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1 Introduction

Let (M,ω) be a compact symplectic manifold, and let K be a compact Lie group with a

Hamiltonian action on M and moment map µ : M → k∗. Fix a K-invariant inner product 〈·, ·〉
on k to identify k ∼= k∗.

SupposeK acts freely on µ−1(0), then the Marsden-Weinstein reduction M�K := µ−1(0)/K

is a symplectic manifold that inherits the symplectic form on M .

What is the topology of this symplectic quotient? We may, for instance, try to compute

the rational cohomology H∗(M � K,Q), which turns out to isomorphic to the equivariant

cohomology

H∗K(µ−1(0),Q).

A key observation in Kirwan’s thesis [13] is that the submanifold µ−1(0) can also be seen as the

set of points on which the smooth function

f : M → R, f(x) = ||µ(x)||2

takes the minimum value 0. Therefore, f can be seen as a generalized Morse function, which,

just as in classical Morse theory, provides a version of “smooth stratification” of the manifold

M . Utilizing the stratification and adopting techniques from Morse theory, [13] arrives at the

following result:

The map

H∗K(M)→ H∗K(µ−1(0)) ∼= H∗(M �K),

yielded by the inclusion µ−1(0)→M , is surjective.

In showing this, inductive formulas that compute the Poincaré polynomial of M �K from

the Poincaré polynomials of certain critical point sets of f = ||µ||2 are also derived.

The following aims to provide a brief summary of the theory, with an emphasis on establishing

the surjectivity of the restriction map rather than computational aspects. This is followed by

an overview of its infinite-dimensional analogue - the Yang-Mills theory over Riemann surfaces

[1].

2 Equivariant cohomology

Explicitly describing M �K as a topological space might not be so straightforward, and a better

way is to work with M itself and use the equivariant cohomology H∗K .

Definition 1. Let G be a group. A principal G-bundle EG→ BG is called a universal bundle

if the total space EG is contractible.

Remark 1. Universal bundles exist and satisfy the following universal property ([3], §VI.1):

(i) given any other bundle E′ → B′, there exists a base change h : B′ → BG such that the

pullback h∗EG ∼= E′ as bundles over B′;

(ii) the above base change h : B′ → BG is unique up to homotopy.

Universal bundles can thus be seen as some “large” spaces that can ‘absorb’ the K-action

on M and be utilized to define the equivariant cohomology:
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Definition 2. Let K be a compact Lie group that acts on a manifold M .

(i) The homotopy quotient EK ×K M is defined as the quotient space of EK ×M under

equivalence relation (e · g−1, x) ∼ (e, g · x), where x ∈M, e ∈ EK, g ∈ K;

(ii) The equivariant cohomology H∗K(X) is defined as H∗(EK ×K X).

Remark 2. Other models, such as the Cartan model and Weil model, are also available and more

suitable for working with equivairant differential forms. Detailed exposition on these models

can be found in [9].

Proposition 1. M �K is weakly homotopy equivalent to EK ×K µ−1(0). In particular,

H∗K(µ−1(0),Q) = H∗(EK ×G µ−1(0),Q) ∼= H∗(M �K).

Proof. Because the K-action on M is free, µ−1(0) → µ−1(0)/K is a principal K-bundle, and

EK ×G µ−1(0)→ µ−1(0)/K : [(e, x)] 7→ [x]) is fibre bundle with fibre EK.

This induces an exact sequence in homotopy groups:

· · · → πq(EG)→ πq(EG×G µ−1(0))→ πq(µ
−1(0))→ πq−1(EG)→ · · ·

Because EG is contractible, there are isomorphisms

πq(EG×G µ−1(0)) ∼= πq(µ
−1(0)),

which induce isomorphisms in cohomology.

Example ([1], §1) Let S1 act on S2 by rotating about the z-axis. A universal bundle ES1 →
BS1 may be constructed by taking the union of Hopf fibrations S2l+1 → CPl across l ≥ 1 under

the inclusions S2l+1 ⊂ S2l+3 and CPl ⊂ CPl+1 that are induced by R2l+2 → R2l+4. Because

πk(S
2l+1) = 0 for k < 2l + 1, the union ES1 =

⋃
l≥1 S

2l+1 will be weakly contractible, hence

contractible.

The homotopy quotient S2 ×S1 ES1 is then a S2-bundle over the classifying space BS1 =⋃
l≥1 CP

l, hence a trivial bundle. By Künneth formula,

H∗S1(S2) = H∗(S2 ×S1 ES1) ∼= H∗(S2)⊗H∗(BS1).

3 Constructing the stratification

3.1 The indices

Our stratification will be indexed by elements in the Lie algebra k. Hence we shall first investigate

the action generated by such single elements. This subsection follows §3-4 of [13].

Let T ⊂ K be a maximal torus, let β ∈ t ⊂ k, and let Tβ := exp(tβ) ⊂ K be the one-

parameter subgroup generated by β. Both T and Tβ have Hamiltonian actions on M , and the

moment maps are given by the composition with restriction maps M
µ→ k∗ → t∗ → Lie(Tβ)∗.

Let µT denote the moment map for the T -action.

Let µβ : M → R be defined as x 7→ 〈µ(x), β〉.

Lemma 1. x ∈M is fixed by Tβ if and only if it is a critical point of µβ.
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Proof. Let Xβ denote the vector field in M generated by β. By definition of the moment map,

ιXβω = d〈µ(x), β〉 = dµβ. Thus, dµβ = 0 ⇔ ιXβω = 0 ⇔ x is fixed by the flow exp(tβ), or

equivalently the Tβ-action.

Furthermore, critical points of f (which we denote as Crit(f)) can be described by their

restrctions to one-parameter subgroups:

Lemma 2. Let x ∈M,µ(x) = β ∈ t. The following are equivalent:

(i) Xβ|x = 0; (ii) x ∈ Crit(f); (iii) x ∈ Crit(||µT ||2); (iv) x ∈ Crit(µβ).

Proof. (i) ⇔ (ii),(iii): Throughout the following, we identify Lie algebras with their duals via

the inner product. Let {e1, . . . , em} be an orthonormal basis of g, let µi = 〈µ, ei〉 so that

µ(x) =
∑m

i=1 µi(x)ei.

Because ω is non-degenerate, df = d(
∑

i |µi(x)|2) =
∑
µidµi vanishes at x if and only if

its ω-dual does so. Because ιXeiω = d(〈µ, ei〉) = dµi, the ω-dual of df equals
∑

i µiXei =∑
i〈µ, ei〉Xei = Xµ(x). Thus df |x = 0 ⇐ Xβ|x = 0. Since Xβ is the same for the T -action on

M , the same holds for ||µT ||2.

(i) ⇔ (iv): Xβ|x = 0 if and only if x is fixed by the flow exp(tβ), or equivalently Tβ, which

is equivalent to x being a critical point of µβ.

Now we pick the indices and critical point sets for the stratification.

Definition 3. Fix a maximal torus T ⊆ K. Let B = µ(Crit(||µT ||2)) ∩ t+, where t+ is a fixed

positive Weyl chamber, and t ∼= t∗ are identified via the inner product.

For β ∈ B, define Zβ = Crit(µβ) ∩ µ−1
β (||β||2), and Cβ = K · (Zβ ∩ µ−1(β)).

Remark 3. From previous results, Zβ is T -invariant and fixed by Tβ. Also, Cβ are disjoint

closed subsets of M .

The positive Weyl chamber is specified so that

Lemma 3. Crit(f) is the disjoint union of {Cβ : β ∈ B}.

Proof. Let x ∈ Crit(f). There exists g ∈ K : Ad∗gµ(x) ∈ t+. Because f is K-equivariant,

x ∈ Crit(f)⇔ g ·x ∈ Crit(f))⇔ g ·x ∈ Zµ(g·x) (applying lemma 2). In this case β := µ(g ·x) =

Ad∗gµ(x) lies in B, so x ∈ {Cβ : β ∈ B}.
Suppose x ∈ Cβ1 ∩ Cβ2 , then ∃gi ∈ K : Ad∗giµ(x) = βi, so that β1, β2 ∈ t+ lie in the same

coadjoint orbit. This implies that β1 = β2, since every coadjoint orbit intersects a positive Weyl

chamber at a unique point. Therefore, Cβ are disjoint.

