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1. Road Map to Derived Categories

We assume the categories are always additive, e.g. Modk-enriched, for k com-
mutative. For the most of cases, it is convenient to assume that the categories are
abelian.

Let A be an abelian category. There are two ways to obtain the derived category
D(A) of A. Start with the category of chain complexes of A, denoted by Ch(A).
It is a differential graded category. The first way is to take its homotopy category
K(A), which is a triangulated category, then applies the Verdier quotient (which
is a localisation) to obtain D(A). The second way is to take the Keller-Drinfeld
quotient to get Ch(A)/{Acyclic}, then take the homotopy category of it, which is
D(A). In fact, the following diagram is commutative:

(1)

Ch(A) Ch(A)/{Acyclic}

K(A) D(A)

homotopy
category

(Keller-
)Drinfeld
quotient

homotopy cate-
gory

Verdier quotient

We can generalize the starting point Ch(A) to A∞-category, and obtain the
category of twisted complexes by taking Verdier quotient of H0A. This is often
used in HMS. However, one should be warned that the left vertical arrow in (1)
usually does not exist because H0A is not necessarily triangulated.

Set A to be the category of coherent sheaves of a algebraic variety of X, and
everything in (1) is taken to be ”bounded”. That is, for M ∈ D♯(A) (D♯(A) is
”bounded” D(A)), M i = 0 for |i| ≫ 0. In HMS, the lower horizontal arrow in (1)
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usually refers to the B-side (be careful that the left vertical arrow still does not
exist in general). On the other hand, the upper right corner of (1) corresponds
to the A-side. In this approach, we choose a symplectic manifold (M,ω), and a
Fukaya category F(M,ω). Note that a Fukaya category is an A∞-category. After
moving forward along the arrows, we reach the derived Fukaya category DF(M,ω),
which isH0(TwF (M,ω)), where TwF (M,ω) is a twisted A∞-category coming from
the twisted complexes. We can prove that A-side and B-side essentially provide
the same information.

We will introduce the notions in (1) in the following lectures. For reference, the
reader is encouraged to review [1] for a detailed discussion.

2. Triangulated Categories

Definition 2.1. C is a triangulated category, if it consists of the following data:

(1) an auto-morphism T : C → C,
(2) a collection of distinguished triangles, each of which is a sequence of

morphisms A → B → C → T (A) such that the following axioms are
satisfied:
TR1 (a) If u : X → Y , then there exists a Z ∈ C s.t. X

u−→ Y → Z →
T (X) is a distinguished triangle;

(b) for every X ∈ C, X id−→ X → 0 → T (X) is a distinguished
triangle, where 0 is the zero object of C;

(c) if triangles ∆ ∼= ∆′ and ∆ is distinguished, then ∆′ is distin-
guished.

TR2 If X → Y → Z → TX is a distinguished triangle, then T−1Z → X →
Y → Z and Y → Z → TX → TY are distinguished triangles.

TR3 Given two distinguished triangles X
f−→ Y

g−→ Z
h−→ TX and X ′ f ′

−→
Y ′ g′−→ Z ′ h′

−→ TX ′, and morphisms α : X → X ′ and β : Y → Y ′ with
f ′ ◦α = β ◦f , there exists a morphism (necessarily unique) γ : Z → Z ′

giving rise to a morphism of distinguished triangles:

X Y Z TX

X ′ Y ′ Z ′ TX ′

α

f

β

g

γ

h

Tα

f ′ g′ h′

TR4 (Octahedral axiom) Given three distinguished triangles

A
u−→ B

v−→ C
∂−→ TA,

B
v−→ C

x−→ A′ i−→ TB,

A
v◦u−−→ C

y−→ B′ δ−→ TA,

there exists a distinguished triangle C ′ f−→ B′ g−→ A′ T (j)◦i−−−−→ TC ′, such
that ∂ = δ ◦ f , x = g ◦ y, y ◦ v = f ◦ j, and u ◦ δ = i ◦ g.
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Usually, we express the distinguished triangle A → B → C → TA as the dia-
gram:

A

B C
T

We use the dashed arrow C → A because the diagram is not necessarily commuta-
tive. The octahedral axiom gets its name because it can be expressed as

C

B A′

A B′

C ′

In the diagram, each face enclosed by same-colored triangle is exact and other faces
commute. An even better way to visualize this is to focus on each block. For
example,

B C

C ′ B′ A′

TA′ TB

∃ ∃

Then octahedral axiom urges each path from B to TB in the diagram (distinguished
triangles), there exists C ′ → B′, and B′ → A′ s.t. all paths are distinguished
triangles, and the whole diagram commutative.

