From Exotic Spheres to Stable Homotopy Theory

Albert Yang

Department of Mathematics University of Pennsylvania

Feb 2024

Albert Yang (Penn)

From Exotic Spheres to Stable Homotopy The

Feb 2024

1 Motivation: Exotic Spheres

2 Kervaire-Milnor Theory

3 Computation of Stable Homotopy Groups of Spheres

2 Kervaire-Milnor Theory

Computation of Stable Homotopy Groups of Spheres

Can you classify topological manifolds with the homotopy type of the sphere? $\mathbb A$

• Turn out to be extremely hard (except for 0-, 1-, and 2-dimensional, of course).

- Turn out to be extremely hard (except for 0-, 1-, and 2-dimensional, of course).
- This is known as the **generalized Poincaré conjecture**: all such homotopy *n*-spheres are homeomorphic to *Sⁿ*, the *n*-sphere.

- Turn out to be extremely hard (except for 0-, 1-, and 2-dimensional, of course).
- This is known as the **generalized Poincaré conjecture**: all such homotopy *n*-spheres are homeomorphic to *Sⁿ*, the *n*-sphere.
- Smale (1961) proved it via *h*-cobordism theorem for $n \ge 5$.

- Turn out to be extremely hard (except for 0-, 1-, and 2-dimensional, of course).
- This is known as the **generalized Poincaré conjecture**: all such homotopy *n*-spheres are homeomorphic to *Sⁿ*, the *n*-sphere.
- Smale (1961) proved it via *h*-cobordism theorem for $n \ge 5$.
- Freedman (1982) proved it for n = 4 via intersection forms.

- Turn out to be extremely hard (except for 0-, 1-, and 2-dimensional, of course).
- This is known as the **generalized Poincaré conjecture**: all such homotopy *n*-spheres are homeomorphic to *Sⁿ*, the *n*-sphere.
- Smale (1961) proved it via *h*-cobordism theorem for $n \ge 5$.
- Freedman (1982) proved it for n = 4 via intersection forms.
- Perelman (2003) proved for n = 3 case.

Problem

Does the same result hold for **smooth** manifolds with the homotopy type of the sphere?

Problem

Does the same result hold for **smooth** manifolds with the homotopy type of the sphere?

• True for n = 2, 3, proved by Moise (1952).

Problem

Does the same result hold for **smooth** manifolds with the homotopy type of the sphere?

- True for n = 2, 3, proved by Moise (1952).
- In general, the answer is NO!

Problem

Does the same result hold for **smooth** manifolds with the homotopy type of the sphere?

- True for n = 2, 3, proved by Moise (1952).
- In general, the answer is NO!
- Milnor (1956) constructed an "exotic sphere" that is homeomorphic to S^7 , but not diffeomorphic to S^7 .

Definition

A **structure group** of the fiber bundle $F \rightarrow E \rightarrow X$ is a group G acting homeomorphically on F such that for any trivialization U_i, U_j , the transition

$$\phi_i \circ \phi_j^{-1} : (U_i \cap U_j) \times F \to (U_i \cap U_j) \times F,$$

sends (x, y) to $(x, g_{ij}(x)y)$, for some continuous $g_{ij}: U_i \cap U_j \to G$.

Definition

A **structure group** of the fiber bundle $F \to E \to X$ is a group G acting homeomorphically on F such that for any trivialization U_i, U_j , the transition

$$\phi_i \circ \phi_j^{-1} : (U_i \cap U_j) \times F \to (U_i \cap U_j) \times F,$$

sends (x, y) to $(x, g_{ij}(x)y)$, for some continuous $g_{ij}: U_i \cap U_j \to G$.

Regard S^3 as the unit quaternion so that it can be seen as a group with the group operation given by multiplication.

Feb 2024

Definition

A **structure group** of the fiber bundle $F \to E \to X$ is a group G acting homeomorphically on F such that for any trivialization U_i, U_j , the transition

$$\phi_i \circ \phi_j^{-1} : (U_i \cap U_j) \times F \to (U_i \cap U_j) \times F,$$

sends (x, y) to $(x, g_{ij}(x)y)$, for some continuous $g_{ij}: U_i \cap U_j \to G$.