3.2 Morse theory

After dealing with the indices, we construct the stratification by looking at the gradient flows

that converge to points in Cβ. To do this, we need more definitions.

Definition 4. A finite collection of locally closed submanifolds of M {Sβ : β ∈ B} forms a

smooth stratification if they partition M , and there exists a strict partial order > on B such

that S̄β ⊆
⋃
γ≥β Sγ .
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Definition 5. A smooth function F : M → R is minimally degenerate if the following holds:

(i) Crit(F ) is the finite disjoint union of closed subsets {Mα} such that F is constant on

each Mα;

(ii) for each α there exists a locally closed submanifold Σα that contains Mα and has an

orientable normal bundle in M ;

(iii) on each Σα, F attains its minimum on Mα;

(iv) at every x ∈ Mα, TxΣα is maximal among subspaces of TxM on which the Hessian

Hx(F ) is positive-definite.

Σα is called the minimising submanifold of F along Mα.

Remark 4. Classical Morse theory requires the Hessian to be non-degnerate at every critical

point, but this can fail even for reasonable moment maps. The above definition relaxes the

requirement by seeking only a submanifold on which the Hessian is positive-definite.

As a simple example, consider the action of T2 on CP2 given by

[z0, z1, z2] 7→ [z0, e
iθ1z1, e

iθ2z2].

On the chart {z0 6= 0}, the squared norm of the moment map equals

(z1, z2) 7→
( |z1|2

1 + |z1|2 + |z2|2
)2

+
( |z2|2

1 + |z1|2 + |z2|2
)2
.

The function is degenerate at [1, 0, 0], and a minimising submanifold is given trivially by the

singleton itself.

Examples (i) A smooth function f : M → R is Morse-Bott if its critical set is a disjoint union

of closed submanifolds such that the Hessian of f is non-degenerate in the normal direction.

Then Morse-Bott functions are minimally degenerate, with minimising submanifolds given by

tubular neighborhoods;

(ii) In [14], it is shown that if f1, . . . , fn ∈ C∞(M) satisfies that {grad(fi)} commute with

each other, and that any linear combination of {fi} is a classical Morse function, then given any

strictly convex smooth function c : Rn → R, the function c(f1, . . . , fn) : M → R is a minimally

degenerate function.

To construct a stratification from a minimally degenerate function, we use gradient flows:

Definition 6. Let (M, g) be a Riemannian manifold, F : M → R a smooth function. Let ∇F
be the vector field that is g-dual to −dF , ie., −dF = ι∇F g. For a non-critical point q, denote

the gradient flow of ∇F as the curve γF,q : R→M such that γ̇F,q = ∇F, γF,q(0) = q.

Define ωF (q) as the set of points y ∈ M such that any open neighborbood of y contains

γF,q(t) for sufficiently large t.

Given a disjoint union Crit(F ) = tα∈ACα, define SF,α = {q ∈M : ωF (q) ⊆ Cα}.

Remark 5. (i) YF,α should be seen as the union of trajectories that converge to YF,α. By solving

the equations for points in Cα, one can check that Cα ⊆ YF,α.

(ii) By construction, the value of F decreases along the gradient flow, so y ∈ ωF (q) ⇒
F (y) ≤ F (q).
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Theorem 1 ([13], Theorem 10.4). Let F : M → R be a minimally degenerate function

with critical point set tα∈ACα and mimimising submanifolds Σα. If the gradient flow of f is

tangential to each Σα, then

(i) SF,α forms a smooth stratification of M ;

(ii) SF,α coincides with Σα in some neighborhood of Cα;

(iii) The inclusion Cα → SF,α induces isomorphism of of Cech cohomology;

(iv) If there is aG-action onM from a compact groupK such that F , Σα and the Riemannian

metric g are all K-invariant, then Cα → SF,α also induces an equivalence of equivariant

cohomology.

Proof. (Sketch) (i) In this setting, the strict partial order is given by α1 > α2 ⇔ f(Cα1) >

f(Cα2). The definition of smooth stratification can then be verified by carefully applying remark

4(ii);

(ii) On the one hand, by shrinking the open neighborhood Uα of Cα in M , one can ensure

that for any point x ∈ Uα ∩ Σα, the gradient flow never escapes Uα ∩ Σα: this follows since

within Σα, the function F takes its minimum on Sα, while F decreases on gradient flows;

The other direction requires analysis of the gradient flow near SC : working in local coordinates,

one shows that if the initial point is away from a neighborhood within Σα, then the gradient

flow stays away from the neighborbood: the bound is given by the assumption that the Hessian

of F is positive definite on TΣα;

(iii) & (iv) Consider the compact neighborhoods of Cα in Sα given by Nα,ε := {x ∈ Sα :

f(x) ≤ f(Cα) + ε}. The gradient flows induce retractions from Sα to Nα,ε. Taking ∩ε>0Nα,ε =

Cα, one sees that Cα → Sα and Cα ×G EG→ Sα ×K EK induces equivalences in (equivariant)

Cech cohomology.

We apply the above theory in our setting. For the following, fix a K-invariant Riemannian

metric g on M : this can be done by picking any Riemannian metric and averaging over the

K-action; alternatively, if M itself is Kähler then the real part of the Kähler form suffices.

Definition 7. Let (M, g) be a Riemannian manifold. For β ∈ k, let ∇µβ be the vector field

that is g-dual to −dµβ, ie., −dµβ = ι∇µβg. For a non-critical point q, denote the flow of ∇µβ
as γq : R→M , so that

γ̇β,q = ∇µβ, γβ,q(0) = q.

Define ωβ(q) as the set of points y ∈ M such that any open neighborbood of y contains

γβ,q(t) for sufficiently large t, and define Yβ = {q ∈M : ωβ(q) ⊆ Zβ}.

The following lemmas check that minimising submanifolds of Cβ = K · (Zβ ∩ µ−1(β)) can

be taken as their open neighborboods in K · (Yβ).

Lemma 4. (i) Zβ is a closed submanifold of M , and the Tβ-action on the normal bundle

TM/TZβ does not fix any non-zero vector;

(ii) Yβ are locally closed submanifolds of M .

Proof. (i) For any fixed point x, there exists a diffeomorphism from an open neighborhood

of the zero section in Tβ ×Tβ TxM to an open neighborhood of x in M . The fixed point set
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is diffeomorphic to the subbundle (hence a submanifold) Tβ ×Tβ V , where V is the subspace

consisting of vectors fixed under the Tβ-action ([3], §I.2b).

Since Zβ = Crit(µβ) is closed, it is a closed submanifold of M . The diffeomorphism between

Zβ and Tβ ×Tβ V also implies the second claim.

(ii) ([3], IV.1b) The Riemannian metric and the symplectic form gives a K-invariant almost

complex structure. Let x ∈ Zβ. The Tβ-action induces a decomposition into complex, Tβ-

invariant subspaces TxM = V0 ⊕ V1 ⊕ · · · ⊕ Vk, where on each Vj , Tβ acts by a scalar exp(iλj),

and V0 = TxZβ. By (i), λj 6= 0 if j 6= 0. Adopting coordinates (v0, . . . , vj) based on the

decomposition and applying coordinates vj = pj + iqj for the Hamiltonian function µβ, the

Hessian may be written as the quadratic form
∑k

i=1 λi|vi|2, which is non-degenerate on the

normal bundle TxM/TxZβ.

Therefore, µβ is a Morse function in the sense of Bott. The Hessian of µβ is positive definite

on the normal bundle TM/TZβ. It follows that Yβ, which are the stable manifolds for µβ

over Zβ are locally closed submanifolds of M , TYβ corresponds exactly to the non-negative

eigenspaces in the above decomposition ([1], §1).

Remark 6. Stable manifolds for Morse-Bott functions have a number of further properties ([1],

§1):

(i) In the decomposition TxM = V0 ⊕ V1 ⊕ · · · ⊕ Vk, TxYβ corresponds to the non-negative

eigenspaces;

(ii) The Morse indices of Zβ equal to the codimensions of Yβ.

