1. Waldhansen S.-construction & K-thy. Ontline : 2. Modern story of exclocomic trace, the universal property approach. 3. Scatement of Theorem of Dundas-Croodwillie-McCaroly 4. Idea of Goodwillie calculus. S. Stetch idea of pf of D-G-M. I. Waldhansen S.-construction & alg. K-theory. Let $\mathcal{C} =$ stable ∞ - cort. Recall that the Waldhansen S. - construction assoc. w/ C is as follows: $S_0 e \simeq \star$ $S_{1}e \simeq e$ $* \longrightarrow X \in \mathcal{L}$ ₩ $S_2C \cong \text{Fun}(\triangle', \mathfrak{C})$ $* \rightarrow \chi(0.0) \rightarrow \chi(0.1)$ $* \longrightarrow \chi(1.1)$ $\omega_{1}^{1}b$ seg $X(\omega, \omega) \rightarrow X(\omega, 1) \rightarrow X(1, 1)$

 $S_n e \simeq \overline{F}_{mn} (\Delta^{n-1} . e)$ \rightarrow X(0.0) \rightarrow X(0.1) \rightarrow ... \downarrow \downarrow $* \longrightarrow \chi(1,1) \longrightarrow \cdots \longrightarrow \chi(1,n)$ $\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{1}{2}}}\frac{1}{\sqrt{1-\frac{$ w/ each square is $X(n.n)$ cocarcesion (prohant). \bigstar 1) each Snl is stable as-cat <u>Then</u> 2) get an algebraic K spectrum KLC) w/ $KLP|_{n} = | (S_{n}^{n}C)^{\sim}|$ where $(-)$ = taking max subgroupoid. $S^{(n)}$ $C = S_{n} \cdots S_{n} C$
 $n \text{ times}$ w/ structure maps induced by Σ (-) \rightarrow $|\text{S.EI}|\$ obtained by restriction to 1-skeleton. S_{0} Ω^{∞} $K(L)$ \simeq Ω $|S.E\rangle^{\sim}|$ Rk . Should be Ω | $wS.E^{~\sim}$ | instead. $wC = cat$ $w/$ w.e.. usually model cat. Let ℓ = ordinary model cat. Then C -> N (Fib Replacement (DK (C. wC)))

where $DK = Dwyer - Kan \sinplicial localization$ $\begin{array}{ccc} \mathbb{R} & 1) & K & \text{via} & Q = & K & \text{via} & S. \end{array}$ 2) K(e) = K(Spe). mo K: Catos - Sp. lax symmetric monoidal les-cat of small stable va-cats. mor = exact functors. (preserves finice lim/colins) $\begin{array}{rclclclclcl} \mathcal{C} & \mathsf{perf} & \mathsf{Cat} & \mathsf{ich} & \mathsf{co} & \mathsf{on} & \mathsf{pt} & \mathsf{sendl} & \mathsf{stable} & \mathsf{co} & \mathsf{cats} \end{array}$ <u>Notim</u> Idem: Cortos = Certos: Forget 1) f : C -> D E Coens is Marica equiv if $\mathcal{D}\!\!\mathit{ef}$ Idem f : Idem f \cong Idem D . 2) 2.5 2.5 is exact (Kanonbi) in Certos if - f fully faithful $\frac{9}{c}$ = ϵ $- 90f = 0.$ In Cates: taking Idem (-). $\begin{picture}(180,10) \put(0,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}}$ 1) F is additive invariant if O F inverts Moriton equiv.

2 F preserves filtered colins. 3 F : split exact - split cofib seq. 2) F is localizing invariant if 1 2 and $9'$ F: exact \mapsto cofib seg. Wrice PSh add (Catus): functors F: ((Catus)^{op} -> Sp s.t. 3 is satisfied. Fonget: PShsp (Certis) == PShsp ((Certis)"): Ladd Consider Model: Cata <u>Yoneda</u> PShsp ((Cata)^W) L^{add} PShsp (Cata) $e \longrightarrow \mathcal{M}_{add}(2)$ additive non-comm. motive <u> Thm</u> (Blumberg - Gepner - Tabnada) Y e e G_{tot}^{st} . $K(P) \cong Map(Madd(S). Mod(CP)).$ V F additive invariant. then $Map(K, F) \cong F(S)$ Similar for Lucalizing invariant. P_{imp} THH is a localizing invariant \Rightarrow additive invariant. THH(C) = $\frac{1}{C_1 \dots C_n \in C}$ $\frac{1}{C_1 \dots C_n \in C}$ $\frac{1}{C_1 \dots C_n \in C}$

