TRIANGULATED CATEGORIES AND DERIVED CATEGORIES

SHUWEI WANG
TYPED BY JINGHUI YANG

27 Jun, 2022

Contents

1. Road Map to Derived Categories 1
2. Triangulated Categories 2
3. Derived Categories 8
3.1. Localization 8
3.2. Localization of triangulated categories 11
References 12

1. Road Map to Derived Categories

We assume the categories are always additive, e.g. Mod_{k}-enriched, for k commutative. For the most of cases, it is convenient to assume that the categories are abelian.

Let \mathcal{A} be an abelian category. There are two ways to obtain the derived category $D(\mathcal{A})$ of \mathcal{A}. Start with the category of chain complexes of \mathcal{A}, denoted by $\operatorname{Ch}(\mathcal{A})$. It is a differential graded category. The first way is to take its homotopy category $K(\mathcal{A})$, which is a triangulated category, then applies the Verdier quotient (which is a localisation) to obtain $D(\mathcal{A})$. The second way is to take the Keller-Drinfeld quotient to get $\operatorname{Ch}(\mathcal{A}) /\{$ Acyclic $\}$, then take the homotopy category of it, which is $D(\mathcal{A})$. In fact, the following diagram is commutative:

We can generalize the starting point $\operatorname{Ch}(\mathcal{A})$ to \mathcal{A}_{∞}-category, and obtain the category of twisted complexes by taking Verdier quotient of $H^{0} \mathcal{A}$. This is often used in HMS. However, one should be warned that the left vertical arrow in (1) usually does not exist because $H^{0} \mathcal{A}$ is not necessarily triangulated.

Set \mathcal{A} to be the category of coherent sheaves of a algebraic variety of X, and everything in (1) is taken to be "bounded". That is, for $M \in D^{\sharp}(\mathcal{A})\left(D^{\sharp}(\mathcal{A})\right.$ is "bounded" $D(\mathcal{A})$), $M^{i}=0$ for $|i| \gg 0$. In HMS, the lower horizontal arrow in (1)
usually refers to the B-side (be careful that the left vertical arrow still does not exist in general). On the other hand, the upper right corner of (1) corresponds to the A-side. In this approach, we choose a symplectic manifold (M, ω), and a Fukaya category $\mathcal{F}(M, \omega)$. Note that a Fukaya category is an \mathcal{A}_{∞}-category. After moving forward along the arrows, we reach the derived Fukaya category $D \mathcal{F}(M, \omega)$, which is $H^{0}(\operatorname{Tw} F(M, \omega))$, where $\operatorname{Tw} F(M, \omega)$ is a twisted \mathcal{A}_{∞}-category coming from the twisted complexes. We can prove that A-side and B-side essentially provide the same information.

We will introduce the notions in (1) in the following lectures. For reference, the reader is encouraged to review [1] for a detailed discussion.

2. Triangulated Categories

Definition 2.1. \mathcal{C} is a triangulated category, if it consists of the following data:
(1) an auto-morphism $T: \mathcal{C} \rightarrow \mathcal{C}$,
(2) a collection of distinguished triangles, each of which is a sequence of morphisms $A \rightarrow B \rightarrow C \rightarrow T(A)$ such that the following axioms are satisfied:
TR1 (a) If $u: X \rightarrow Y$, then there exists a $Z \in \mathcal{C}$ s.t. $X \xrightarrow{u} Y \rightarrow Z \rightarrow$ $T(X)$ is a distinguished triangle;
(b) for every $X \in \mathcal{C}, X \xrightarrow{\text { id }} X \rightarrow 0 \rightarrow T(X)$ is a distinguished triangle, where 0 is the zero object of \mathcal{C};
(c) if triangles $\Delta \cong \Delta^{\prime}$ and Δ is distinguished, then Δ^{\prime} is distinguished.
TR2 If $X \rightarrow Y \rightarrow Z \rightarrow T X$ is a distinguished triangle, then $T^{-1} Z \rightarrow X \rightarrow$ $Y \rightarrow Z$ and $Y \rightarrow Z \rightarrow T X \rightarrow T Y$ are distinguished triangles.
TR3 Given two distinguished triangles $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T X$ and $X^{\prime} \xrightarrow{f^{\prime}}$ $Y^{\prime} \xrightarrow{g^{\prime}} Z^{\prime} \xrightarrow{h^{\prime}} T X^{\prime}$, and morphisms $\alpha: X \rightarrow X^{\prime}$ and $\beta: Y \rightarrow Y^{\prime}$ with $f^{\prime} \circ \alpha=\beta \circ f$, there exists a morphism (necessarily unique) $\gamma: Z \rightarrow Z^{\prime}$ giving rise to a morphism of distinguished triangles:

TR4 (Octahedral axiom) Given three distinguished triangles

$$
\begin{aligned}
& A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{\partial} T A, \\
& B \xrightarrow{v} C \xrightarrow{x} A^{\prime} \xrightarrow{i} T B, \\
& A \xrightarrow{v \circ u} C \xrightarrow{y} B^{\prime} \xrightarrow{\delta} T A,
\end{aligned}
$$

there exists a distinguished triangle $C^{\prime} \xrightarrow{f} B^{\prime} \xrightarrow{g} A^{\prime} \xrightarrow{T(j) \circ i} T C^{\prime}$, such that $\partial=\delta \circ f, x=g \circ y, y \circ v=f \circ j$, and $u \circ \delta=i \circ g$.