Definition 2.2. Let F : C → D be a functor from a triangulated category to an
abelian category. F is called a cohomolgical functor if for every distinguished
triangle A→ B → C → TA, F (A)→ F (B)→ F (C) is exact.

Remark 2.3. By TR2, a cohomolgical functor gives a long exact sequence:

· · · → F (A)→ F (B)→ F (C)→ F (TA)→ · · ·

Proposition 2.4. Let C be triangulated.

(1) If A
f−→ B

g−→ C → TA is a distinguished triangle, then g ◦ f = 0.
(2) For any W ∈ C, the functors homC(W,−) and homC(−,W ) are cohomolog-

ical.

Proof. (1) Apply TR1.(b) and TR3 to get a commutative diagram

A A 0 TA

A B C TA

id

id

f id

f g

Then g ◦ f = 0.
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(2) Let A
f−→ B

g−→ C → TA be a distinguished triangle. We want to show

homC(W,A)
f◦−−−−→ homC(W,B)

g◦−−−→ homC(W,C) is exact. That is, for all
ϕ : W → B with g ◦ ϕ = 0, there exists ψ : W → A such that fψ = ϕ.
Apply TR1.(b), TR2, and TR3 to get a commutative diagram

W W 0 TW

A B C TA

id

∃ψ ϕ

f g

The result follows. The proof for homC(−,W ) is basically the same.
□

Let A be abelian and cocomplete. Denote the category of chain complexes
associated with A by Ch(A). This is again an abelian category because the zero
object is · · · → 0→ 0→ 0→ · · · , and the kernel of a morphism f• : A• → B• is the
complex of the kernels ker(fi) for i ∈ Z. Similarly we can figure out the cokernels
coker (fi) for i ∈ Z. A is a full subcategory of Ch(A) because we can identify an
object A ∈ A with a complex A• with A0 = A and Ai = 0 for all i ̸= 0.

Ch(A) has two important features: cohomology and shift.

Definition 2.5. Let A• ∈ Ch(A). A shift functor T : Ch(A) → Ch(A) is given

by T (A•) = A•[1], where Ai[1] = Ai+1 and d
A•[1]
i = −dA•

i+1. For f• : A• → B•,
Tf• = f•[1], where fi[1] = fi+1.

It is easy to see T defines an equivalence of abelian categories, whose inverse
functor T−1 is given by A• 7→ A•[−1]. However, Ch(A) endowed with T does not
define a triangulated category. This is because the canonical choices for distin-
guished triangles, like short exact sequences or mapping cones, do not satisfy the
axioms. To fix it, we localize Ch(A) to its homotopy category K(A), whose
objects are the same as ones in Ch(A), but morphisms are

homK(A)(A,B) = homCh(A)(A,B)
/
chain homotopies.

Proposition 2.6. K(A) is additive, but not necessarily abelian.

The proof of additivity is tedious. One has to check for the definition of additive
categories and uses the fact that Ch(A) is abelian. We encourage the readers to
do it by yourself or to see the section 2 of the note The Homotopy Category of
Chain Complexes and Triangulated Categories for details. K(A) is not necessarily
abelian because the kernel of a chain map in Ch(A) might not exist in K(A). In
fact, we have the following result:

Proposition 2.7. If C is abelian and triangulated, then it is semi-simple (i.e. every
short exact sequence in C splits).

Proof. Let 0 → A
f−→ B

g−→ C → 0 be a short exact sequence in C. By TR1.(a),

there exists a distinguished triangle A → f−→ B
u−→ Z

v−→ TA for some Z ∈ C. By
TR1.(b), we have the following commutative diagram

A B Z TA

B B 0 TB

f

f

u

id

v

Tf

id

https://users.math.msu.edu/users/rekuskin/research/talks/homotopy_category_of_chain_complexes_and_triangulated_categories/homotopy_category_of_chain_complexes_and_triangulated_categories.pdf
https://users.math.msu.edu/users/rekuskin/research/talks/homotopy_category_of_chain_complexes_and_triangulated_categories/homotopy_category_of_chain_complexes_and_triangulated_categories.pdf
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By TR3, there exists a morphism γ : Z → 0, which is unique since 0 is the zero
object, such that the diagram commutes