 Cor To Map (K, THH) \cong To THH (S) \cong To S \cong Z. This is the set of equiv classes of map $K \longrightarrow THH$ of lax sym mon. map corresponds to the unit I ^E E m get the Dennis trace = unique lax sym mon functor $K \stackrel{\text{tr}}{\longrightarrow} THH$ \mathbb{I} . Cyclotomic trace. Problem : TC Morita invariant, satisfies localization. BUT NOT preserves filtered colims Resolve : $TC(e) \approx \lim_{m \to \infty} TC^{n}(e)$ where $TR^n(e) \approx THH(e)$ ^{G^{n-1}} (codegorical fixed pts $TC^{n}(C) = eq(CTR^{n}(C)) \stackrel{incl}{\implies} TR^{n-1}(C))$ Pmp (Blumberg Cepner - Tabnada) TC^n is localizing invariant T_{hm} (B-G-T) Dennis trace $tr: K(E) \rightarrow THH(E)$ \rightarrow nat trans of localizing invariants $K \rightarrow TC^n$ ←→ ·········· Sp-valued functor $K \rightarrow TC$ " nat. trans. $K \rightarrow TC$ \Leftrightarrow data of compatible maps to TC^n .

 S_{o} Map $(K, TC) \cong$ \lim_{n} Map (K, TC^n) \simeq $\lim_{n \to \infty} TC^{n}(S)$ after p-completion \simeq TC(S) \simeq S \oplus \sum fib ($S_{hT} \rightarrow \Sigma^{-1}S$) π , Map (K. TC) \cong π , (..) \cong \mathbb{Z}_p . => After p-completion. cyclotomic trace is the unique map τ nc : $K \rightarrow T C$ $corresponds$ to $1 \in \mathbb{Z}_p = \pi_o (Map(K, TC))$ above. $Slogan$ $K \xrightarrow{\tau r} THH$ $T^{\prime c}$ $T^{\prime c}$ TC $\mathbb I$. Theorem of Dundas - Goodwillie - McCarthy. Thm Let $B \rightarrow A$ map of connected E_1 -rigs. $\pi_0 B \rightarrow \pi_0 A$ surjective w/ nilpotent kernel. Then the diagram is cartesian in Sp: $K(B) \xrightarrow{frc} TCCB$ \downarrow $K(A) \xrightarrow{\text{frc}} TCA)$ The idea of pf is the Goodwillie Calculus.

IV. Goodwillie Calculus. IDEA : Approximate F (preserves filtered colins) by "n-excisive functurs" PnF, i.e. $F \rightarrow \cdots \rightarrow P_{n+1}F \rightarrow P_{n}F \rightarrow \cdots \rightarrow P_{n}F$ $simplar$ to Toyer poly of F . Each $f:b$ (PrF \rightarrow Pn., F) is determined by n^{+h}-derivative of F, denoted ∂nF . which sees the multilinear part of F. In other word. OnF = multilinear approximation to F. Unpack: (1-) excisive = takes prohonts to publisades. (n-) excisive = tookes any 2-face (which is a pushout) of an n-cube to pulback. Pr is left adjoint to Excⁿ (C. D) is Fun (C. D) Wrice $DnF = fib(PnF \rightarrow P_{n-1}F)$. It is nth differential of F. It is determined by ONF. Explicity. $e^n \xrightarrow{DnF} D$ πz_c° | Ω_p° $(S_p e)^n \xrightarrow{\partial_n F} S_p \mathcal{D}$ define ∂nF through the equivalence $\label{eq:22} \Omega^\infty_\mathcal{D} \circ \partial_n F \simeq F \circ \Pi \, \Omega^\infty_{\mathcal{C}_i} \,.$

We are mainly interested in the case n=1 $Exc^{1}(2.9) \subseteq Exc^{2}(2.9) \subseteq Exc^{3}(2.9) \subseteq ...$ FACT The Goodnillie derivatives JF = JF "see" the linear" part of means that. for example $\mathscr{C} = \text{Top}_{*}$. $\mathscr{D} = \mathscr{S}_{p}$. F $U. V. S. X.$ open. $U. V. P. X. V. N. V. P. * . 1/2$ Then $=$ $\partial F(U)$ \oplus $\partial F(V)$. $9F(X)$ Thm (Crosodwillie) If e has prshonts. D has sequential colins and finice lims (they are commutative). Then $F: \mathcal{C} \rightarrow D$ admits nth approximation PuF. Moreover. PuF is universal among all F -> n-excisive functor. Rk Differential Calculus Calculus of Functors Smooth manifold M Compactly generated ∞ -category $\mathfrak C$ Smooth function $f: M \to N$ Functor $F: \mathcal{C} \to \mathcal{D}$ which preserves filtered colimits Point $x \in M$ Object $C \in \mathcal{C}$ Real vector space Stable ∞ -category Real numbers $$ ∞ -category Sp of spectra Linear map of vector spaces Exact functor between stable ∞ -categories Tangent space $T_{M,x}$ to M at x ∞ -category of spectrum objects Sp($\mathfrak{C}_{/C}$) Differential of a smooth function Excisive approximation of a functor (see Theorem $6.1.1.10$)