Lemma 5 ([13], Lemma 4.10). Let x ∈ Zβ ∩ µ−1(β). Define Stab β = {g ∈ K : Adgβ = β},
and stab β = {α ∈ k : [α, β] = 0}.

(i) g ∈ K satisfies g · x ∈ Yβ if and only if g ∈ Stab β;

(ii) α ∈ k satisfies Xα(x) ∈ TxYβ if and only if α ∈ stab β.

Lemma 6. K · (Yβ) is smooth in some K−invariant neighborbood of Cβ.

Proof. (Sketch) It suffices to show that K ·(Yβ) is smooth in some neighborbood of Zβ∩µ−1(β):

applying K-action to the neighborbood provides a K−invariant neighborbood of Cβ.

Consider the map σ : K ×Stab β Yβ → M given by (g, y) 7→ g · y. Clearly the image of the

map lies in K · (Yβ). The level set {y ∈ Yβ : µβ(y) ≤ ||β||2 + ε} is a compact neighborhood of

Zβ ∩ µ−1(β). Mapping it via the G-action σ shows that for x ∈ Zβ ∩ µ−1(β), a neighborhood

around (1, x) gets mapped to a neigborhood around x in K · (Yβ).

The differential of σ maps (α, v) ∈ Tx(K ×Stab β Yβ) to Xα(x) + v(x) ∈ TxM , and one can

check that because

T(1,x)(G×Stab β Yβ) ∼= g× TxYβ/{(α, v) : α ∈ stab β, v(x) = Xα(x)},

this map is injective, which also holds in a neighborhood of (1, x). Therefore, K · (Yβ) is smooth

in some K−invariant neighborbood of Cβ.

Proposition 2. f : M → R is a minimally degenerate function, with Crit(f) = tβ∈BCβ and

minimising submanifolds Σβ the G-invariant neighborhoods of Cβ described in the lemma.
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Proof. Σβ are locally closed submanifolds since Yβ are; their normal bundles correspond to

the negative eigenspace (in particular a complex subbundle) in the decomposition, hence are

orientable. Because TYβ is the non-negative eigenspace, and f = µβ on x, TxYβ is maximal

among all subspaces on which Hxf is positive definite.

In Σβ, f takes its minimum on Cβ: on G · (Yβ), ||µ||2||β||2 ≥ |〈µ, β〉|2 ≥ ||β||2, where as f

equals ||β||2 on Cβ.

By construction, the gradient flows to f are tangential to Σβ, thus we have shown:

Theorem 2. Theorem 1 is applicable to the setting f : M → R given by f = ||µ||2, Crit(f) =

tβ∈B(Sβ)β∈B. More precisely, there exists a smooth stratification Sβ given by the gradient flow

construction, such that Sβ coincides with the minimising submanifolds in some neighborbood

Cβ. The inclusion Cβ → Sβ induces isomorphisms in both Cech and equivariant cohomology.

4 The Kirwan map

We now apply the stratification to equivariant cohomology, which yields the main results. The

following discussion uses standard results on (equivariant) characteristic classes, which can be

found in [2], §2.

Let

Uβ =
⋃
γ≤β

Sβ, U
′
β =

⋃
γ<β

Sβ = Uβ \ Sβ,

and denote (Uβ)K := EK ×K Uβ the homotopy quotient. The inclusion U ′β ⊂ Uβ induces

an inclusion in their homotopy quotients, which gives a long exact sequence1 in equivariant

cohomology:

· · · → Hn
K(Uβ, U

′
β)→ Hn

K(Uβ)→ Hn
K(U ′β)→ Hn+1

K (Uβ, U
′
β)→ · · ·

The relative cohomology can be handled by Thom isomorphism: By taking connected

components if necessary, assume that µβ have constant index d(β) on Zβ, so that Sβ also has

constant codimension d(β) in M . Applying excision to a tubular neighborbood T for U ′β ⊂ Uβ,

Hn
K(Uβ, U

′
β) ∼= Hn(TK , TK \ (U ′β)K).

Applying Thom isomorphism,

· ∪ eK(Sβ) : H
n−d(β)
K (Sβ)→ Hn(TK , TK \ (U ′β)K) ∼= Hn

K(Uβ, U
′
β).

The map is given by taking the cup product with eK(νSβ/Uβ ), which denotes the equivariant

Euler class2 of the normal bundle νSβ/Uβ of Sβ in Uβ. It increases degree by d(β) because the

codimension of Sβ in Uβ is d(β).

Putting the isomorphism in the long exact sequence:

1It is probably easier to keep track of this sequence if we work with the Cartan model of equivariant cohomology,

where the maps correspond to restriction of equivariant differential forms.
2As the normal bundle is a oriented vector bundle over Sβ with an induced K-action, it pulls back to a

K-vector bundle EK ×K νSβ/Uβ
→ EK ×K Sβ , of which the Euler class is defined as the equivariant Euler class.
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· · · → H
n−d(β)
G (Sβ)→ Hn

K(Uβ)→ Hn
K(U ′β)→ H

n−d(β)+1
K (Sβ)→ · · ·

The following lemma will be used to show that the long exact sequence splits into short

exact sequences.

Lemma 7. (i)

H∗K(Cβ) ∼= H∗Stab β(Zβ ∩ µ−1(β));

(ii) The map

H
n−d(β)
K (Sβ)→ Hn

K(Uβ)

is injective.

Proof. (i) Consider the map

σ : K ×Stab β (Zβ ∩ µ−1(β))→ Cβ, (g, x) 7→ g · x.

This is a continuous bijection: firstly, it is clearly surjective; suppose

gi ∈ K,xi ∈ Zβ ∩ µ−1(β) : g1 · x1 = g2 · x2,

then h = g−1
2 g1 satisfies that hx1 ∈ Zβ∩µ−1(β). By Lemma 5, h ∈ Stab β so (g1, x1) = (g2, x2).

Since the map is from a compact space to a Hausdorff space, it is a homeomorphism. From

general results about fibre bundles,

(Cβ)K ∼= ((Zβ ∩ µ−1(β))×Stab β K)×G EK ∼= (Zβ ∩ µ−1(β))×Stab β EK,

and EK is a contractible space with a free Stab β-action, hence EK → EK/Stab β is a model

for the universal bundle of Stab β. Passing to cohomology, the homeomorphisms yield

H∗((Cβ)K) ∼= H∗((Zβ ∩ µ−1(β))Stab β),

ie., H∗K(Cβ) ∼= H∗Stab β(Zβ ∩ µ−1(β)).

(ii) The inclusion i : Sβ → Uβ induces i∗ : Hn
K(Uβ)→ Hn

K(Sβ). The composition of the two

maps

H
n−d(β)
K (Sβ)→ Hn

K(Uβ)→ Hn
K(Sβ)

is the Gysin operation, which is given by taking the cup product with the equivariant Euler

class eK(νSβ/Uβ ) of the normal bundle for Sβ ⊂ Uβ ([2], 2.19]). To show (ii), it suffices to show

that eK(νSβ/Uβ ) is not a zero-divisor in H∗K(Sβ).

Applying Theorem 1 (iv), the inclusion Cβ → Sβ induces an equivalence in equivariant

cohomology

H∗K(Sβ) ∼= H∗K(Cβ),

where eK(νSβ/Uβ ) corresponds to its restriction on Cβ.

Consider the isomorphism in (i). Because it is induced by a homeomorphism, eK(νSβ/Uβ )

corresponds to its restriction, namely the Stab β-equivariant Euler class on Zβ ∩µ−1(β), which

we denote as eN . Therefore, it suffices to show that eN is not a zero divisor.

The subtorus Tβ ⊆ Stab β fixes Zβ ∩ µ−1(β) pointwise. By lemma 4 (i), the Tβ action

does not fix any non-zero vector on eN . Thus the following localization theorem of Atiyah-

Bott guarantees that eN is invertible after passing to a localization. Hence it cannot be a zero

divisor.
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Theorem 3 ([2], §3). Let T be a torus, M a smooth T -manifold, and MT ⊂ M the fixed

point locus under the T -action.

