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Classical Problem in Topology

Problem
Can you classify topological manifolds with the homotopy type of the
sphere? A

Turn out to be extremely hard (except for 0-, 1-, and 2-dimensional,
of course).
This is known as the generalized Poincaré conjecture: all such
homotopy n-spheres are homeomorphic to Sn, the n-sphere.
Smale (1961) proved it via h-cobordism theorem for n ≥ 5.
Freedman (1982) proved it for n = 4 via intersection forms.
Perelman (2003) proved for n = 3 case.
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Classical Problem in Topology

One might wonder the following:

Problem
Does the same result hold for smooth manifolds with the homotopy type
of the sphere?

True for n = 2, 3, proved by Moise (1952).
In general, the answer is NO!
Milnor (1956) constructed an ”exotic sphere” that is homeomorphic
to S7, but not diffeomorphic to S7.
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Milnor’s Exotic Sphere

Definition
A structure group of the fiber bundle F → E → X is a group G acting
homeomorphically on F such that for any trivialization Ui ,Uj , the
transition

ϕi ◦ ϕ−1
j : (Ui ∩ Uj) × F → (Ui ∩ Uj) × F ,

sends (x , y) to (x , gij(x)y), for some continuous gij : Ui ∩ Uj → G .

Regard S3 as the unit quaternion so that it can be seen as a group with
the group operation given by multiplication.
Consider the double cover of SO(4), given by

p : S3 × S3 → SO(4), (x , y) 7→ (ϕx ,y : v 7→ xvy−1),

where ϕx ,y can be viewed as an isometry from R4 → R4.
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where ϕx ,y can be viewed as an isometry from R4 → R4.

For each (m, n) ∈ Z ⊕ Z, define

ψm,n : S3 → S3 × S3, x 7→ (xm, x−n).

Let fm,n = p ◦ ψm,n : S3 → SO(4). Define
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Milnor’s Exotic Sphere

For the S3-bundle over S4 with structure group SO(4):

S3 → Efm,n → S4.

We have the following facts:
Efm,n is homeomorphic to S7 when m + n = ±1 by Morse theory.
Efm,n is NOT diffeomorphic to S7 when (m − n)2 ̸= 1 mod 7 by
Hirzebruch signature theorem.
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Further Problem

Problem
How to determine if a homotopy n-sphere has an exotic structure? In
particular, how to classify the exotic spheres?

n = 4, still open.
For n ≥ 5, we can do it by studying the stable homotopy groups of
the spheres!
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Smooth Structures

Fix n ≥ 5.

Definition
Let Θn be the set of homotopy n-spheres up to diffeomorphism. Together
with the connecting sum as an operation, it is an abelian group.

The key is to study the group Θn.
|Θn| is actually the number of smooth structures.
(Kervaire-Milnor, 1963) Two steps to tackle the problem:

1 Classify the homotopy spheres up to framed cobordism.
2 Classify the homotopy spheres that bound framed manifolds.
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Step 1: Framed Manifolds

We will always work in the category of smooth manifolds.

Let Mk be a closed, smooth k-manifold that sit in Rn+k for n ≥ 1 and
k ≥ 0.
Note TRn+k = Rn+k × Rn+k . The tangent bundle of Mk is included in the
restriction of TRn+k to Mk , i.e. TMk ⊂ Mk × Rn+k . Taking its
orthogonal complement, we get the normal bundle NRn+k/Mk .

Definition
A framing on Mk in Rn+k is a vector space isomorphism

f : Mk × Rn → NRn+k/Mk .

It exists iff the normal bundle is trivial. Mk is a framed k-manifold if it
admits a fixed framing f .
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Step 1: Framed Cobordism

Definition
Let Mk , Nk be two framed k-manifolds in Rn+k . A framed cobordism
between Mk , Nk is a (k + 1)-dimensional submanifold W k+1 of
Rn+k × [0, 1] ⊂ Rn+k+1 such that

∂W k+1 = (Mk × {0}) ∪ (Nk × {1}),

with a framing on W k+1 restricts to ones on Mk × {0}, Nk × {1}.
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Step 1: Pontryagin-Thom Construction

Mk and Nk are cobordant, if such framed cobordism W exists,
denoted M ∼ N.

∼ is an equivalence relation.
Write Ωfr

k (Rn+k) for the set of equivalent classes of framed
k-manifolds in Rn+k . It is an abelian group under the disjoint union.

Theorem (Pontryagin-Thom)
For k ≥ 0, n ≥ 1, Ωfr

k (Rn+k) ∼= πn+k(Sn).
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Step 1: Stable Homotopy Groups of Spheres

Corollary (Freudenthal, 1938)
πn+k(Sn) ∼= πn+k+1(Sn+1) for n > k + 1.

When n is sufficiently large, πn+k(Sn) depends only on k. Taking the
limit, we have the stable homotopy groups of the spheres (called the
stable stems):

πs
k := πs

k(S0) = colimnπn+k(Sn).

Examples
The following results can be derived from the Pontryagin-Thom
construction:

1 πs
0 = Z.

2 πs
1 = πs

2 = Z/2.
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Step 2: Twisted Framing

In the definition of Ωfr
k (Rn+k), the elements of the group are some

cobordant class of some framed k-manifold.

Question
What is the obstruction for the elements of Ωfr

k (Rn+k) to have a homotopy
k-sphere as a representative instead of some general framed k-manifold?

Lemma
Homotopy spheres can be framed. A homotopy k-sphere Σk with two
different framings F1,F2 satisfies

[Σk ,F1] − [Σk ,F2] = [Sk ,F ]

for some framing F on Sk .

Starting Point: twisted framing on spheres.
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Step 2: Twisted Framing

Consider a framing on Mk given by f : Mk × Rn → NRn+k/Mk .