Usually, we express the distinguished triangle $A \rightarrow B \rightarrow C \rightarrow T A$ as the diagram:

We use the dashed arrow $C \rightarrow A$ because the diagram is not necessarily commutative. The octahedral axiom gets its name because it can be expressed as

In the diagram, each face enclosed by same-colored triangle is exact and other faces commute. An even better way to visualize this is to focus on each block. For example,

Then octahedral axiom urges each path from B to $T B$ in the diagram (distinguished triangles), there exists $C^{\prime} \rightarrow B^{\prime}$, and $B^{\prime} \rightarrow A^{\prime}$ s.t. all paths are distinguished triangles, and the whole diagram commutative.
Definition 2.2. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a functor from a triangulated category to an abelian category. F is called a cohomolgical functor if for every distinguished triangle $A \rightarrow B \rightarrow C \rightarrow T A, F(A) \rightarrow F(B) \rightarrow F(C)$ is exact.

Remark 2.3. By TR2, a cohomolgical functor gives a long exact sequence:

$$
\cdots \rightarrow F(A) \rightarrow F(B) \rightarrow F(C) \rightarrow F(T A) \rightarrow \cdots
$$

Proposition 2.4. Let \mathcal{C} be triangulated.
(1) If $A \xrightarrow{f} B \xrightarrow{g} C \rightarrow T A$ is a distinguished triangle, then $g \circ f=0$.
(2) For any $W \in \mathcal{C}$, the functors $\operatorname{hom}_{\mathcal{C}}(W,-)$ and $\operatorname{hom}_{\mathcal{C}}(-, W)$ are cohomological.
Proof. (1) Apply TR1.(b) and TR3 to get a commutative diagram

Then $g \circ f=0$.
(2) Let $A \xrightarrow{f} B \xrightarrow{g} C \rightarrow T A$ be a distinguished triangle. We want to show $\operatorname{hom}_{\mathcal{C}}(W, A) \xrightarrow{f \circ-} \operatorname{hom}_{\mathcal{C}}(W, B) \xrightarrow{g \circ-} \operatorname{hom}_{\mathcal{C}}(W, C)$ is exact. That is, for all $\phi: W \rightarrow B$ with $g \circ \phi=0$, there exists $\psi: W \rightarrow A$ such that $f \psi=\phi$. Apply TR1.(b), TR2, and TR3 to get a commutative diagram

The result follows. The proof for $\operatorname{hom}_{\mathcal{C}}(-, W)$ is basically the same.

Let \mathcal{A} be abelian and cocomplete. Denote the category of chain complexes associated with \mathcal{A} by $\operatorname{Ch}(\mathcal{A})$. This is again an abelian category because the zero object is $\cdots \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \cdots$, and the kernel of a morphism $f_{\bullet}: A_{\bullet} \rightarrow B_{\bullet}$ is the complex of the kernels $\operatorname{ker}\left(f_{i}\right)$ for $i \in \mathbb{Z}$. Similarly we can figure out the cokernels coker $\left(f_{i}\right)$ for $i \in \mathbb{Z}$. \mathcal{A} is a full subcategory of $\operatorname{Ch}(\mathcal{A})$ because we can identify an object $A \in \mathcal{A}$ with a complex $A \bullet$ with $A_{0}=A$ and $A_{i}=0$ for all $i \neq 0$.
$\operatorname{Ch}(\mathcal{A})$ has two important features: cohomology and shift.
Definition 2.5. Let $A_{\bullet} \in \operatorname{Ch}(\mathcal{A})$. A shift functor $T: \operatorname{Ch}(\mathcal{A}) \rightarrow \operatorname{Ch}(\mathcal{A})$ is given by $T\left(A_{\bullet}\right)=A_{\bullet}[1]$, where $A_{i}[1]=A_{i+1}$ and $d_{i}^{A_{\bullet}}{ }^{[1]}=-d_{i+1}^{A_{\bullet}}$. For $f_{\bullet}: A_{\bullet} \rightarrow B_{\bullet}$, $T f_{\bullet}=f_{\bullet}[1]$, where $f_{i}[1]=f_{i+1}$.