The equivariant pushforward

i∗ : H∗T (MT ;C)→ H∗T (M ;C)

and restriction maps

i∗ : H∗T (M ;C)→ H∗T (MT ;C)

become isomorphisms after localizing at
∏
P eT (νP )|p ∈ H∗(pt;C), where P are the connected

components of MT , and p ∈ P .

In particular, i∗i∗1 = eT (νMT ) is invertible after the localization.

Corollary 1. (i) The stratification {Sβ}β∈B is equivariantly perfect : the long exact sequence

· · · → H
n−d(β)
K (Sβ)→ Hn

K(Uβ)→ Hn
K(U ′β)→ H

n−d(β)+1
K (Sβ)→ · · ·

splits into short exact sequences

0→ H
n−d(β)
K (Sβ)→ Hn

K(Uβ)→ Hn
K(U ′β)→ 0;

(ii) The map

H∗K(M)→ H∗K(µ−1(0)) ∼= H∗(M �K) (1)

induced by the inclusion µ−1(0)→M is surjective.

Proof. (i) From the above lemma, H
n−d(β)
K (Sβ) → Hn

K(Uβ) is injective. By exactness, the two

maps

Hn−1
K (U ′β)→ H

n−d(β)
K (Sβ), Hn

K(U ′β)→ H
n−d(β)+1
K (Sβ)

equal the zero map. Hence there is the short exact sequence

0→ H
n−d(β)
K (Sβ)→ Hn

K(Uβ)→ Hn
K(U ′β)→ 0;

(ii) In particular, each map Hn
K(Uβ)→ Hn

K(U ′β) induced by inclusions U ′β → Uβ is surjective.

Composing the inclusions

µ−1(0) = U0 → · · · → Uβ → · · · → ∪β∈BSβ = M

implies

H∗K(M)→ H∗K(µ−1(0)) ∼= H∗(M �K)

is surjective.

Corollary 2. Denote hnK(M) := dimHn
K(M), and define PKt (M) :=

∑∞
i=0 h

i
K(M)ti as the

equivariant Poincaré polynomial. Then

PKt (M) =
∑
β

td(β)P
(Stab β)
t (Zβ ∩ µ−1(β)).
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Proof. The short exact sequences in corollary 1 yield h
n−d(β)
K Sβ +hnK(U ′β) = hnK(Uβ). Applying

the formula for successive strata, hnK(M) =
∑

β h
n−d(β)
K (Sβ).

Hence,

PKt (M) =
∞∑
i=0

∑
β

h
i−d(β)
K (Sβ)ti =

∑
β

∞∑
i=0

td(β)(h
i−d(β)
K (Sβ)ti−d(β)) =

∑
β

td(β)PKt (Sβ).

Because Cβ → Sβ induces an equivalence in equivariant cohomology, PKt (Sβ) = PKt (Cβ).

Applying lemma 7(i), PKt (Cβ) = P
(Stab β)
t (Zβ ∩ µ−1(β)) and the result follows.

5 Two simple examples

5.1 Projective space

Let us carry out the procedures in a trivial example. Consider the diagonal U(1)-action on

Cn+1. Identify u(1) ∼= R ∼= 〈β〉 for some generator β ∈ u(1).

The U(1)-action on Cn+1 is Hamiltonian and a moment map is given by

µ((z1, . . . , zn+1)) =

n+1∑
j=1

|zj |2 − 1.

The symplectic quotient is then

µ−1(0)/U(1) = S2n+1/U(1) ∼= CPn.

Clearly, the critical points of f are the origin {0} on which µ = −1, f = 1, and the unit

sphere S2n+1 on which µ = f = 0. Denote C1 = {0}, C0 = S2n+1. Both C1, C0 are themselves

submanifolds, so f is indeed minimally degenerate.

The stratification is given by gradient flows of f towards the critical loci. As f = µ2 =

(
∑n+1

j=1 |zj |2 − 1)2,

∇µβ = µ
n+1∑
j=1

−2xj∂xj − 2yj∂yj .

By inspecting signs3 of the gradient ∇µβ, we see that a gradient flow γf,w initiating from

w ∈ Cn+1 \ (C0 ∪ C1) satisfies that ||γf,w(t)||2 → 1 as t→∞. Therefore, S0 = Cn+1 \ {0}, and

S1 = {0} is the stratification.

5.2 Delzant spaces

By a theorem of Delzant, symplectic toric manifolds can be classified by convex polytopes via

a certain construction that we outline below, following §28 of [4].

Definition 8. A polytope in Rn is the convex hull of finitely many points, with its vertices

being a minimal subset of the points that has the same convex hull. A k-dimensional face is

the convex hull of some (k + 1) vertices that lie entirely on the boundary of the polytope: in

particular, a 1-dimensional face is an edge, and a (n− 1)-dimensional face is a facet.

3Suppose the initial point w is inside the unit sphere, then µ(w) < 0 near w, so the flow points towards the

unit sphere, and similarly for w outside the unit sphere.
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Let v be some vertex of a polytope, and let e1, . . . , ek be the edges joining v.

A polytope is Delzant if:

(i) For each vertex v, the number of edges k equals n;

(ii) Each edge can be written as v + tui for some ui ∈ Zn;

(iii) At each vertex, the vectors ui, i = 1, . . . n can be chosen to be a Z-basis of Zn.

Fix some polytope ∆ and let d be the number of facets in the polytope, necessarily d ≥ n.

Let vi, i = 1, . . . d be the outside-pointing normal vectors of the facets, which can be chosen to

be integer valued vectors such that the entries do not have any common divisor.

The map Rd → Rn given by ei 7→ vi is a surjective map that induces surjection T d → Tn.

Let the subtorus N ⊂ T d be the kernel of the homomorphism, then its Lie algebra n ⊂ Rd can

be identified with the kernel of the linear map Rd → Rn.

Let T d act on Cd diagonally. This is clearly a Hamiltonian action and restricts to a

Hamiltonian N -action with moment map µ : Cd → (Rd)∗ ∼= Rd given by

(z1, . . . , zd) 7→ −π(|z1|2, . . . |zd|2) + c

for some suitable constant4 c ∈ Rd such that N acts freely on µ−1(0). The Delzant space X∆

is then the symplectic reduction Cd �N .

Here the ambient space Cd is no longer compact, and Atiyah’s convexity results (explained

in [13], §3.3-6) need re-interpretation. Still, local results as in lemma 2 remain valid, hence:

Lemma 8. The critical points of f = ||µ||2 are (ξ1, . . . , ξd) where some non-empty subset

I ′ ⊂ {1, . . . d} satisfies:

(i)
∑

j∈(I′)c cjvj = 0;

(ii) ξi′ = 0 for i′ ∈ I ′;
(iii) π|ξj |2 = cj for j ∈ (I ′)c.

Hence the critical loci can be seen as a disjoint union of (d−|I ′|)-dimensional tori embedded

in C(d−|I′|) subspaces cut out by zi′ = 0 for i′ ∈ I ′.

Proof. Let β = (β1, . . . , βd) ∈ n ⊂ Rd and consider elements (ξi) stablized by exp(tβ). For each

index i, either βi = 0 or ξ = 0.

Suppose ξi′ = 0 for some non-empty subset i′ ∈ I ′ ⊂ {1, . . . d}, then necessarily βj = 0 for

j ∈ (I ′)c. Conditions (i) and (iii) now come from imposing the condition that β = µ((ξi)).

Therefore, the components of the critical loci are indexed by elements β ∈ n satisfying

βi′ = 0 for i′ ∈ I ′ ⊂ I and βj = cj for j ∈ (I ′)c; upon restricting to some positive Weyl chamber,

these shall give indices for the Morse stratification CI′ .

To describe the strata, we now take a closer look at the gradient flow of f = ||µ||2. Use the

standard Riemannian metric
∑

i dzidz̄i. The gradient ∇f is given by

∇f = 2
∑
i

(λi − π|zi|2)(zi∂z̄i + z̄i∂zi).

Therefore, given some I ′ ⊂ I, the stratum SI′ consist of points (zi) with only the I ′-entries

vanishing have their gradient flows converging to CI′ .