It can be
twisted by a map g : Mk → SO(n), where SO(n) is the special orthogonal
group, by

f ◦ g : Mk × Rn → Mk × Rn → NRn+k/Mk ,

where the first map Mk × Rn → Mk × Rn sends (x , v) to (x , g(x)v).
If Mk = Sk has a framing F that extends to a (k + 1)-disk, then
[Sk ,F ] = ∅.
[Sk ,F ] is non-trivial iff F is twisted, hence determined by an element
in πk(SO(n)).
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Step 2: J-homomorphism

All framing on Sk are classified by πk(SO(n)).

Hopf (1935) and Whitehead (1942) introduce a homomorphism based on
the above fact, called the J-homomorphism:

J : πk(SO(n)) → πn+k(Sn).

After stabilizing, it changed into a more familiar form:

J : πk(SO) → πs
k .

Theorem (Bott, 1959)
πk(SO) is 8-periodic. In particular, one has

k 0 1 2 3 4 5 6 7
πk(SO) Z/2 Z/2 0 Z 0 0 0 Z
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Step 2: J-homomorphism

Theorem (Adams 1966, Quillen 1971, Sullivan 1974)
The image of J is a direct summand of πs

n, and is cyclic for all n. In
particular,

1 If n ≡ 0, 1 mod 8, then |im J | = 2.
2 If n ≡ 3, 7 mod 8, then |im J | is the denominator of B2k/(4k), where

B2k is the Bernoulli number.
3 im J is trivial in other cases.

The Bernoulli number is defined by the generating function

x
ex − 1 =

∞∑
k=0

Bkxk

k! .

The following is a list of some Bernoulli numbers:
k 2 4 6 8 10 12 14

Bk
1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6
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Smooth Structures

Facts
All homotopy spheres admit (stable) framings.
Ωfr

n
∼= πs

n.
Elements in Ωfr

n satisfies [Σn,F1] − [Σn,F2] = [Sn,F ].
[Sn,F ] is completely determined by J-homomorphism.

We have a homomorphism:

Θn → πs
n/im J .

The kernel of this map is denoted by Θbp
n , which consists of the homotopy

spheres that bound framed manifolds.
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Kervaire-Milnor Theory

Theorem (Kervaire-Milnor, 1963)
1 If n ̸= 2 mod 4, then there is an exact sequence

0 → Θbp
n → Θn → πs

n/J → 0.

2 If n ≡ 2 mod 4, then there is an exact sequence

0 → Θbp
n → Θn → πs

n/J
Φ−→ Z/2 → Θbp

n−1 → 0,

where Φ is the Kervaire invariant.
3 If n is even, then Θbp

n = 0.
4 If n = 4k − 1, then

Θbp
n

∼= Z/(22k−2(22k−1 − 1)ck),

where ck is the numerator of 4B2k/k.
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Kervaire-Milnor Theory

Problem of computing stable homotopy groups of spheres!

Central to homotopy theory, but extremely hard.
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Outline

1 Motivation: Exotic Spheres

2 Kervaire-Milnor Theory

3 Computation of Stable Homotopy Groups of Spheres
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History

Recall that the stable homotopy group of spheres (or the stable
stems) are

πs
k = colimnπn+k(Sn).

Hopf (1931), Freudenthal (1938), Whitehead (1950), Pontryagin
(1950), Rokhlin (1951): k ≤ 3, geometric methods.
Starting of algebraic machinery: Serre (1951) used Serre spectral
sequences on iterated loop spaces and determined k < 9.
Toda (1962) introduced the Toda bracket, a secondary composition,
and determined k ≤ 19 together with the EHP sequences (Whitehead
1953, James 1957).
Milestone: Introduction of the stable homotopy category, by Spanier
and Whitehead (1962), and Boardman (1965).
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History

Remarkable computation tool: Adams spectral sequences by
Adams (1958), E = HZ/p.

Adams-Novikov spectral sequences by Novikov (1967), E = MU.
May spectral sequence by May (1964), to compute E2-page of
Adams spectral sequence. Respectively, Ravenel (1978) introduced
the chromatic spectral sequences to compute E1-page of the
Adams-Novikov spectral sequence, E = BP.
Barratt, Mahowald, Tangora, Bruner, Nakamura, etc. computed
differentials and πs

k at mod 2, 3, 5 via MaySS, Toda brackets, Massey
products, power operations, etc. in 1960-1980s. They determined πs

k
up to n = 45 at mod 2, n = 108 at mod 3, and n = 999 at mod 5.
More results later...
Most recent: Isaksen (2019) and Isaksen-Xu-Wang (2020, 2023)
used the motivic Adams spectral sequences to determine πs

k up to
n = 90 at mod 2.
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Computational Results

Here’s the picture of the 2-primary parts of πs
k from Hatcher, for i ≤ 60.
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Computational Results

Here’s the picture of the 3-primary parts of πs
k from Hatcher, for i ≤ 108.
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Computational Results
Here’s the picture of the 5-primary parts of πs

k from Hatcher, for i ≤ 999.
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Main Results to Take Away

Theorem (Serre, Toda, Kervaire-Milnor, Isaksen, Isaksen-Wang-Xu)
S1, S3,S5 and S61 are the only odd-dimensional spheres with a unique
smooth structure.

Theorem (Behrens-Hill-Hopkins-Mahowald)
The only even-dimensional spheres below dimension 140 which have
unique smooth structures are S2,S6, S12,S56 and perhaps S4.

Conjecture
Sn has a unique smooth structure if either n ≤ 6, or n = 12, 56, 61.
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More Results
In general, below dimension 90, one has (picture from Isaksen-Wang-Xu’s
paper ”Stable homotopy groups of spheres: from dimension 0 to 90”)
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Thank you!
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