A B Z TA

B B 0 TB

f

f

u

id

v

γ Tf

id

In particular, 0 = Tf ◦v = Tf ◦T (T−1v) = T (f ◦T−1(v)), yielding f ◦T−1(v) = 0.
Since f ̸= 0, we have T−1(v) = 0, yielding v = 0. Therefore, the following diagram
commutes in C:

A B Z TB

A A 0 TA

f

id

u 0

id

id

Again, by TR3, we can find a morphism f̃ : B → A to complete the above diagram

to a morphism of triangles. In particular, f̃ ◦ f = id. This implies that 0 → A
f−→

B
g−→ C → 0 splits in C. □

Consider A =AbGrp. K(A) is triangulated but not semi-simple. This is be-
cause in the short exact sequence in K(A): (all concentrated at 0)

· · · 0 · · ·

· · · Z/2 · · ·

· · · Z/4 · · ·

· · · Z/2 · · ·

· · · 0 · · ·

f

g

where f(0) = 0, f(1) = 2 and g(0) = 0, g(1) = 3, g(2) = 0, g(3) = 3. Proposition

2.7 tells us the short exact sequence splits. In particular, there exists a map f̃ :
Z/4→ Z/2 such that f̃ ◦ f = id in K(A). However, this implies

0→ Z/2→ Z/4→ Z/2→ 0

splits in AbGrp, which is impossible because Z/4 ≇ Z/2 × Z/2. Hence K(A)
cannot be abelian.

For fun, readers may wish to look at this post for another excellent counterex-
ample. In general, if A is semi-simple, then K(A) is abelian. See III.2.3 of [3].

Proposition 2.8. K(A) endowed with T is triangulated.

In order to show that K(A) is a triangulated category, we need to construct the
distinguished triangles. This is where the notion of cone gets involved. A detailed
discussion of cone can be found in course notes of C2.2 Homological Algebra. For
completeness, we write down the definition of it here.

https://math.stackexchange.com/questions/1280199/the-homotopy-category-of-complexes/1284823#1284823
https://courses-archive.maths.ox.ac.uk/node/49258/materials
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Definition 2.9. The cone of a morphism f : A → B is cone(f) = A[1] ⊕ B. So

cone(f)i = Ai+1 ⊕Bi, and the differential d
cone(f)
i : cone(f)i → cone(f)i+1 is

d
cone(f)
i

(
n

m

)
=

(
−dAi+1 0
fi+1 dBi

)(
n

m

)
.

Equivalently, d
cone(f)
i (a, b) = (−dAi+1(a), fi+1(a) + dBi (b)). Set the distinguished

triangles in K(A) to be of the form

A
f−→ B → cone(f)→ A[1].

Proof of Proposition 2.8. TR1 and TR3 are easily checked. We prove TR2 and
TR4. For TR2, we want B → cone(f) → A[1] → B[1] to be distinguished. From

the construction of distinguished triangles, B
g−→ cone(f) → cone(g) → B[1] is

distinguished. Note that cone(g) = B ⊕A[1]⊕B[1] ∼= A[1]⊕ (B ⊕B[1]). We claim
that

B cone(f) A[1] B[1]

B cone(f) cone(g) B[1]

= = ϕ =

g

there exists a morphism ϕ such that the diagram commutes and ϕ is an isomorphism.
ϕ is easy to define: for each i,

ϕ : A[1]i = Ai+1 → cone(g)i = (A[1]⊕B ⊕B[1])i = Ai+1 ⊕Bi ⊕Bi+1,

sending a to (a, 0, fi+1(a)). The inverse ϕ
−1 can be given as the projection onto the

first factor. The next thing is to check is the commutativity. The commutativity
of the part

A[1] B[1]

cone(g) B[1]

ϕ =

is straightforward. However, efforts should be made to prove the commutativity of
the part

cone(f) A[1]

cone(f) cone(g)

= ϕ

since it is not commutative in Ch(A). It is commutative up to homotopy. To see
this, note that ϕ ◦ ϕ−1 is homotopic to id by easy computation (hi : cone(g)i →
cone(g)i+1 sending (a, b0, b1) to (0, 0, b0))