4Since N is abelian, any constant vector c will do, but for convenience we shall assume that c has positive

entries.
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The regularity property in lemma 4 is still applicable in our setting, hence the stratification

is again N -equivariantly perfect, leading to the restricting map H∗N (Cd) → H∗N (µ−1(0)) being

surjective.

As Cd is contractible, the homotopy quotients EN ×N Cd and EN ×N pt ∼= BN are

homotopy equivalent, so H∗N (Cd,C) is isomorphic to H∗N (pt,C), just as in the ordinary theory5

Thus multiplicative generators of H∗N (pt,C) ∼= C[u1, . . . , ud−n] should correspond to a set of

generators of H∗(X∆,C). The elements u1, . . . , ud−n ∈ H2
N (pt) turn out to be identified

with the Chern classes of the line bundles associated to the N -representation on the one-

dimensional subspaces 〈ei〉, and [9] §9.8 determines relations among the generators by applying

the Duistermaat-Heckmann theorem.

6 The Kähler case and GIT

6.1 The Kähler quotient

Let M be a Kähler manifold, Γ be a complex Lie group which is the complexification of a

maximal compact subgroup K so that Lie(Γ) = k⊕ ik.
Suppose that K has a Hamiltonian action on M that preserves its Kähler form. Because we

are now equipped with a distinguished Riemannian metric arising from the Kähler structure,

there is an alternative, nicer description of the stratification constructed above.

In the following, T ⊆ K (so that the complexification TC ⊆ Γ is again a maximal torus),

µ, {β ∈ B}, Zβ, Cβ, Sβ are the same as above for the K-action on M ;

Definition 9. (i) Zmin
β is the subset of points x ∈ Zβ such that the gradient flow of ||µ− β||2

from x has limit points in Zβ ∩ µ−1(β);

(ii) Y min
β is the subset of points y ∈ Yβ such that the gradient flow of µβ from y has limit

points in Zmin
β ;

(iii) Denote the Morse stratum S0 ⊂M associated to f = ||µ||2 as Mmin;

(iv) Let B be the Borel subgroup of Γ associated to the positive Weyl chamber t+ ⊂ t, and

let Pβ be the subset of g ∈ Γ such that the curve (exp itβ)g(exp itβ)−1 : has a limit in Γ as

t→∞.

Firstly, there are the standard analogous results about the stratification. Note that although

the stratification is still based on K, the equivariant cohomology is over the complex group Γ.

Theorem 4 ([13], Theorem 7.4). (i) Sβ = Γ · (Y min
β );

(ii) The stratification {Sβ}β∈B induces short exact sequences (as in corollary 1) for Γ-

equivariant cohomology:

0→ H
n−d(β)
Γ (Sβ)→ Hn

Γ(Uβ)→ Hn
Γ(U ′β)→ 0.

(iii) Sβ ∼= Γ×Pβ Y min
β so that

H∗Γ(Sβ) ∼= H∗Γ(Y min
β ).

5The radial homotopy Cd × I → Cd given by ((zi), t) 7→ (zi/f(t)) for some suitable real-valued function f is

N -equivariant, so it induces a map of the quotients.
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One might wonder the relation between a suitable quotient by Γ and the symplectic quotient

by K ⊂ G. This is the content of the following theorem:

Theorem 5 ([13], Theorem). If the stabilizer of every x ∈ µ−1(0) in K is finite, then Mmin/Γ

is homeomorphic to M �K = µ−1(0)/K.

6.2 GIT

When M is a nonsingular complex projective variety, and Γ is a reductive complex Lie group

acting linearly on M , there are two notions of quotients: the symplectic (Kähler) quotient

and the GIT quotient M̃ := Proj(H0(M,O)Γ) from algebraic geometry. It turns out that

under regularity conditions, the two are identified with each other, so the GIT quotient can be

approached using symplectic methods. Firstly, let us recall some basic notions in GIT.

Definition 10. Let M ⊂ CPn be a nonsingular complex projective variety, and let Γ be a

connected reductive complex group acting on M linearly, ie., via a homomorphism ϕ : Γ →
GL(n+ 1).

x ∈ M is semistable if there exists a homogeneous polynomial F ∈ C[x0, . . . , xn] such that

F is invariant under the Γ-action and F (x) 6= 0.

A stable point is a semistable point such that:

(i) with polynomial F as above, the orbits of {y ∈M : F (y) 6= 0} are closed;

(ii) the point has finite stabilizer under the Γ-action.

Denote the set of semistable points as M ss and the set of stable points as M s.

Lemma 9. ([15], Theorem 2.1) A point is semistable under the Γ-action if and only if it is

semistable under the action of every one-parameter subgroup β : C∗ → Γ.

Recall that in the symplectic case, one-parameter subgroups Tβ are used to index the critical

points and the stratification. Therefore, the action of one-parameter subgroups provides a

starting point to relate the symplectic quotient and GIT.

Lemma 10. Let Γ = C∗ act on M via β : C∗ → GL(n + 1), z 7→ diag(zr0 , . . . , zrn) for

r0, . . . , rn ∈ Z.

(i) ([15], Proposition 2.2) A point x = [x0 : · · · : xn] ∈ M is semistable if and only if

min{rj : xj 6= 0} ≤ 0 ≤ max{rj : xj 6= 0};
(ii) In this case M ss coincides with Mmin := S0, where S0 is the Morse stratum associated

to f = ||µ||2;

Proof. (Sketch for (ii)) According to theorem 3 (i), x ∈Mmin if and only if 0 ∈ µ(Γ · x). Because

Γ = C∗ = CP1 \{0,∞}, Γ-action can be extended to the whole of CP1 via: 0 gives the map that

only keeps the xi coordinate where ri = min{rj : xj 6= 0} and maps the rest of the coordinates

to 0; ∞ only keeps the xi coordinate where ri = max{rj : xj 6= 0}.
Therefore, Γ · x can be identified with the image of x under the action of CP1, which agrees

with the criterion for semistability in (i).

We return to the general setting as in definition 10, and relate Mmin with the minimum

stratum of the one-parameter subgroup action.

14



Lemma 11 ([13], Lemma). Let x ∈ M then 0 ∈ µ(Γx) if and only if 0 ∈ µ(β(C∗)x) for

every one-parameter subgroup β : C∗ → Γ that arises as the complexification of some real

one-parameter subgroup β̃ : S1 → K.

The following theorem relates the Kähler (symplectic) quotient to the GIT quotient, ie.,

it connects the differetial-geometric and the algebraic point of view of a “moduli space”, and

allows one to study GIT using symplectic methods.

Theorem 6 ([13], Theorem). (i) With the same setting as in definition 10, suppose that Γ

has a maximal compact subgroup K such that ϕ(K) ⊆ U(n+ 1), then M ss = Mmin;

(ii) If the stabilizer of every semistable point in Γ is finite, then M ss = M s, and M ss/K is

homeomorphic to the GIT quotient M̃ .

In the following, we sketch two applications of the theory in moduli problems.

6.3 Example: n-tuples on CP1

We quickly sketch the key example in [13], listing some of the key ingredients that showed up

in earlier discussion.

The compact Lie group Γ = SU(2) acts on (CP1, ωFS) via [v] 7→ [Av] for v ∈ C2 \ {0}, A ∈
SU(2). This is a Hamiltonian action with moment map given by µ̃ : CP1 → su(2)∗:

〈µ̃([v]), ζ〉 =
v̄tζv

2π||v||2
.

The diagonal action of SU(2) on (CP1)n, ie., the configuration space of n ordered points on

a Riemann sphere, is hence also Hamiltonian with moment map µ : (CP1)n → su(2)∗:

〈µ([v1], . . . , [vn]), ζ〉 =

n∑
i=1

v̄tiζvi
2π||vi||2

.

If one identifies su(2) with R3, and CP1 with S2, then up to scalar multiplication, the moment

map is (v1, . . . , vn) 7→ v1 + · · ·+ vn.

Applying the standard inner product on R3, f = ||µ||2 takes the minimum on µ−1(0), which

is the set of configurations with “centre of mass” at the origin. Outside µ−1(0), the critical

points are configurations with r coordinates on some v ∈ S2 while the rest on the antipodal

point −v. In particular, one sees that the norm of the moment map fails to be a classical Morse

function, since the critical points are not isolated points in (CP1)n.