It is easy to see T defines an equivalence of abelian categories, whose inverse functor T^{-1} is given by $A_{\bullet} \mapsto A_{\bullet}[-1]$. However, $\operatorname{Ch}(\mathcal{A})$ endowed with T does not define a triangulated category. This is because the canonical choices for distinguished triangles, like short exact sequences or mapping cones, do not satisfy the axioms. To fix it, we localize $\operatorname{Ch}(\mathcal{A})$ to its homotopy category $K(\mathcal{A})$, whose objects are the same as ones in $\operatorname{Ch}(\mathcal{A})$, but morphisms are

$$
\operatorname{hom}_{K(\mathcal{A})}(A, B)=\operatorname{hom}_{\operatorname{Ch}(\mathcal{A})}(A, B) / \text { chain homotopies. }
$$

Proposition 2.6. $K(\mathcal{A})$ is additive, but not necessarily abelian.
The proof of additivity is tedious. One has to check for the definition of additive categories and uses the fact that $\operatorname{Ch}(\mathcal{A})$ is abelian. We encourage the readers to do it by yourself or to see the section 2 of the note The Homotopy Category of Chain Complexes and Triangulated Categories for details. $K(\mathcal{A})$ is not necessarily abelian because the kernel of a chain map in $\operatorname{Ch}(\mathcal{A})$ might not exist in $K(\mathcal{A})$. In fact, we have the following result:
Proposition 2.7. If \mathcal{C} is abelian and triangulated, then it is semi-simple (i.e. every short exact sequence in \mathcal{C} splits).

Proof. Let $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be a short exact sequence in \mathcal{C}. By TR1.(a), there exists a distinguished triangle $A \rightarrow \xrightarrow{f} B \xrightarrow{u} Z \xrightarrow{v} T A$ for some $Z \in \mathcal{C}$. By TR1.(b), we have the following commutative diagram

By TR3, there exists a morphism $\gamma: Z \rightarrow 0$, which is unique since 0 is the zero object, such that the diagram commutes

In particular, $0=T f \circ v=T f \circ T\left(T^{-1} v\right)=T\left(f \circ T^{-1}(v)\right)$, yielding $f \circ T^{-1}(v)=0$. Since $f \neq 0$, we have $T^{-1}(v)=0$, yielding $v=0$. Therefore, the following diagram commutes in \mathcal{C} :

Again, by TR3, we can find a morphism $\tilde{f}: B \rightarrow A$ to complete the above diagram to a morphism of triangles. In particular, $\tilde{f} \circ f=\mathrm{id}$. This implies that $0 \rightarrow A \xrightarrow{f}$ $B \xrightarrow{g} C \rightarrow 0$ splits in \mathcal{C}.

Consider $\mathcal{A}=$ AbGrp. $K(\mathcal{A})$ is triangulated but not semi-simple. This is because in the short exact sequence in $K(\mathcal{A})$: (all concentrated at 0)

where $f(0)=0, f(1)=2$ and $g(0)=0, g(1)=3, g(2)=0, g(3)=3$. Proposition 2.7 tells us the short exact sequence splits. In particular, there exists a map \tilde{f} : $\mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2$ such that $\tilde{f} \circ f=\operatorname{id}$ in $K(\mathcal{A})$. However, this implies

$$
0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2 \rightarrow 0
$$

splits in AbGrp, which is impossible because $\mathbb{Z} / 4 \nsubseteq \mathbb{Z} / 2 \times \mathbb{Z} / 2$. Hence $K(\mathcal{A})$ cannot be abelian.

For fun, readers may wish to look at this post for another excellent counterexample. In general, if \mathcal{A} is semi-simple, then $K(\mathcal{A})$ is abelian. See III.2.3 of [3].
Proposition 2.8. $K(\mathcal{A})$ endowed with T is triangulated.
In order to show that $K(\mathcal{A})$ is a triangulated category, we need to construct the distinguished triangles. This is where the notion of cone gets involved. A detailed discussion of cone can be found in course notes of C2.2 Homological Algebra. For completeness, we write down the definition of it here.

Definition 2.9. The cone of a morphism $f: A \rightarrow B$ is $\operatorname{cone}(f)=A[1] \oplus B$. So $\operatorname{cone}(f)_{i}=A_{i+1} \oplus B_{i}$, and the differential $d_{i}^{\operatorname{cone}(f)}: \operatorname{cone}(f)_{i} \rightarrow \operatorname{cone}(f)_{i+1}$ is

$$
d_{i}^{\operatorname{cone}(f)}\binom{n}{m}=\left(\begin{array}{cc}
-d_{i+1}^{A} & 0 \\
f_{i+1} & d_{i}^{B}
\end{array}\right)\binom{n}{m} .
$$