Regard S^3 as the unit quaternion so that it can be seen as a group with the group operation given by multiplication. Consider the double cover of SO(4), given by

$$p: S^3 \times S^3 \to SO(4), \quad (x, y) \mapsto (\phi_{x,y}: v \mapsto xvy^{-1}),$$

where $\phi_{x,y}$ can be viewed as an isometry from $\mathbb{R}^4 \to \mathbb{R}^4$.

Consider the double cover of SO(4), given by

$$p: S^3 \times S^3 \to SO(4), \quad (x, y) \mapsto (\phi_{x,y}: v \mapsto xvy^{-1}),$$

where $\phi_{x,y}$ can be viewed as an isometry from $\mathbb{R}^4 \to \mathbb{R}^4$.

Consider the double cover of SO(4), given by

$$p: S^3 \times S^3 \to SO(4), \quad (x, y) \mapsto (\phi_{x,y}: v \mapsto xvy^{-1}),$$

where $\phi_{x,y}$ can be viewed as an isometry from $\mathbb{R}^4 \to \mathbb{R}^4$. For each $(m, n) \in \mathbb{Z} \oplus \mathbb{Z}$, define

$$\psi_{m,n}: S^3 \to S^3 \times S^3, \quad x \mapsto (x^m, x^{-n}).$$

Consider the double cover of SO(4), given by

$$p: S^3 \times S^3 \to SO(4), \quad (x, y) \mapsto (\phi_{x,y}: v \mapsto xvy^{-1}),$$

where $\phi_{x,y}$ can be viewed as an isometry from $\mathbb{R}^4 \to \mathbb{R}^4$. For each $(m, n) \in \mathbb{Z} \oplus \mathbb{Z}$, define

$$\psi_{m,n}: S^3 \to S^3 \times S^3, \quad x \mapsto (x^m, x^{-n}).$$

Let $f_{m,n} = p \circ \psi_{m,n} : S^3 \to SO(4)$. Define

$$E_{f_{m,n}} = (\mathbb{R}^4 \times S^3) \sqcup (\mathbb{R}^4 \times S^3) / \sim, \quad (u, x) \sim (u, f_{m,n}x).$$

Consider the double cover of SO(4), given by

$$p: S^3 \times S^3 \to SO(4), \quad (x, y) \mapsto (\phi_{x,y}: v \mapsto xvy^{-1}),$$

where $\phi_{x,y}$ can be viewed as an isometry from $\mathbb{R}^4 \to \mathbb{R}^4$. For each $(m, n) \in \mathbb{Z} \oplus \mathbb{Z}$, define

$$\psi_{m,n}: S^3 \to S^3 \times S^3, \quad x \mapsto (x^m, x^{-n}).$$

Let $f_{m,n} = p \circ \psi_{m,n} : S^3 \to SO(4)$. Define

$$E_{f_{m,n}} = (\mathbb{R}^4 \times S^3) \sqcup (\mathbb{R}^4 \times S^3) / \sim, \quad (u, x) \sim (u, f_{m,n}x).$$

Then we get a S^3 -bundle over S^4 with structure group SO(4):

$$S^3 \to E_{f_{m,n}} \to S^4.$$

For the S^3 -bundle over S^4 with structure group SO(4):

$$S^3 \to E_{f_{m,n}} \to S^4.$$

For the S^3 -bundle over S^4 with structure group SO(4):

$$S^3 \to E_{f_{m,n}} \to S^4.$$

We have the following facts:

• $E_{f_{m,n}}$ is homeomorphic to S^7 when $m + n = \pm 1$ by Morse theory.