Now we examine the stratification. Given any β ∈ su(2), its one-parameter subgroup Tβ ∼=
S1 is a maximal torus of Γ, so T = Tβ. The fixed point set of Tβ-action are the configurations

with coordinates in {0,∞}. Identify t ∼= R with the standard inner product. For a point x with

r coordinates at 0 (south pole) and n− r coordinates at ∞ (north pole), µβ(x) = 2r − n.

If t+ = R+ is taken as the positive Weyl chamber, then

B = {2r − n : r ∈ {0, 1, ..., n}, 2r − n ≥ 0}.

Given β = 2r − n, Zβ = Zβ ∩ µ−1(β) consists of points with r coordinates at 0 and the rest at

∞. The SU(2)-orbits of Zβ, namely Cβ, are then points with r coordinates coinciding, and the

rest coinciding at a different coordinate.
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7 Moduli of holomorphic bundles

When there is an equivariantly perfect stratification that leads to the surjection (1), a set of

generators of H∗K(M) is mapped to a set of generators for the cohomology of the moduli space

H∗(M � K). This is particularly useful when M is contractible, so that H∗K(M) ∼= H∗(BK)

and thus it is feasible to find a set of generators for H∗(BK).

This is the case in the work of Atiyah-Bott [1] on the moduli space of stable holomorphic

vector bundles over a Riemann surface Σ. In fact they aimed to study the moduli space of the

following objects, which can be described in three equivalent ways:

(i) Unitary representations of π1(Σ);

(ii) Unitary connections on a Hermitian vector bundle E → Σ with a certain central

curvature;

(iii) Stable holomorphic vector bundles over Σ.

It turns out that the second viewpoint is precisely an infinite-dimensional analogue of the

theory presented above, while the third viewpoint is easier for formulating an equivariantly

perfect stratification. We shall introduce both of them and begin by setting various notations.

Definition 11. Let Σ be a Riemann surface with some Kähler volume form volΣ, and E → Σ

a smooth complex vector bundle of rank n and degree k. Define µ(E) = k/n.

Fix a Hermitian metric h: this is a smoothly-varying collection of Hermitian metrics hx on

the fibres Ex for x ∈ Σ.

Let Aut(E) denote the group of bundle automorphisms of E, U(E) ⊂ Aut(E) the automorphisms

that preserve the Hermitian metric, End(E) denote the group of bundle endomorphisms of E,

and u(E) ⊂ End(E) the skew-adjoint endomorphisms.

Definition 12. Let C be the space of all holomorphic structures on E, with elements represented

by their Dolbeault operators6. A holomorphic bundle E is semistable if for all holomorphic

subbundles D ⊂ E, µ(D) ≤ µ(E); it is stable if all such inequalities are strict.

Definition 13. Let A be the space of all unitary connections7 on E. Elements in A are

represented by their covariant derivatives; when a connection is represented by some connection

1-forms A, its covariant derivative is denoted by dA.

Given dA ∈ A , its curvature is FA := dA ◦ dA ∈ Ω2(Σ, u(E)). In local coordinates, FA =

dA+ 1
2 [A,A], where A is a collection of connection 1-forms.

The unitary gauge group G of E is defined as the group of bundle automorphisms that

preserves the fibres and induce unitary maps on them. It is an infinite dimensional Lie group

with Lie algebra identified8 with Ω0(Σ, u(E)). From [1] §9, Aut(E) can be identified with the

complexification G C of the gauge group.

6According to [8] §2.2.2, any Dolbeaut operator ∂̄ comes from a unique holomorphic structure on E, so there

is a one-to-one correspondence between the two.
7This is a connection ∇ such that for any two sections s1, s2 ∈ C∞(E), dh(s1, s2) = h(∇s1, s2) + h(s1,∇s2),

which is equivalent to the connection 1-forms taking coefficients in u(n) under some unitary trivialization.
8Take a one-parameter family of gauge transformations and differentiating yields a matrix in u(n) on fibres

that glue together to give a section of u(E).
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The gauge group acts9 on C : for g ∈ G ,

∂̄ ∈ C , g · ∂̄ = g ◦ ∂̄ ◦ g−1.

For ∇A ∈ A , s ∈ C∞(E), G acts by:

(g · ∇A)s = g(∇A(g−1 · s)).

Expanding10, (g · ∇A) = ∇A − (∇Ag)g−1.

Then, G acts on the curvature via g · FA = gFAg
−1.

The following results set up an equivalence between items (ii) and (iii) in the above list:

Proposition 3. (i) C is non-empty, and is an affine space modeled on Ω(0,1)(Σ,End(E)), and

A is a non-empty affine space modeled on Ω1(Σ, u(E)), consequently their tangent spaces can

be identified with the corresponding vector spaces;

(ii) Projecting any unitary connection via π(0,1) : Ω1(Σ, E)→ Ω(0,1)(Σ, E) gives a holomorphic

structure on E ([1], §5);

(iii) Given any holomorphic structure ∂̄, there exists a unique connection ∇ such that

π(0,1) ◦ ∇ = ∂̄; these two operations set up an isomorphism between C and A as affine spaces.

From the complex analytic point of view, there exists a G -equivariantly perfect stratification

of the space of holomorphic structures C , with the bottom strata corresponding to the semi-

stable holomorphic bundles Css. In particular, the analogue of Kirwan surjectivity (1) holds, and

generators of H∗G (C ) restrict to generators of H∗G (Css) ∼= H∗(N(n, k)), where N(n, k) := Css/G

is the moduli space of semi-stable bundles11.

Taking a more differential-geometric perspective, Atiyah and Bott studied the Yang-Mills

functional on A . The functional is then associated to the Hamiltonian G -action on A , which

can be seen as an infinite-dimensional symplectic manifold. They also conjectured that, just

as in finite dimensional case, the gradient flows Yang-Mills functional lead to an equivariantly

perfect stratification, which was later proved by Daskalopoulos ([5]).

Now we describe the stratification of holomorphic bundles.

7.1 Stratification

Seshadri ([16]) has shown that for every holomorphic bundle E, there exists a unique filtration

0 ⊂ E1 ⊂ · · · ⊂ Er = E

such that each Di := Ei/Ei−1 is semistable, and

µ(D1) > µ(D2) > · · · > µ(Dr).

The stratification, formulated by Harder and Narasimhan in [11], is given by the canonical

filtrations:
9We use “·” to denote the group action, and “◦” as composition of maps.

10Here ∇A acts on sections of End(E) by: given M ∈ C∞(End(E)), s ∈ C∞(E), (∇A(M))(s) = ∇A(M(s))−
M(∇A(s)).

11[1] mostly focuses on the case when (n, k) = 1, for which the G -action on Css is free so that N(n, k) is a

well-defined space. Later, it will be shown that N(n, k) is the symplectic reduction of G -action on A , so it is in

fact a symplectic manifold.
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Definition 14. For a holomorphic bundle E of rank n and degree k, denote ni = rank Di, ki =

degDi.

Its type is then the vector µ ∈ Qn where the first n1 entries are µ(D1), the next n2 entries

are µ(D2), and so on12.

Let Pµ be the polygon in R2 with entries (0, 0), . . . , (
∑j

i=0 ni,
∑j

i=0 ki), . . . (n, k). Because

µ(Di) is strictly decreasing, the polygon is convex. Therefore, there is a well-defined ordering:

µ ≤ µ′ if Pµ′ lies above Pµ.

Let Cµ be the space of all holomorphic bundles of a fixed type µ, and let Nµ be the conormal

bundle of Cµ ⊂ C .

Suppose we fix some holomorphic structure on E with type µ, and let End′(E) denote the

bundle endomorphisms of E that preserves its canonical filtration. Now define bundle End′′(E)

as the cokernel

0→ End′(E)→ End(E)→ End′′(E)→ 0.

Thus, H1(Σ,End′′(E)) describes infinitesimal variation of holomorphic structures modulo those

that preserve the filtration.

Remark 7. (i) For a semistable holomorphic bundle E, its canonical filtration is simply 0 ⊂ E,

hence the associated polygon is the straight line segment joining (0, 0). Therefore the semistable

bundles C ss ⊂ C lies at the bottom of all strata, just as µ−1(0) ⊂ M in the finite-dimensional

case.