Equivalently, $d_{i}^{\text {cone }(f)}(a, b)=\left(-d_{i+1}^{A}(a), f_{i+1}(a)+d_{i}^{B}(b)\right)$. Set the distinguished triangles in $K(\mathcal{A})$ to be of the form

$$
A \xrightarrow{f} B \rightarrow \operatorname{cone}(f) \rightarrow A[1] .
$$

Proof of Proposition 2.8. TR1 and TR3 are easily checked. We prove TR2 and TR4. For TR2, we want $B \rightarrow \operatorname{cone}(f) \rightarrow A[1] \rightarrow B[1]$ to be distinguished. From the construction of distinguished triangles, $B \xrightarrow{g}$ cone $(f) \rightarrow \operatorname{cone}(g) \rightarrow B[1]$ is distinguished. Note that $\operatorname{cone}(g)=B \oplus A[1] \oplus B[1] \cong A[1] \oplus(B \oplus B[1])$. We claim that

there exists a morphism ϕ such that the diagram commutes and ϕ is an isomorphism. ϕ is easy to define: for each i,

$$
\phi: A[1]_{i}=A_{i+1} \rightarrow \operatorname{cone}(g)_{i}=(A[1] \oplus B \oplus B[1])_{i}=A_{i+1} \oplus B_{i} \oplus B_{i+1}
$$

sending a to $\left(a, 0, f_{i+1}(a)\right)$. The inverse ϕ^{-1} can be given as the projection onto the first factor. The next thing is to check is the commutativity. The commutativity of the part

is straightforward. However, efforts should be made to prove the commutativity of the part

since it is not commutative in $\operatorname{Ch}(\mathcal{A})$. It is commutative up to homotopy. To see this, note that $\phi \circ \phi^{-1}$ is homotopic to id by easy computation $\left(h_{i}: \operatorname{cone}(g)_{i} \rightarrow\right.$ cone $(g)_{i+1}$ sending $\left(a, b_{0}, b_{1}\right)$ to $\left.\left(0,0, b_{0}\right)\right)$

$$
\begin{array}{r}
\left(a, b_{0}, b_{1}\right) \xrightarrow[h]{d}\left(-d^{A}(a), b_{1}\right. \\
\left.\left(0,0, b_{1}+f(a)+d^{B}\left(b_{0}\right)\right)+d^{B}\left(b_{0}\right),-d^{B}\left(b_{1}\right)\right)
\end{array}
$$

and

and $\left(\mathrm{id}-\phi \circ \phi^{-1}\right)\left(a, b_{0}, b_{1}\right)=\left(0, b_{0}, f(a)+b_{1}\right)$, since $d_{i}^{\text {cone }(g)}: \operatorname{cone}(g)_{i} \rightarrow \operatorname{cone}(g)_{i+1}$ is (here we regard cone $(g)=B[1] \oplus A[1] \oplus B$)

$$
d_{i}^{\operatorname{cone}(f)}=\left(\begin{array}{cc}
-d_{i+1}^{B} & 0 \\
g_{i+1} & d_{i}^{\operatorname{cone}(f)}
\end{array}\right)=\left(\begin{array}{ccc}
-d_{i+1}^{B} & 0 & 0 \\
0 & -d_{i}^{A} & 0 \\
1 & f_{i+1} & d_{i}^{B}
\end{array}\right)
$$

One should be careful that $-f: A[1] \rightarrow B[1]$ induced by $f: A \rightarrow B$ has a changed sign. Hence we proved our claim. To show that TR4 is satisfied, one can look at each block in the form

for $A \xrightarrow{u} B \xrightarrow{v} C$, and check it is commutative. We omit the details here.
Definition 2.10. The cohomology $H^{i}\left(A_{\bullet}\right)$ of a complex A_{\bullet} is the quotient

$$
H^{i}\left(A_{\bullet}\right)=\frac{\operatorname{ker}\left(d_{i}\right)}{\operatorname{im}\left(d_{i-1}\right)} \in \mathcal{A}
$$

A complex A_{\bullet} is acyclic if $H^{i}\left(A_{\bullet}\right)=0$ for all $i \in \mathbb{Z}$. A morphism of complexes f_{\bullet} : $A_{\bullet} \rightarrow B_{\bullet}$ is a quasi-isomorphism if the induced map $H^{i}\left(f_{\bullet}\right)$ is an isomorphism for all i.

Proposition 2.11. For a distinguished triangle

$$
A \xrightarrow{f} B \rightarrow \operatorname{cone}(f) \rightarrow A[1],
$$

f is a quasi-isomorphism iff cone (f) is acyclic.
Proof. It is clear that (\Rightarrow) holds. For (\Leftarrow), consider the distinguished triangles:

By TR3 there exists a map $B \rightarrow A$ such that the diagram commutes. Hence we obtain a quasi-isomorphism.