(a, b0, b1) (−dA(a), b1 + f(a) + dB(b0),−dB(b1))

(0, 0, b1 + f(a) + dB(b0))

d

h
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and

(a, b0, b1)

(0, 0, b0) (0, b0,−dB(b0))

h

d

and (id−ϕ◦ϕ−1)(a, b0, b1) = (0, b0, f(a)+b1), since d
cone(g)
i : cone(g)i → cone(g)i+1

is (here we regard cone(g) = B[1]⊕A[1]⊕B)

d
cone(f)
i =

(
−dBi+1 0

gi+1 d
cone(f)
i

)
=

−dBi+1 0 0
0 −dAi 0
1 fi+1 dBi

 .

One should be careful that −f : A[1]→ B[1] induced by f : A→ B has a changed
sign. Hence we proved our claim. To show that TR4 is satisfied, one can look at
each block in the form

B C

cone(u) cone(v ◦ u) cone(v)

TA TB

v⊕id

id⊕u

for A
u−→ B

v−→ C, and check it is commutative. We omit the details here. □

Definition 2.10. The cohomology Hi(A•) of a complex A• is the quotient

Hi(A•) =
ker(di)

im (di−1)
∈ A.

A complex A• is acyclic if Hi(A•) = 0 for all i ∈ Z. A morphism of complexes f• :
A• → B• is a quasi-isomorphism if the induced map Hi(f•) is an isomorphism
for all i.

Proposition 2.11. For a distinguished triangle

A
f−→ B → cone(f)→ A[1],

f is a quasi-isomorphism iff cone(f) is acyclic.

Proof. It is clear that (⇒) holds. For (⇐), consider the distinguished triangles:

0 A B 0

0 A A 0

id

id

By TR3 there exists a map B → A such that the diagram commutes. Hence we
obtain a quasi-isomorphism. □

Proposition 2.12. Hi : K(A)→ A is a cohomological functor. Any distinguished
triangle A→ B → C → A[1] induces a long exact sequence

· · · → Hi(A)→ Hi(B)→ Hi(C)→ Hi+1(A)→ · · · .
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Proof. Let A
f−→ B → C → A[1] be a distinguished triangle. Then it is isomorphic

to A→ B → cone(f)→ A[1]. Since

0→ B → cone(f)→ A[1]→ 0

is exact, it is immediate that

Hi(B)→ Hi(cone(f))→ Hi+1(A)

is exact. Hence

Hi(B)→ Hi(C)→ Hi+1(A)

is exact. □

3. Derived Categories

The derived category D(A) is defined to be the localization of K(A) by a mul-
tiplicative set of morphisms related to a null system. We first give the definition of
the localization.

3.1. Localization.

Definition 3.1. Let C be an arbitrary category, and S ⊂ Mor(C) be a set of
morphisms. A localization of C by S, is the data of a category S−1C and a
functor F : C → S−1C satisfying:

(1) for all s ∈ S, F (s) is an isomorphism,
(2) (Universal property) for any functor G : C → D satisfies (1), there exists

a lifted functor F̃ : S−1C → D of F , such that F ≃ F̃ ◦ G. That is, the
diagram commutes:

C D

S−1C

G

F
F̃

(3) if G1, G2 : S−1C → D are two functors, then the natural map

homFun(S−1C,D)(G1, G2)→ homFun(C,D)(G1 ◦ F,G2 ◦ F )

is bijective. That is, − ◦ F is fully faithful. This also implies that F̃ in (2)
is unique up to unique isomorphism.

Definition 3.2. Let S ⊂ Mor(C) be a set of morphisms in the category C. S is
said to be right multiplicative if

(1) for every x ∈ C, idx ∈ S,
(2) for every two morphisms f, g ∈ S, f ◦ g ∈ S,
(3) for every f : x → x′ in S and g : x → y not necessarily in S, there exists

f ′ : y → y′ in S and g′ : x′ → y′ not necessarily in S, s.t. the diagram
commutes:

y y′

x x′

f ′

f

g g′
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(4) for every f, g : x → y and h : z → x satisfying h ∈ S and f ◦ h = g ◦ h,
there exists h′ ∈ S, h′ : y → w′, with h′ ◦ f = h′ ◦ g.

z x y wh
f

g

h′

The existence of localization of a category S−1C can indeed be obtained by some
right multiplicative system §. Define the category SY as follows (Y ∈ C):

Obj(SY ) = {s : Y → Y ′ | s ∈ S},
homSY ((s : Y → Y ′), (s′ : Y → Y ′′)) = {h : Y ′ → Y ′′ | h ◦ s = s′}.