(ii) To proceed with the long exact sequence in equivariant cohomology, we need to show

that Cµ ⊂ C is locally of finite codimension. This is established in [1], §7, by identifying Nµ

with H1(Σ,End′′(E)).

Again, to show that the stratification C =
⋃

µ Cµ is equivariantly perfect, it suffices to show

that multiplication by the G -equivariant Euler class of Nµ yields an injection H
∗−d(µ)
G (Cµ) →

H∗G (Cλ).

The strategy is the same as in finite-dimensional case: as in lemma 7 (i), we reduce the

G -action on Cµ to a smaller group acting on a subspace, in which a subtorus acts trivially. A

result analogus to the localization theorem ([1], Proposition 13.4) then establishes the claim, so

that

Proposition 4. (i) The long exact sequence

H
∗−d(µ)
G (Cµ)→ H∗G (

⋃
λ 6>µ

Cµ)→ H∗G ((
⋃
λ6>µ

Cλ) \ Cµ)→ H
∗−d(µ)+1
G (Sµ)→ · · ·

splits into short exact sequences:

0→ H
∗−d(µ)
G (Cµ)→ H∗G (

⋃
λ 6>µ

Cµ)→ H∗G ((
⋃
λ6>µ

Cλ) \ Cµ)→ 0,

(ii) The restriction map

H∗G (C )→ H∗G (Css)

is surjective.

12This makes sense because
∑r
i=1 ni = n.
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Remark 8. In [1], the equivariant cohomology is in fact over the larger group Aut(E). Still,

they observed that Aut(E) can be identified with the complexification G C, and Aut(E)/G is

isomorphic to the contractible space of Hermitian metrics on E. Hence results about Aut(E)-

equivariant cohomology can be carried over to G .

When n and k are coprime, Proposition 2.20 in [1] provides a set of (multiplicative) generators

of H∗(BG ,Z). As C is contractible, they correspond to a set of generators of H∗G (C ,Z), which

restrict to generators of H∗(N(n, k),Z).

At the same time, the equivariantly perfect stratification also provides inductive formulas

for the G -equivariant Poincaré series of the strata Cµ ([1], Proposition 7.12, 7.14), leading to

the Poincare series of the moduli N(n, k) in [1], §9.

To completely describe the cohomology ring, it remains to determine the relation among

the generators. This falls into the theory of “non-abelian localization” introduced in [18] and

[12]. For now, we shall turn to the differential-geometric point of view and start by introducing

a symplectic structure on A .

7.2 Yang-Mills functional on unitary connections

Let dA ∈ A , and identify TdAA with Ω1(Σ, u(E)). Fibres of u(E) can be identified with the

vector space of n × n anti-Hermitian matrices, which admit a positive-definite inner product:

Tr := (X,Y ) 7→ −Trace(XY ). Tr is invariant under coadjoint action from U(n).

The Hodge star operator ∗ acts on Ω∗(Σ) and satisfies ∗2 = −1. We now extend these

structures to bundles Ω∗(u(E)):

Definition 15. (i) Given a ∈ Ωk(Σ, u(E)), b ∈ Ω2−k(Σ, u(E)), so that

a =
∑
i

Ai ⊗ ωi, b =
∑
j

Bj ⊗ µj

for Ai, Bj ∈ u(E) and ωi ∈ Ωk(Σ), µj ∈ Ω2−k(Σ), define

Tr(a, b) :=
∑
i,j

Tr(Ai, Bj)ωi ∧ µj ∈ Ω2(Σ);

(ii) Define ∗ : Ωk(Σ, u(E))→ Ω2−k(Σ, u(E)) by sending

a =
∑
i

Ai ⊗ ωi 7→
∑
i

Ai ⊗ ∗ωi.

Thus there is a Riemannian metric on Ωk(Σ, u(E)) given by

(a, a′) 7→
∫

Σ
Tr(a ∧ ∗a′);

Now define ω ∈ Ω2(A ) by: for tangent vectors a, b ∈ TdAA ∼= Ω1(u(E))

ω(a, b)|dA :=

∫
Σ

Tr(a, b).

The following summarizes the Hamiltonian G -action on A :
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Proposition 5. (i) ω defines a G -invariant symplectic form, so that (A , ω) is an infinite

dimensional symplectic manifold;

(ii) Given ξ ∈ Ω0(Σ, u(E)) ∼= Lie(G ), the infinitesimal action on dA is given by −dAξ ∈
Ω1(Σ, u(E));

(iii) Under the pairing in definition 15 (ii), ∗ : Ω2(Σ, u(E))→ (Ω0(Σ, u(E)))∗ given by

α 7→ (β 7→
∫

Σ
Tr(β, α))

establishes an G -equivariant isomorphism between Ω2(Σ, u(E)) and (Ω0(Σ, u(E)))∗ ∼= (Lie(G ))∗;

(iv) The G -action has moment map at dA given by

FA ∈ Ω2(Σ, u(E)) ∼= (Lie(G ))∗.

(v) For a ∈ Ωk(Σ, u(E)) define the map

a 7→ ||a||2 :=

∫
Σ

Tr(a, ∗a).

This defines a G -invariant Riemannian metric on each Ωk(Σ, u(E)). In particular, A is a Kähler

manifold and the G -action preserves the Kähler structure. The square norm of the moment map

is then L(dA) := ||FA||2, the Yang-Mills functional of dA ∈ A .

Proof. (i) ω is clearly a 2-form. It is closed because the definition does not depend on dA ∈ A

so it is constant across A , and non-degenerate by considering
∫

Σ Tr(a ∧ ∗a) ≥ 0;

ω is G -invariant because Tr is U(n)-invariant on each fibre. volΣ is also fixed by maps in G ,

since they project to idΣ.

(ii) Take a one-parameter family gt of gauge transformations with g0 = id and differentiate

(gt · dA) = dA − (dAgt)g
−1
t at t = 0 yields

d

dt
(dA − (dAgt)g

−1
t )|t=0 = −(dAgt)(

d

dt
g−1
t )− d

dt
(dAgt)g

−1
t |t=0 = −dA(

d

dt
(gt)|t=0) = −dA(ξ).

(iii) ∗ establishes an isomorphism as vector spaces. Let U,A,B be n × n matrices, then

trace(BU−1AU) = trace(UBU−1A). It follows that for u ∈ G ,

u · α 7→ (β 7→
∫

Σ
Tr(β, u · α)) = (β 7→

∫
Σ

Tr(u−1 · β, α)),

which agrees with the coadjoint action on the linear functional.

(iv) Let ξ ∈ Ω0(Σ, u(E))) ∼= Lie(G ). The vector field generated by ξ has value dAξ at

dA ∈ A . Hence, we wish to show that at dA ∈ A , ι(dAξ)ω = d(〈FA, ξ〉)|A.
Given any a ∈ Ω1(Σ, u(E))) ∼= TdAA ,

ι(dAξ)ω(a) = −
∫

Σ
Tr(a, dAξ) =

∫
Σ

Tr(dAa, ξ),

which follows from
∫

Σ d(Tr(a, ξ)) = 0.

On the other hand, it follows from the local description of the curvature in definition 13

that FA+ta − FA = dAa+ 1
2 t

2[a, a] ([1], Lemma 4.5), hence

d
( ∫

Σ
Tr(FA, ξ)

)
(a)|A =

d

dt

∫
Σ

Tr(FA+ta, ξ)|t=0 =

∫
Σ

Tr(dAa, ξ).
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Establishing the symplectic structure and Hamiltonian group action, we shall turn to the

critical points of the Yang-Mills functional. Just as in the finite dimensional case, they index

the strata, which consists of gradient flows “converging” to components of the critical points.

Proposition 6. (i) The gradient vector field ∇L (as in definition 6) equals − ∗ dA ∗ FA at

point dA;

(ii) dA ∈ A is a critical point of J , ie., Yang-Mills connection, if and only if dA ∗FA = 0, so

the set of Yang-Mills connections is G -invariant;

(iii) [[1], §5] If dA is a Yang-Mills connection, then the eigenvalues of i
2π ∗ FA ∈ C

∞(u(E))

are (locally) constant.