Proposition 2.12. $H^{i}: K(\mathcal{A}) \rightarrow \mathcal{A}$ is a cohomological functor. Any distinguished triangle $A \rightarrow B \rightarrow C \rightarrow A[1]$ induces a long exact sequence

$$
\cdots \rightarrow H^{i}(A) \rightarrow H^{i}(B) \rightarrow H^{i}(C) \rightarrow H^{i+1}(A) \rightarrow \cdots
$$

Proof. Let $A \xrightarrow{f} B \rightarrow C \rightarrow A[1]$ be a distinguished triangle. Then it is isomorphic to $A \rightarrow B \rightarrow \operatorname{cone}(f) \rightarrow A[1]$. Since

$$
0 \rightarrow B \rightarrow \operatorname{cone}(f) \rightarrow A[1] \rightarrow 0
$$

is exact, it is immediate that

$$
H^{i}(B) \rightarrow H^{i}(\operatorname{cone}(f)) \rightarrow H^{i+1}(A)
$$

is exact. Hence

$$
H^{i}(B) \rightarrow H^{i}(C) \rightarrow H^{i+1}(A)
$$

is exact.

3. Derived Categories

The derived category $D(\mathcal{A})$ is defined to be the localization of $K(\mathcal{A})$ by a multiplicative set of morphisms related to a null system. We first give the definition of the localization.

3.1. Localization.

Definition 3.1. Let \mathcal{C} be an arbitrary category, and $S \subset \operatorname{Mor}(\mathcal{C})$ be a set of morphisms. A localization of \mathcal{C} by S, is the data of a category $S^{-1} \mathcal{C}$ and a functor $F: \mathcal{C} \rightarrow S^{-1} \mathcal{C}$ satisfying:
(1) for all $s \in S, F(s)$ is an isomorphism,
(2) (Universal property) for any functor $G: \mathcal{C} \rightarrow \mathcal{D}$ satisfies (1), there exists a lifted functor $\tilde{F}: S^{-1} \mathcal{C} \rightarrow \mathcal{D}$ of F, such that $F \simeq \tilde{F} \circ G$. That is, the diagram commutes:

(3) if $G_{1}, G_{2}: S^{-1} \mathcal{C} \rightarrow \mathcal{D}$ are two functors, then the natural map

$$
\operatorname{hom}_{\operatorname{Fun}\left(S^{-1} \mathcal{C}, \mathcal{D}\right)}\left(G_{1}, G_{2}\right) \rightarrow \operatorname{hom}_{\operatorname{Fun}(\mathcal{C}, \mathcal{D})}\left(G_{1} \circ F, G_{2} \circ F\right)
$$

is bijective. That is, $-\circ F$ is fully faithful. This also implies that \tilde{F} in (2) is unique up to unique isomorphism.

Definition 3.2. Let $S \subset \operatorname{Mor}(\mathcal{C})$ be a set of morphisms in the category \mathcal{C}. S is said to be right multiplicative if
(1) for every $x \in \mathcal{C}, \operatorname{id}_{x} \in S$,
(2) for every two morphisms $f, g \in S, f \circ g \in S$,
(3) for every $f: x \rightarrow x^{\prime}$ in S and $g: x \rightarrow y$ not necessarily in S, there exists $f^{\prime}: y \rightarrow y^{\prime}$ in S and $g^{\prime}: x^{\prime} \rightarrow y^{\prime}$ not necessarily in S, s.t. the diagram commutes:
(4) for every $f, g: x \rightarrow y$ and $h: z \rightarrow x$ satisfying $h \in S$ and $f \circ h=g \circ h$, there exists $h^{\prime} \in S, h^{\prime}: y \rightarrow w^{\prime}$, with $h^{\prime} \circ f=h^{\prime} \circ g$.

$$
z \xrightarrow{h} x \xrightarrow[g]{\stackrel{f}{\Longrightarrow}} y-\underline{-}_{-->}^{h^{\prime}} w
$$

The existence of localization of a category $S^{-1} \mathcal{C}$ can indeed be obtained by some right multiplicative system \S. Define the category S^{Y} as follows $(Y \in \mathcal{C})$:

$$
\begin{aligned}
& \operatorname{Obj}\left(S^{Y}\right)=\left\{s: Y \rightarrow Y^{\prime} \mid s \in S\right\} \\
& \operatorname{hom}_{S^{Y}}\left(\left(s: Y \rightarrow Y^{\prime}\right),\left(s^{\prime}: Y \rightarrow Y^{\prime \prime}\right)\right)=\left\{h: Y^{\prime} \rightarrow Y^{\prime \prime} \mid h \circ s=s^{\prime}\right\} .
\end{aligned}
$$

