definition 64. An amplitude of order ` is a function a(x, y, z) which is smooth in all variables and

satisfying that, for every multi-indices α, β, γ, there exists constant Cα,β,γ such that

sup |Dα
xD

β
yD

γ
za(x, y, z)| ≤ Cα,β,γ (1 + |z|)`−|γ| .

Even better, we will demand that, at the diagonal x = y, a has an asymptotic expression in z, namely

a(x, y, z) ∼
∞∑
j=0

a(`−j)(x, z),

when |z| → ∞ at x = y, and a(`−j)(x, z) is homogeneous in z of degree `−j. The leading term a(`)(x, z)

is known as the principal symbol.

Definition 65. An operator of the form

Af(x) =
1

(2π)n

∫
ei(x−z)ya(x, z, y)f(z)dzdy

is called a pseudo-differential operator of order `, where a(x, z, y) is an amplitude of order `.

Write Ψ`(Rn) for the space of pseudo-differential operators of order `. If A ∈ Ψ`(Rn), then A

defines a continuous map

Hk(Rn)→ Hk−`(Rn)

for all k. Denote Ψ−∞ =
⋂
` Ψ`. These are precisely the smoothing operators, i.e. operators of the

form

Af(x) =

∫
κA(x, y)f(y)dy,

where κA ∈ C∞(Rn × Rn). This defines a continuous map Hk(Rn)→
⋂
k′ H

k′(Rn) = C∞(Rn).

Remark 35. If M is a closed manifold with E,F → M being the vector bundles over M , then an

operator A : C∞(M,E)→ C∞(M,F ) is in Ψ`(M ;E,F ), if for some atlas and subordinate partition of

unity {xj}, we have xjAxj ∈ Ψ`(Rn)⊗ Hom(E,F ) for any j, with xjAxk being a smoothing operator

whenever j 6= k. The principal symbol of A ∈ Ψ`(M ;E,F ) is well-defined as a section of Hom(E,F )

pulled back to T ∗M .
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Suppose A ∈ Ψ`(Rn) and B ∈ Ψ`′(Rn), where

Af(x) =

∫
eixya(x, y)F(f)(y)dy,

F(Bf)(y) =

∫
e−izyb(z, y)f(z)dz.

Then the composition of A and B is defined by

(A ◦B)f(x) =

∫
ei(x−z)ya(x, y)b(z, y)f(z)dzdy,

where a(x, y)b(z, y) is an amplitude of order `+ `′.

Proposition 20. The principal symbol is a homomorphism and gets involved in a short exact sequence

0→ Ψ`−1(M ;E,F )→ Ψ`(M ;E,F )
σ`−→ C∞(T ∗M ; Hom(E,F ))→ 0.

Proof. See Proposition 6.3 of [8].

Remark 36. Pseudo-differentials are “asymptotically complete”. That is, if Aj ∈ Ψ`j (M ;E,F ) and

`j is decreasing with `j → −∞, then there exists Ã ∈ Ψ`1(M ;E,F ) with the property that

Ã−
N∑
j=1

Aj ∈ Ψ`N+1(M ;E,F ),

which we denote Ã ∼
∑

j≥1Aj .

Definition 66. A ∈ Ψ`(M ;E,F ) is said to be elliptic if σ`(A)(x) is invertible for all x 6= 0.

Theorem 45 (Hadamard). If A ∈ Ψ`(M ;E,F ) is elliptic, then there is a pesudo-differential B ∈
Ψ−`(M ;F,E) such that AB − id ∈ Ψ−∞(M,F ) and BA− id ∈ Ψ−∞(M,E).

Proof. Let B0 ∈ Ψ−`(M ;F,E) such that σ−`(B) = σ`(A)−1. Then we have AB0 ∈ Ψ0(M,F ), satisfying

σ0(AB0) = σ`(A)σ`(B0) = id = σ0( id).

Thus AB0 − id ∈ Ψ−1(M,F ). Suppose inductively that we have found B0, B1, · · · , BN−1 with Bj ∈
Ψ−`−j(M ;F,E) such that RN = A (

∑
Bj)− id ∈ Ψ−N (M,F ). Pick BN ∈ Ψ−`−N (M ;F,E) such that

σ`−N (BN ) = −σ`(A)−1σ−N (RN ) to complete the inductive step. Let B be the asymptotic sum of {Bj},
i.e. B ∼

∑
j≥0Bj . We claim that AB − id ∈ Ψ−∞(M,F ), or equivalently AB − id ∈ Ψ−k(M,F ) for

all k > 0.

Indeed, B −
∑k−1

j=0 Bj ∈ Ψ−`−k(M ;F,E), so A
(
B −

∑k−1
j=0 Bj

)
∈ Ψ−k(M,F ). On the other hand,

A
(∑k−1

j=0 Bj

)
− id ∈ Ψ−k(M,F ), so A

(
B −

∑k−1
j=0 Bj

)
∈ Ψ−k(M,F )+A

(∑k−1
j=0 Bj

)
− id ∈ Ψ−k(M,F ).

Thus R = AB − id ∈ Ψ−∞(M,F ).

Similarly, we can construct B̃ ∈ Ψ−`(M ;F,E) such that R̃ = B̃A− id ∈ Ψ−∞(M,E). But then

B̃AB = B̃(R+ id) = B̃R+ B̃

= (R̃+ id)B = R̃B +B.
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This implies that

B − B̃ = B̃R− R̃B ∈ Ψ−∞(M ;F,E).