For the S^3 -bundle over S^4 with structure group SO(4):

$$S^3 o E_{f_{m,n}} o S^4.$$

We have the following facts:

- $E_{f_{m,n}}$ is homeomorphic to S^7 when $m+n=\pm 1$ by Morse theory.
- $E_{f_{m,n}}$ is NOT diffeomorphic to S^7 when $(m n)^2 \neq 1 \mod 7$ by Hirzebruch signature theorem.

How to determine if a homotopy *n*-sphere has an exotic structure? In particular, how to classify the exotic spheres?

How to determine if a homotopy *n*-sphere has an exotic structure? In particular, how to classify the exotic spheres?

• n = 4, still open.

How to determine if a homotopy *n*-sphere has an exotic structure? In particular, how to classify the exotic spheres?

- n = 4, still open.
- For n ≥ 5, we can do it by studying the stable homotopy groups of the spheres!

1 Motivation: Exotic Spheres

Computation of Stable Homotopy Groups of Spheres

∃ >

< 1 k

Definition

Let Θ_n be the set of homotopy *n*-spheres up to diffeomorphism. Together with the connecting sum as an operation, it is an abelian group.

< (17) > < (17) > <

Definition

Let Θ_n be the set of homotopy *n*-spheres up to diffeomorphism. Together with the connecting sum as an operation, it is an abelian group.

• The key is to study the group Θ_n .

Definition

Let Θ_n be the set of homotopy *n*-spheres up to diffeomorphism. Together with the connecting sum as an operation, it is an abelian group.

- The key is to study the group Θ_n .
- $|\Theta_n|$ is actually the number of smooth structures.

Definition

Let Θ_n be the set of homotopy *n*-spheres up to diffeomorphism. Together with the connecting sum as an operation, it is an abelian group.

- The key is to study the group Θ_n .
- $|\Theta_n|$ is actually the number of smooth structures.
- (Kervaire-Milnor, 1963) Two steps to tackle the problem:
 - Classify the homotopy spheres up to framed cobordism.
 - 2 Classify the homotopy spheres that bound framed manifolds.

We will always work in the category of smooth manifolds.

We will always work in the category of smooth manifolds. Let M^k be a closed, smooth k-manifold that sit in \mathbb{R}^{n+k} for $n \ge 1$ and $k \ge 0$. We will always work in the category of smooth manifolds. Let M^k be a closed, smooth k-manifold that sit in \mathbb{R}^{n+k} for $n \ge 1$ and $k \ge 0$. Note $T\mathbb{R}^{n+k} = \mathbb{R}^{n+k} \times \mathbb{R}^{n+k}$. The tangent bundle of M^k is included in the restriction of $T\mathbb{R}^{n+k}$ to M^k , i.e. $TM^k \subset M^k \times \mathbb{R}^{n+k}$. We will always work in the category of smooth manifolds. Let M^k be a closed, smooth k-manifold that sit in \mathbb{R}^{n+k} for $n \ge 1$ and $k \ge 0$. Note $T\mathbb{R}^{n+k} = \mathbb{R}^{n+k} \times \mathbb{R}^{n+k}$. The tangent bundle of M^k is included in the restriction of $T\mathbb{R}^{n+k}$ to M^k , i.e. $TM^k \subset M^k \times \mathbb{R}^{n+k}$. Taking its orthogonal complement, we get the normal bundle $N_{\mathbb{R}^{n+k}/M^k}$. We will always work in the category of smooth manifolds. Let M^k be a closed, smooth k-manifold that sit in \mathbb{R}^{n+k} for $n \ge 1$ and $k \ge 0$. Note $T\mathbb{R}^{n+k} = \mathbb{R}^{n+k} \times \mathbb{R}^{n+k}$. The tangent bundle of M^k is included in the restriction of $T\mathbb{R}^{n+k}$ to M^k , i.e. $TM^k \subset M^k \times \mathbb{R}^{n+k}$. Taking its orthogonal complement, we get the normal bundle $N_{\mathbb{R}^{n+k}/M^k}$.