This is equivalent to say SY = S ∩ (Y/C), where (Y/C) is a comma category. Let
X,Y be arbitrary objects in C. Define a new category CrS as follows:

Obj(CrS) = Obj(C),

homCr
S
(X,Y ) = colim(Y→Y ′)∈SY homC(X,Y

′).

We need to check that CrS is indeed a category.

Lemma 3.3. Let s : X → X ′ be in S. s induces an isomorphism

homCr
S
(X ′, Y )

≃−−→
−◦s

homCr
S
(X,Y ).

Proof. First to show that − ◦ s is bijective. It is injective because if f, g ∈
homCr

S
(X ′, Y ) such that f ◦ s = g ◦ s, by (4) in Definition 3.2, there exists Y ′′

and h : Y ′ → Y ′′ in S with h ◦ f̃ = h ◦ g̃, such that

X X ′ Y ′ Y ′′

Y

s
f̃

g̃

h′

t

where f = colim(t:Y→Y ′)∈SY (f̃ : X ′ → Y ′), g = colim(t:Y→Y ′)∈SY (g̃ : X ′ → Y ′).
This implies f = g by the universal property of colimits. Abuse the notation, we can
prove the surjectivity by (3) in Definition 3.2 as follows: for every ϕ ∈ homCr

S
(X,Y ),

ϕ = colimt(ϕ̃ : X → Y ′), there exists morphism X ′ → Y ′′ and Y ′ t′−→ Y ′′ such that
the diagram commutes:

X X ′

Y ′ Y ′′

Y

s

ϕ̃

t′

t

So we can define a morphism f̃ : X ′ → Y ′ with f̃ ◦s = ϕ̃, and this yields t′◦(f̃ ◦s) =
t′ ◦ ϕ̃. Now we get f = colimtf̃ ∈ homCr

S
(X ′, Y ). □
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The composition in CrS is defined through

colim(Y→Y ′)∈SY homC(X,Y
′)× colim(Z→Z′)∈SY homC(Y,Z

′)

≃ colim(Y→Y ′)∈SY

(
homC(X,Y

′)× colim(Z→Z′)∈SY homC(Y,Z
′)
)

≃−−−−−−−→
Lemma 3.3

colim(Y→Y ′)∈SY

(
homC(X,Y

′)× colim(Z′→Z′)∈SY homC(Y
′, Z ′)

)
→ colim(Y→Y ′)∈SY colim(Z→Z′)∈SY homC(X,Z

′)

→ colim(Z→Z′)∈SY homC(X,Z
′).

We omit the proof that the composition is associative. Now CrS is a well-defined
category. We will show that CrS is essentially the localization S−1C.

Theorem 3.4. Let S be a right multiplicative system. Then CrS ≃ S−1C.

Proof. Let QS : C → CrS be the natural functor associated with homC(X,Y ) →
colim(Y→Y ′)∈SY homC(X,Y

′). By Lemma 3.3, for any Z ∈ CrS and morphism s :
X → Y in S, homCr

S
(Y,Z)→ homCr

S
(X,Z) is bijective. This indicates that QS(s)

is invertible. Let f : X → Y be any morphism in CrS . By definition, f is given by
an equivalence class of triplets (Y ′, t : Y → Y ′, f ′ : X → Y ′), where t ∈ S and

X
f ′

−→ Y ′ t←− Y.
(Y ′, t, f ′) ∼ (Y ′′, t′, f ′′) iff there exists (Y ′′′, t′′, f ′′′) with t, t′, t′′ ∈ S, and the
diagram commutes

Y ′

X Y ′′′ Y

Y ′′

f ′

f ′′

f ′′′

t′′

t

t′

Note that in CrS , f = QS(t)
−1◦QS(f ′). Hence for any two parallel arrows f, g : X →

Y in C, we have that QS(f) = QS(g) iff there exists a morphism s : Y → Y ′ in S
such that s◦f = s◦g (note the composition is just the composition of cospans). □

Let I be a full subcategory of C, and S be a right multiplicative system in C.
I ∩ S is the family of morphisms in I which belong to S. There is another way to
characterize S−1C:

Theorem 3.5. If for every X ∈ C, there exists s : X → W with W ∈ I such that
s ∈ S, then I ∩ S is a right multiplicative system, and (I ∩ S)−1I ≃ S−1C.