This is equivalent to say $S^{Y}=S \cap(Y / \mathcal{C})$, where (Y / \mathcal{C}) is a comma category. Let X, Y be arbitrary objects in \mathcal{C}. Define a new category \mathcal{C}_{S}^{r} as follows:

$$
\begin{aligned}
& \operatorname{Obj}\left(\mathcal{C}_{S}^{r}\right)=\operatorname{Obj}(C) \\
& \operatorname{hom}_{\mathcal{C}_{S}^{r}}(X, Y)=\operatorname{colim}_{\left(Y \rightarrow Y^{\prime}\right) \in S^{Y}} \operatorname{hom}_{\mathcal{C}}\left(X, Y^{\prime}\right)
\end{aligned}
$$

We need to check that \mathcal{C}_{S}^{r} is indeed a category.
Lemma 3.3. Let $s: X \rightarrow X^{\prime}$ be in S. s induces an isomorphism

$$
\operatorname{hom}_{\mathcal{C}_{S}^{r}}\left(X^{\prime}, Y\right) \xrightarrow[-\mathrm{os}]{\simeq} \operatorname{hom}_{\mathcal{C}_{S}^{r}}(X, Y)
$$

Proof. First to show that $-\circ s$ is bijective. It is injective because if $f, g \in$ $\operatorname{hom}_{\mathcal{C}_{S}^{r}}\left(X^{\prime}, Y\right)$ such that $f \circ s=g \circ s$, by (4) in Definition 3.2, there exists $Y^{\prime \prime}$ and $h: Y^{\prime} \rightarrow Y^{\prime \prime}$ in S with $h \circ \tilde{f}=h \circ \tilde{g}$, such that

where $f=\operatorname{colim}_{\left(t: Y \rightarrow Y^{\prime}\right) \in S^{Y}}\left(\tilde{f}: X^{\prime} \rightarrow Y^{\prime}\right), g=\operatorname{colim}_{\left(t: Y \rightarrow Y^{\prime}\right) \in S^{Y}}\left(\tilde{g}: X^{\prime} \rightarrow Y^{\prime}\right)$. This implies $f=g$ by the universal property of colimits. Abuse the notation, we can prove the surjectivity by (3) in Definition 3.2 as follows: for every $\phi \in \operatorname{hom}_{\mathcal{C}_{S}^{r}}(X, Y)$, $\phi=\operatorname{colim}_{t}\left(\tilde{\phi}: X \rightarrow Y^{\prime}\right)$, there exists morphism $X^{\prime} \rightarrow Y^{\prime \prime}$ and $Y^{\prime} \xrightarrow{t^{\prime}} Y^{\prime \prime}$ such that the diagram commutes:

So we can define a morphism $\tilde{f}: X^{\prime} \rightarrow Y^{\prime}$ with $\tilde{f} \circ s=\tilde{\phi}$, and this yields $t^{\prime} \circ(\tilde{f} \circ s)=$ $t^{\prime} \circ \tilde{\phi}$. Now we get $f=\operatorname{colim}_{t} \tilde{f} \in \operatorname{hom}_{\mathcal{C}_{S}^{r}}\left(X^{\prime}, Y\right)$.

The composition in \mathcal{C}_{S}^{r} is defined through

$$
\begin{aligned}
\operatorname{colim}_{\left(Y \rightarrow Y^{\prime}\right) \in S^{Y}}^{\operatorname{hom}_{\mathcal{C}}\left(X, Y^{\prime}\right)} & \times \operatorname{colim}_{\left(Z \rightarrow Z^{\prime}\right) \in S^{Y}} \operatorname{hom}_{\mathcal{C}}\left(Y, Z^{\prime}\right) \\
\simeq \simeq & \simeq \operatorname{colim}_{\left(Y \rightarrow Y^{\prime}\right) \in S^{Y}}\left(\operatorname{hom}_{\mathcal{C}}\left(X, Y^{\prime}\right) \times \operatorname{colim}_{\left(Z \rightarrow Z^{\prime}\right) \in S^{Y}} \operatorname{hom}_{\mathcal{C}}\left(Y, Z^{\prime}\right)\right) \\
\simeq & \operatorname{Lomma~}_{\left(Y \rightarrow Y^{\prime}\right) \in S^{Y}}\left(\operatorname{hom}_{\mathcal{C}}\left(X, Y^{\prime}\right) \times \operatorname{colim}_{\left(Z^{\prime} \rightarrow Z^{\prime}\right) \in S^{Y}} \operatorname{hom}_{\mathcal{C}}\left(Y^{\prime}, Z^{\prime}\right)\right) \\
& \rightarrow \operatorname{colim}_{\left(Y \rightarrow Y^{\prime}\right) \in S^{Y}} \operatorname{colim}_{\left(Z \rightarrow Z^{\prime}\right) \in S^{Y}} \operatorname{hom}_{\mathcal{C}}\left(X, Z^{\prime}\right) \\
& \rightarrow \operatorname{colim}_{\left(Z \rightarrow Z^{\prime}\right) \in S^{Y}} \operatorname{hom}_{\mathcal{C}}\left(X, Z^{\prime}\right) .
\end{aligned}
$$

We omit the proof that the composition is associative. Now \mathcal{C}_{S}^{r} is a well-defined category. We will show that \mathcal{C}_{S}^{r} is essentially the localization $S^{-1} \mathcal{C}$.