Definition

A **framing** on M^k in \mathbb{R}^{n+k} is a vector space isomorphism

$$f: M^k \times \mathbb{R}^n \to N_{\mathbb{R}^{n+k}/M^k}.$$

It exists iff the normal bundle is trivial.
We will always work in the category of smooth manifolds. Let M^k be a closed, smooth k-manifold that sit in \mathbb{R}^{n+k} for $n \ge 1$ and $k \ge 0$. Note $T\mathbb{R}^{n+k} = \mathbb{R}^{n+k} \times \mathbb{R}^{n+k}$. The tangent bundle of M^k is included in the restriction of $T\mathbb{R}^{n+k}$ to M^k , i.e. $TM^k \subset M^k \times \mathbb{R}^{n+k}$. Taking its orthogonal complement, we get the normal bundle $N_{\mathbb{R}^{n+k}/M^k}$.

Definition

A **framing** on M^k in \mathbb{R}^{n+k} is a vector space isomorphism

$$f: M^k \times \mathbb{R}^n \to N_{\mathbb{R}^{n+k}/M^k}.$$

It exists iff the normal bundle is trivial. M^k is a **framed** k-manifold if it admits a fixed framing f.

Step 1: Framed Cobordism

Definition

Let M^k , N^k be two framed k-manifolds in \mathbb{R}^{n+k} . A framed cobordism between M^k , N^k is a (k + 1)-dimensional submanifold W^{k+1} of $\mathbb{R}^{n+k} \times [0,1] \subset \mathbb{R}^{n+k+1}$ such that

$$\partial W^{k+1} = (M^k \times \{0\}) \cup (N^k \times \{1\}),$$

with a framing on W^{k+1} restricts to ones on $M^k \times \{0\}$, $N^k \times \{1\}$.

Step 1: Framed Cobordism

Definition

Let M^k , N^k be two framed k-manifolds in \mathbb{R}^{n+k} . A framed cobordism between M^k , N^k is a (k + 1)-dimensional submanifold W^{k+1} of $\mathbb{R}^{n+k} \times [0,1] \subset \mathbb{R}^{n+k+1}$ such that

$$\partial W^{k+1} = (M^k \times \{0\}) \cup (N^k \times \{1\}),$$

with a framing on W^{k+1} restricts to ones on $M^k \times \{0\}$, $N^k \times \{1\}$.

From Exotic Spheres to Stable Homotopy The

• M^k and N^k are cobordant, if such framed cobordism W exists, denoted $M \sim N$.

- M^k and N^k are cobordant, if such framed cobordism W exists, denoted $M \sim N$.
- ullet \sim is an equivalence relation.

- M^k and N^k are cobordant, if such framed cobordism W exists, denoted $M \sim N$.
- ullet \sim is an equivalence relation.
- Write $\Omega_k^{fr}(\mathbb{R}^{n+k})$ for the set of equivalent classes of framed *k*-manifolds in \mathbb{R}^{n+k} .

- *M^k* and *N^k* are cobordant, if such framed cobordism *W* exists, denoted *M* ~ *N*.
- ullet \sim is an equivalence relation.
- Write Ω^{fr}_k(ℝ^{n+k}) for the set of equivalent classes of framed k-manifolds in ℝ^{n+k}. It is an abelian group under the disjoint union.

- *M^k* and *N^k* are cobordant, if such framed cobordism *W* exists, denoted *M* ~ *N*.
- ullet \sim is an equivalence relation.
- Write Ω^{fr}_k(ℝ^{n+k}) for the set of equivalent classes of framed k-manifolds in ℝ^{n+k}. It is an abelian group under the disjoint union.

Theorem (Pontryagin-Thom)

For $k \geq 0$, $n \geq 1$, $\Omega_k^{fr}(\mathbb{R}^{n+k}) \cong \pi_{n+k}(S^n)$.

Step 1: Stable Homotopy Groups of Spheres

Corollary (Freudenthal, 1938)

$$\pi_{n+k}(S^n) \cong \pi_{n+k+1}(S^{n+1})$$
 for $n > k+1$.

Corollary (Freudenthal, 1938)

$$\pi_{n+k}(S^n) \cong \pi_{n+k+1}(S^{n+1})$$
 for $n > k+1$.