Proof. We skip the proof of I ∩ S being a right multiplicative system. The readers
are encouraged to check it by definition. For W ∈ I, (I ∩S)W is a full subcategory
of SW whose objects are the morphism i :W → V with V ∈ I and i ∈ I ∩ S. One
can check that the natural functor Φ : (I∩S)−1I → S−1C is cofinal (see Proposition
5.1.7 in [1]), and so it is fully faithful by Definition of CrS . Φ is essentially surjective
by the assumption. Hence (I ∩ S)−1I ≃ S−1C. □

Remark 3.6. Dually, we can define the notion of a left multiplicative system S be
reversing arrows in Definition 3.2. In this case, we can set Obj(ClS) = Obj(C), and
the morphisms in ClS to be

homCl
S
(X,Y ) = colim(X→X′)∈SX

homC(X
′, Y ),
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where SX is the category defined as follows:

Obj(SX) = {s : X ′ → X | s ∈ S},
homSX

((s : X ′ → X), (s′ : X ′′ → X)) = {h : X ′ → X ′′ | s = s′ ◦ h}.

One goes through the proof of Theorem 3.4 and finds ClS and CrS give equivalent
categories. So we are free to choose the left or right multiplicative system to get a
localization.

3.2. Localization of triangulated categories. Let D be a triangulated category.

Definition 3.7. Let N ⊂ D be a set of morphisms in D. It is called a null system
if

(1) 0 ∈ N ,
(2) every x ∈ N iff Tx ∈ N ,
(3) for every distinguished triangle x→ y → z → Tx, if x, y ∈ N , then z ∈ N .

Define

S = {f : x→ y | ∃ distinguished triangle x→ y → z → Tx s.t. z ∈ N}.

Exercise 3.8. S is right multiplicative.

Assume A is an abelian category from now on. In K(A), the null system N is
the set of acyclic chains, so S is the set of quasi-isomorphisms. By definition, the
derived category of A is D(A) = S−1K(A).

Corollary 3.9. D(A) is additive, but not necessarily abelian.

Let I be the full subcategory of all cochain complexes of injectives of K+(A),
where we write (−)+ to denote ”bounded below”. I is then additive and triangu-
lated.

Proposition 3.10. Suppose A has enough injectives. For every A ∈ K+(A), there
exists an injective J ⊂ I such that the morphism A→ J is a quasi-isomorphism.

Proof. We define J as follows. Let A0 = Z0. Since A has enough injectives, one
can find a monomorphism from Z0 to an injective J0. Define Z1 to be the pushout

of J0 ↢ Z0
d0−→ A1. Then define Z2 to be the pushout of J1 ↢ Z1

d1−→ A2, where
Z1 ↣ J1 is a monomorphism. Recursively, we define Zk+1 to be the pushout of

Jk ↢ Zk
dk−→ Ak+1. A diagram demonstrating the process is the following:

A0 Z0 A1

J0 Z1 A2

J1 Z2

. . .

pushout

pushout
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It suffices to prove that in the distinguished triangle A
f−→ J → cone(f) → A[1],

cone(f) is acyclic. Consider Z → J ⊕A[1]→ Z[1], i.e. the diagonal of the diagram
above. Apply the cohomological functor Hi, we know that

· · · → Hi(Z)
id−→ Hi(Z)→ Hi(cone(f))→ Hi+1(Z)→ · · ·

is exact. This implies Hi(cone(f)) = 0 for all i. The result follows. □

On the other hand, by Theorem 3.5, D+(A) ≃ (I ∩ S)−1I. Let A ∈ I be acyclic
(i.e. A ∈ N), then id : A → A is in S, implying id is homotopic to 0. Hence we
have a very nice result:

D+(A) ≃ (I ∩ S)−1I ≃ I.

Remark 3.11. In the proof of Proposition 3.10, we implicitly assume that A has
cokernels and coequalizers. In fact, this assumption can be dropped. See Lemma
2.38 in [4].
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