V. Outline of pf of DGM. We use the theorem to prove our statement: <u>Thm</u> (Goodwillie) If F G : $e \rightarrow p$ both preserves filtered colims.
O.F = 0.G . and both are "p-analytic", then the following diagram is cartesian: $F(Y) \longrightarrow G(Y)$ \downarrow $F(x) \longrightarrow G(x)$ \forall (p+1)-connected $\gamma \rightarrow \chi$. P of DGM, $C = \text{Cat}_{\infty}^{\text{st}}$, $Q = S_p$, $F = K$, $G = TC$ both p -analytic. $\partial_1 K \simeq \partial_1 TC \simeq \Sigma^{-1} THH$. Now reduce to trivial square-zero ext $A \ltimes M \longrightarrow A$ apply Gouduillie thm. Step 1. Reduce to trivial square - zero extension. Thm (Croodwillie 86) If the theorem is true in the special case when $R = A \ltimes M$ (trivial square zero ext.). $S = A$, then it is true in general. IDEA of pf. Use the simplicial approximation \rightarrow bar construction S . $|S| \cong S$

R
$$
\rightarrow
$$
 R
\nCon prove the question lachbedy. is Pens on
\n $K(R_{r} \rightarrow S_{r})$. Each Sr is fre associated. By assumption
\n $R_{r} \rightarrow S_{r}$ split surjective $\Rightarrow R_{r} = Mr \times Ar$
\n
\nStep 2. Corduallie derivatives of K & TC.
\n
\n**PROE** (Dmds. McGrdy)
\n $M \in A$ -bimod. $TA = prj A$ mod. Then
\n $THH(A.M) \simeq \alpha_{r}^{1/2} \oplus \alpha_{r$

 \bigcup

Like in Step 1, we can also use the simplified approximation

\n
$$
M_{0} \longrightarrow M_{1} \mid M_{1} \mid \approx M_{1}
$$
\n
$$
M_{0} \longrightarrow M_{2} \mid M_{1} \mid \approx M_{2}
$$
\n
$$
= \sqrt{M_{0}M_{0}} = 0 \qquad * \in m_{1}
$$
\n
$$
= \sqrt{M_{0}M_{0}} = 0 \qquad * \in m_{2}
$$
\n
$$
= \sqrt{M_{0}M_{0}}
$$
\n $$

÷

÷,

· Take p >> 2m . p -> so. get $QK(A.M) = THH(A.M).$ For TC. the story is similar. Consider $\widetilde{T}C(A.M) = h\widetilde{T}(b (TCCAN) \rightarrow TC(A))$ $=$ $\partial TC(A.M).$ The folloning from Hesselholt (1994): Stable TC is THH. Also use the simplicial approximation. Note the underlying space is $TC(A\oplus M)$. Suppose $M \leftarrow M_{o}$ is m -connected. Recall THH(A.M) = $N^{cyc}(A\oplus M)$ where the cyclic bar construction $N_n^{\text{cyc}}(A \oplus M) \cong (A \oplus M)^{\otimes n+1}$ $=$ V_{sctn1} $A^{\otimes (tn1-S)}$ \otimes $M^{\otimes S}$ Wrice $T_{a.n}(A.M) = V_{scln1} A^{\otimes (Ln-5)} \otimes M^{\otimes s}$ e.q. $T_{o.}$. $(A.M) = THH(A)$. $Prop$ (Hesselholt 94). $\left|T_{1} \cdot (A \cdot M)\right| \approx S_{+}^{1} \wedge T H H (A \cdot M)$ 2) cyclotomic structure map is given by R_{P} : T_{α} . $(A.M)^{C_{P}r}$ \longrightarrow $T_{\alpha/p}$. $(A.M)^{C_{P}r-1}$ which induces $\widetilde{TC}(A.M)^n$ \simeq $\left(holim \left(\frac{V}{R_2}\right)\widetilde{T}_{P^s} \cdot (A.M)\right)^{C_{P^r}})^n$

By checking the connectivity. and look at the free S'-action. $3)$ RHS \simeq $(holim_{Rp}(T_{1.} (A.M))^{\text{C}_{p^*}})$ \simeq (holim r $(S'/C_{p^r} \wedge THH(A,M))^2$ which is a consequence of (1). By Proposition, and $S'/c_{p^r} \simeq S'$, one gets $\overline{QTC(A.M)}_P^{\wedge} = \widetilde{TC}(A.M)_P^{\wedge} \cong (\Sigma THH(A.M))_P^{\wedge}.$ Step 3. Analytcity of K & TC. Thm (Coodwillie for K. 92'; McCardy for TC. 97') K and TC are (-1) -analytic. Step 4. Approximate B -> A in the argument again by simplicial rings B. A. respectively. Then use the p-completed case (a.k.a. McCartly s theorem) and use some complicated examination on connectivity yields the desired result (a.k.a Dundas ' theorem).