Theorem 3.4. Let S be a right multiplicative system. Then $\mathcal{C}_{S}^{r} \simeq S^{-1} \mathcal{C}$.
Proof. Let $Q_{S}: \mathcal{C} \rightarrow \mathcal{C}_{S}^{r}$ be the natural functor associated with $\operatorname{hom}_{\mathcal{C}}(X, Y) \rightarrow$ $\operatorname{colim}_{\left(Y \rightarrow Y^{\prime}\right) \in S^{Y}} \operatorname{hom}_{\mathcal{C}}\left(X, Y^{\prime}\right)$. By Lemma 3.3, for any $Z \in \mathcal{C}_{S}^{r}$ and morphism s : $X \rightarrow Y$ in $S, \operatorname{hom}_{C_{S}^{r}}(Y, Z) \rightarrow \operatorname{hom}_{C_{S}^{r}}(X, Z)$ is bijective. This indicates that $Q_{S}(s)$ is invertible. Let $f^{s}: X \rightarrow Y$ be any morphism in \mathcal{C}_{S}^{r}. By definition, f is given by an equivalence class of triplets $\left(Y^{\prime}, t: Y \rightarrow Y^{\prime}, f^{\prime}: X \rightarrow Y^{\prime}\right)$, where $t \in S$ and

$$
X \xrightarrow{f^{\prime}} Y^{\prime} \stackrel{t}{\leftarrow} Y .
$$

$\left(Y^{\prime}, t, f^{\prime}\right) \sim\left(Y^{\prime \prime}, t^{\prime}, f^{\prime \prime}\right)$ iff there exists $\left(Y^{\prime \prime \prime}, t^{\prime \prime}, f^{\prime \prime \prime}\right)$ with $t, t^{\prime}, t^{\prime \prime} \in S$, and the diagram commutes

Note that in $\mathcal{C}_{S}^{r}, f=Q_{S}(t)^{-1} \circ Q_{S}\left(f^{\prime}\right)$. Hence for any two parallel arrows $f, g: X \rightarrow$ Y in \mathcal{C}, we have that $Q_{S}(f)=Q_{S}(g)$ iff there exists a morphism $s: Y \rightarrow Y^{\prime}$ in S such that $s \circ f=s \circ g$ (note the composition is just the composition of cospans).

Let I be a full subcategory of \mathcal{C}, and S be a right multiplicative system in \mathcal{C}. $I \cap S$ is the family of morphisms in I which belong to S. There is another way to characterize $S^{-1} \mathcal{C}$:

Theorem 3.5. If for every $X \in \mathcal{C}$, there exists $s: X \rightarrow W$ with $W \in I$ such that $s \in S$, then $I \cap S$ is a right multiplicative system, and $(I \cap S)^{-1} I \simeq S^{-1} \mathcal{C}$.
Proof. We skip the proof of $I \cap S$ being a right multiplicative system. The readers are encouraged to check it by definition. For $W \in I,(I \cap S)^{W}$ is a full subcategory of S^{W} whose objects are the morphism $i: W \rightarrow V$ with $V \in I$ and $i \in I \cap S$. One can check that the natural functor $\Phi:(I \cap S)^{-1} I \rightarrow S^{-1} \mathcal{C}$ is cofinal (see Proposition 5.1.7 in [1]), and so it is fully faithful by Definition of \mathcal{C}_{S}^{r}. Φ is essentially surjective by the assumption. Hence $(I \cap S)^{-1} I \simeq S^{-1} \mathcal{C}$.

Remark 3.6. Dually, we can define the notion of a left multiplicative system S be reversing arrows in Definition 3.2. In this case, we can set $\operatorname{Obj}\left(\mathcal{C}_{S}^{l}\right)=\operatorname{Obj}(\mathcal{C})$, and the morphisms in \mathcal{C}_{S}^{l} to be

$$
\operatorname{hom}_{\mathcal{C}_{S}^{l}}(X, Y)=\operatorname{colim}_{\left(X \rightarrow X^{\prime}\right) \in S_{X}} \operatorname{hom}_{\mathcal{C}}\left(X^{\prime}, Y\right),
$$

where S_{X} is the category defined as follows:

$$
\begin{aligned}
& \operatorname{Obj}\left(S_{X}\right)=\left\{s: X^{\prime} \rightarrow X \mid s \in S\right\} \\
& \operatorname{hom}_{S_{X}}\left(\left(s: X^{\prime} \rightarrow X\right),\left(s^{\prime}: X^{\prime \prime} \rightarrow X\right)\right)=\left\{h: X^{\prime} \rightarrow X^{\prime \prime} \mid s=s^{\prime} \circ h\right\}
\end{aligned}
$$

One goes through the proof of Theorem 3.4 and finds \mathcal{C}_{S}^{l} and \mathcal{C}_{S}^{r} give equivalent categories. So we are free to choose the left or right multiplicative system to get a localization.
3.2. Localization of triangulated categories. Let \mathcal{D} be a triangulated category.