Hence

BA− id = (B − B̃)A+ B̃A− id ∈ Ψ−∞(M ;E).

8.3 Elliptic Estimate

Let (M, g) be a closed Riemannian manifold, E,F →M be vector bundles with Hermitian metric,

and r > 0.

Theorem 46 (Elliptic Estimate). Let A ∈ Ψr(M ;E,F ) be elliptic. For each s ∈ R, there exists C > 0

such that, if v ∈ Ht(M,E) for some t and Av ∈ Hs(M,F ), then v ∈ Hs+r(M,E) and

‖v‖Hs+r ≤ C (‖Av‖Hs + ‖v‖Ht)

Proof. Let B ∈ Ψ−r(M ;F,E) be given through Hadamard’s Theorem (Theorem 45), that is, R =

BA− id ∈ Ψ−∞(M,E). Then

v = BAv −Rv ∈ Hs+r(M,E),

since BAv ∈ Hs+r(M,E) and Rv ∈ C∞(M,E). Also, B : Hs(M,F )→ Hs+r(M,E) is continuous, so

‖BAv‖Hs+r ≤ C‖Av‖Hs ,

and R : Ht(M,F )→ Hs+r(M,E) is continuous, so

‖Rv‖Hs+r ≤ C‖v‖Ht .

Remark 37. One can prove the elliptic estimate in a way without anything related to pseudo-

differentials.

Namely, consider something like id + ∆ ∈ Diff2(M). At a given point p ∈ M , we can choose

coordinates so that the metric, at p, is the Euclidean metric.

Step 1. Freezing coefficients at this point p, we have id + ∆Rn ∈ Diff2(Rn). This operator satisfies

( id + ∆Rn)(f) = F∗ ((1 + |ξ|2)F(f)). So the inverse is given by

( id + ∆Rn)−1(f) = F∗
(
(1 + |ξ|2)−1F(f)

)
.

This is obviously well-behaved as a map between Sobolev spaces. For v ∈ H2(Rn), we have

‖v‖H2 = ‖( id + ∆)−1( id + ∆)v‖H2 ≤ C‖( id + ∆)v‖L2 .
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Step 2. Back on M . If we localize at a coordinate chart instead of a point, then

( id + ∆g)v =
[

id + ∆gp + (∆g −∆gp)
]
v.

So v = ( id + ∆gp)
−1
[

id + ∆gp + (∆g −∆gp)
]
v, and

‖v‖H2 ≤ C‖
(

id + ∆gp

)
v‖L2 + C ′‖v‖L2 .

The elliptic estimate on M is obtained by patching these together. Now “gluing together” the inverse

of id + ∆gp for all p ∈M , we get a pseudo-differential parametrix for id + ∆g. So actually this method

is not too far from the pseudo-differential approach.

Corollary 18. If M is closed and A ∈ Ψr(M ;E,F ) is elliptic, then

1. ker(A : Hs+r(M,E)→ Hs(M,F )) ⊂ C∞(M,E) is finite dimensional and independent of s.

2. For any s ∈ R, A(Hs+r(M,E)) is a closed subspace of Hs(M,F ).

Proof. 1. If Au ∈ C∞(M,F ) = ∩tHt(M,F ), then by Theorem 46, u ∈ ∩kHt+r(M,F ) = C∞(M,E).

The elliptic estimate, applied to elements of kerA, says that there exists C > 0 such that

‖u‖Hs+r ≤ C‖u‖Hs . Thus the identity map is continuous as a map id : (kerA, ‖ · ‖Hs+r) →
(kerA, ‖ · ‖Hs). Since the inclusion Hs+r(M,E) ↪→ Hs(M,E) is a compact operator, any se-

quence in kerA bounded in Hs+rM,E has a subsequence that converges in Hs, hence in Hs+r.

Let {ej} be a basis of kerA that is orthonormal in Hs+r. If {ej} were infinite, it would have a

convergent subsequence. However, this is not the case since ‖ej − ek‖2 = (ej , ej) + (ek, ek) = 2

for any j, k.

2. Let (uj) be a sequence in Hs+r(M,E) such that Auj = vj converges to v in Hs(M,F ). We want

to show v ∈ imA.

Assuming that uj ⊥ kerA, we will show that they have a convergent subsequence. First assume

that (uj) has a subsequence (ujk) that is bounded in Hs+r(M,E). Then (ujk) converges in

Hs(M,E). By the elliptic estimate ‖uj‖Hs+r ≤ C (‖Auj‖Hs + ‖uj‖Hs) for all j, the subsequence

(ujk) is convergent in Hs+r(M,E), say ujk → u∞. Then the continuity of A implies that Au∞ = v.

Otherwise, assume that ‖uj‖Hs+r → ∞. Now let wj = uj
‖uj‖Hs+r

. So (wj) ⊂ Hs+r(M,E) and

Awj = Auj
‖uj‖Hs+r

→ 0 in Hs(M,E). We apply the proceeding argument since ‖wj‖Hs+r = 1,

and conclude that (wj) has a subsequence that converges in Hs+r, say (wjk) → w∞. However,

Aw∞ = 0 implies w ∈ (kerA)⊥, so w∞ = 0. On the other hand, ‖w∞‖Hs+r = 1, contradiction!

Thus (vj) must have a bounded subsequence.
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