Proof. (ii) and follows from (i): Given some tangent vector a,

d

dt
(J(A+ ta))|t=0 = 2〈FA, dAa〉 = 〈d∗AFA, a〉,

where 〈, 〉 are taken over the Riemannian metrics described in proposition 5 (v), and d∗A is the

adjoint of the linear map dA. From [1] §4, d∗A = − ∗ dA∗.

Let λ1 ≤ · · · ≤ λn be the eigenvalues of i
2π ∗FA, and define µ(dA) = (λ1, . . . , λn). Denote Y

as the set of all Yang-Mills connections and Yµ0 as the set of Yang-Mills connections dA ∈ Y

such that µ(dA) = µ0. For instance, if FA = ∗2πi kn , the associated index is µ = (k/n, . . . , k/n).

We shall see that the n-tuples µ index the Morse strata associated to the Yang-Mills

functional, which in fact coincides with the Harder-Narasimhan stratification explained earlier.

In particular, the index (k/n, . . . , k/n) corresponds precisely to the strata of stable bundles.

Now we turn to gradient flows, which are crucial in establishing the Morse stratification. For

general symplectic actions, the gradient flows for f = ||µ||2 may fail to converge, approaching

the critical locus only asymptotically, an issue that [13], §10 circumvents by appealing to

the continuity of Cech cohomology. Still, Yang-Mills functional satisfies suitable regularity

properties to establish the following results:

Theorem 7 ([5],§5-6). (i) The Yang-Mills gradient flow has local solutions that can be

extended in any finite time;

(ii) The G -orbit of a gradient flow converges to a unique G -orbit of Yang-Mills connection;

(iii) The Yang-Mills gradient flows set up deformation retraction13 of (L2
1(Σ)⊗u(E))/G onto

Y /G ;

(iv) The partition Y =
⋃

µ Yµ is G -invariant, and its induced Morse stratum on A coincides

with the Harder-Narasimhan stratification.

In the following we shall quickly go through several results regarding the regularity of

the Yang-Mills flow. Meanwhile, the holomorphic notion of stability shall be related to the

more differential-geometric concept of curvature, which can be considered analogous to the

relationship between GIT and symplectic reduction as seen in section 6.

13This is stronger than the cohomological equivalence for general finite-dimensional cases as in [13]. In

particular, Daskalopoulos continues to establish isomorphisms between homotopy groups of the strata and critical

loci, while §4 of [5] also exhibits satisfactory properties so that the cohomological method is applicable.
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According to (i) in proposition 6, the gradient flow equation is

dAt
dt

= −d∗AtAt. (2)

In [6] §1.1, the equation is transformed into a nonlinear parabolic equation: for gt ∈
Aut(E) ∼= G C and some fixed initial connection A0, At := gt(A0) satisfies equation 2 if and

only if ht := g∗t gt satisfies14

h0 = id,
∂h

∂t
= −2ihtΛ(FAt + ∂̄0(h−1

t (∂0ht))− λ),

where Λ : Ω2(Σ,End(E)) → Ω0(Σ,End(E)) is defined by fvolΣ 7→ f , and λ is any constant.

This is a parabolic equation in h, hence by [10] p. 122, there exists ε > 0 such that some smooth

solution ht exists for t ∈ [0, ε].

Setting up a notion of distance in G by examining the G -action on the Hermitian metric of

E, Donaldson also shows that ([6], Corollary 14, 15) the gradient flow is locally unique and can

be continued along any finite time.

To establish the limit of the gradient flow, we pass to the Sobolev (L2
1) versions of the above

bundles15, and use L2
1(·) to denote the Sobolev version of the original bundle. In this setting,

Uhlenbeck’s theorem (item (i) below) provides sequential compactness on the space of G , while

the following statement, due to Daskalopoulos, applies the theorem into the Yang-Mills setting.

Theorem 8. (i) ([17], Theorem 7.1) Let An be a sequence of L2
1 connections such that |FAn |2 ≤

ε for some ε > 0. Then there exists a subsequence A′n and g′n ∈ G such that g′n · A′n converges

L2
1-weakly;

(ii) ([5], Proposition 4.1) Let An be a sequence of L2
1 connections such that |FAn |2 ≤ ε for

some ε > 0 and |d∗AnFAn |
2 → 0 as n→∞, then there exists a subsequence A′n and g′n ∈ G such

that g′n · A′n converges L2
1-strongly to a smooth connection A∞ which is a critical point of the

Yang-Mills functional.

An important special case is for connections that correspond to a stable holomorphic bundles.

In [7], Donaldson relates the notion of stability with curvature and Yang-Mills connections:

Theorem 9. (i) For dA ∈ A , define J̃(dA) := | ∗F2πi + µ(E)|. J̃ can be seen as a modification

of the Yang-Mills functional J . Then the infimum infg∈G C J̃(g · dA) is attained in the G C-orbit

of dA;

(ii) dA corresponds to a stable holomorphic bundle if and only if the infg∈G C J̃(g · dA) is

attained at some A0 in the orbit with F (A0) = −2πiµ(E), if and only if it is G C-equivalent to

a Yang-Mills connection, which is unique up to G -equivalence.

An application of Uhlenbeck’s theorem shows that the infinimum is indeed attained by some

connection dA′ . Let dA, dA′ corresponds to holomorphic bundles E1, E2, then elliptic inequalities

on the bundle Hom(E,E) show that Hom(E1, E2) 6= 0. A map α ∈ Hom(E1, E2) can be factored

into a “map of bundle extensions”, say 0 → E′i → Ei → E′′i → 0, where E′i, E
′′
i have smaller

14g∗t ∈ Aut(E) denotes the adjoint of gt, so g ∈ G if and only if g∗g = id.
15In other words, coefficients with L2

1(Σ) are allowed. We shall assume that G - and G C-actions are extended

to the new bundles and use the L2- as well as L2
1-norms of the curvatures. More details can be found in [17],

Appendix A.
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ranks. By expressing curvature associated to Ei in terms of those of E′i, E
′′
i , lower and upper

bounds are found for infg∈G C J̃(g ·dA) and infg∈G C J̃(g ·dA′) are found in terms of the ranks and

degrees of the smaller bundles, which, applying induction on the rank of holomorphic bundles,

shows that E1 and E2 must be G C-equivalent, which establishes item (i). Item (ii) now follows

from differentiating the G -action on the curvature at some J̃-minimizing connection.

In the formulation of [5], there is thus a map r : A s/G → Y /G . By considering the Seshadri

filtration of semistable bundles, r can be extended to r : A ss/G → Y /G ; as the G C-orbits

of semistable L2
1-connections contain smooth connections, we have r : L2

1(A ss)/G → Y /G .

Finally, by considering Seshadri filtration of general bundles, there is

r : L2
1(A )/G →

⋃
µ

(Yµ/G );

the map r also induces a G C-invariant stratification on L2
1(A ) itself: define L2

1(A )µ/G as all

G -orbits such that their image under r lies in Yµ/G .

Technical analytic arguments are employed to prove (i) of the following theorem, and the

next two claims follow from it.

Theorem 10 ([5], §5). (i) r is continuous;

(ii) In L2
1(A )/G , any Yang-Mills flow within a single G C-orbit converges to a unique Yang-

Mills connection;

(iii) r : (L2
1(A ))µ/G → Yµ/G is a deformation retraction.

Daskalopoulos also compares the Yang-Mills stratification with the Harder-Narasimhan

stratification on C ∼= A :

Theorem 11. The Harder-Narasimhan stratification can be extended to one on L2
1(A ), which

we shall denote as (L2
1(A ))

∧
µ to distinguish from the Yang-Mills one.

(i) ([5], Proposition 4.12) For each µ, there exists a neighborbood Uµ of L2
1(A )µ/G in

L2
1(A )/G such that

Uµ ∩ (L2
1(A )µ/G ⊂ (L2

1(A ))
∧
µ/G ;

(ii) ([5], Theorem 6.2) (L2
1(A ))

∧
µ coincides with (L2

1(A ))µ.
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