Definition 3.7. Let $N \subset \mathcal{D}$ be a set of morphisms in \mathcal{D}. It is called a null system if
(1) $0 \in N$,
(2) every $x \in N$ iff $T x \in N$,
(3) for every distinguished triangle $x \rightarrow y \rightarrow z \rightarrow T x$, if $x, y \in N$, then $z \in N$.

Define

$$
S=\{f: x \rightarrow y \mid \exists \text { distinguished triangle } x \rightarrow y \rightarrow z \rightarrow T x \text { s.t. } z \in N\}
$$

Exercise 3.8. S is right multiplicative.
Assume \mathcal{A} is an abelian category from now on. In $K(\mathcal{A})$, the null system N is the set of acyclic chains, so S is the set of quasi-isomorphisms. By definition, the derived category of \mathcal{A} is $D(A)=S^{-1} K(\mathcal{A})$.

Corollary 3.9. $D(\mathcal{A})$ is additive, but not necessarily abelian.
Let I be the full subcategory of all cochain complexes of injectives of $K^{+}(\mathcal{A})$, where we write $(-)^{+}$to denote "bounded below". I is then additive and triangulated.

Proposition 3.10. Suppose \mathcal{A} has enough injectives. For every $A \in K^{+}(\mathcal{A})$, there exists an injective $J \subset I$ such that the morphism $A \rightarrow J$ is a quasi-isomorphism.

Proof. We define J as follows. Let $A_{0}=Z_{0}$. Since \mathcal{A} has enough injectives, one can find a monomorphism from Z_{0} to an injective J_{0}. Define Z_{1} to be the pushout of $J_{0} \longleftarrow Z_{0} \xrightarrow{d_{0}} A_{1}$. Then define Z_{2} to be the pushout of $J_{1} \longleftarrow Z_{1} \xrightarrow{d_{1}} A_{2}$, where $Z_{1} \mapsto J_{1}$ is a monomorphism. Recursively, we define Z_{k+1} to be the pushout of $J_{k} \longleftarrow Z_{k} \xrightarrow{d_{k}} A_{k+1}$. A diagram demonstrating the process is the following:

It suffices to prove that in the distinguished triangle $A \xrightarrow{f} J \rightarrow \operatorname{cone}(f) \rightarrow A[1]$, cone (f) is acyclic. Consider $Z \rightarrow J \oplus A[1] \rightarrow Z[1]$, i.e. the diagonal of the diagram above. Apply the cohomological functor H^{i}, we know that

$$
\cdots \rightarrow H^{i}(Z) \xrightarrow{\mathrm{id}} H^{i}(Z) \rightarrow H^{i}(\operatorname{cone}(f)) \rightarrow H^{i+1}(Z) \rightarrow \cdots
$$

is exact. This implies $H^{i}(\operatorname{cone}(f))=0$ for all i. The result follows.
On the other hand, by Theorem 3.5, $D^{+}(\mathcal{A}) \simeq(I \cap S)^{-1} I$. Let $A \in I$ be acyclic (i.e. $A \in N$), then id : $A \rightarrow A$ is in S, implying id is homotopic to 0 . Hence we have a very nice result:

$$
D^{+}(\mathcal{A}) \simeq(I \cap S)^{-1} I \simeq I
$$

Remark 3.11. In the proof of Proposition 3.10, we implicitly assume that \mathcal{A} has cokernels and coequalizers. In fact, this assumption can be dropped. See Lemma 2.38 in [4].

References

[1] Schapira, P. (2011) Categories and Homological Algebra. https://www.mimuw.edu.pl/ aboj/topalg/Schapira.pdf
[2] Drinfeld, V. (2002). DG quotients of DG categories. arXiv. 0210114.
[3] Gelfand, S., Manin, Y. (1997). Methods of Homological Algebra. Springer Monographs in Mathematics.
[4] Huybrechts, D. (2006). Fourier-Mukai transforms in algebraic geometry. Clarendon Press. Oxford.
[5] Rekuski, N. M. (2018) The Homotopy Category of Chain Complexes and Triangulated Categories. Notes.