When *n* is sufficiently large, $\pi_{n+k}(S^n)$ depends only on *k*. Taking the limit, we have the stable homotopy groups of the spheres (called the **stable stems**):

$$\pi_k^s \coloneqq \pi_k^s(S^0) = \operatorname{colim}_n \pi_{n+k}(S^n).$$

Corollary (Freudenthal, 1938)

$$\pi_{n+k}(S^n) \cong \pi_{n+k+1}(S^{n+1})$$
 for $n > k+1$.

When *n* is sufficiently large, $\pi_{n+k}(S^n)$ depends only on *k*. Taking the limit, we have the stable homotopy groups of the spheres (called the **stable stems**):

$$\pi_k^s \coloneqq \pi_k^s(S^0) = \operatorname{colim}_n \pi_{n+k}(S^n).$$

Examples

The following results can be derived from the Pontryagin-Thom construction:

$$\bullet \ \pi_0^s = \mathbb{Z}$$

Corollary (Freudenthal, 1938)

$$\pi_{n+k}(S^n) \cong \pi_{n+k+1}(S^{n+1})$$
 for $n > k+1$.

When *n* is sufficiently large, $\pi_{n+k}(S^n)$ depends only on *k*. Taking the limit, we have the stable homotopy groups of the spheres (called the **stable stems**):

$$\pi_k^s \coloneqq \pi_k^s(S^0) = \operatorname{colim}_n \pi_{n+k}(S^n).$$

Examples

The following results can be derived from the Pontryagin-Thom construction:

$$\bullet \ \pi_0^s = \mathbb{Z}.$$

$$a_1^s = \pi_2^s = \mathbb{Z}/2.$$

3

In the definition of $\Omega_k^{fr}(\mathbb{R}^{n+k})$, the elements of the group are some cobordant class of some framed *k*-manifold.

In the definition of $\Omega_k^{fr}(\mathbb{R}^{n+k})$, the elements of the group are some cobordant class of some framed *k*-manifold.

Question

What is the obstruction for the elements of $\Omega_k^{fr}(\mathbb{R}^{n+k})$ to have a homotopy *k*-sphere as a representative instead of some general framed *k*-manifold?

In the definition of $\Omega_k^{fr}(\mathbb{R}^{n+k})$, the elements of the group are some cobordant class of some framed *k*-manifold.

Question

What is the obstruction for the elements of $\Omega_k^{fr}(\mathbb{R}^{n+k})$ to have a homotopy *k*-sphere as a representative instead of some general framed *k*-manifold?

Lemma

Homotopy spheres can be framed. A homotopy k-sphere Σ^k with two different framings F_1,F_2 satisfies

$$[\Sigma^k, F_1] - [\Sigma^k, F_2] = [S^k, F]$$

for some framing F on S^k .

In the definition of $\Omega_k^{fr}(\mathbb{R}^{n+k})$, the elements of the group are some cobordant class of some framed *k*-manifold.

Question

What is the obstruction for the elements of $\Omega_k^{fr}(\mathbb{R}^{n+k})$ to have a homotopy *k*-sphere as a representative instead of some general framed *k*-manifold?

Lemma

Homotopy spheres can be framed. A homotopy k-sphere Σ^k with two different framings F_1, F_2 satisfies

$$[\Sigma^k, F_1] - [\Sigma^k, F_2] = [S^k, F]$$

for some framing F on S^k .

• Starting Point: twisted framing on spheres.

Albert Yang (Penn)

16 / 35

Consider a framing on M^k given by $f: M^k \times \mathbb{R}^n \to N_{\mathbb{R}^{n+k}/M^k}$.

< 🗗 🕨

< 3 > 3

$$f \circ g : M^k \times \mathbb{R}^n \to M^k \times \mathbb{R}^n \to N_{\mathbb{R}^{n+k}/M^k},$$

$$f \circ g : M^k \times \mathbb{R}^n \to M^k \times \mathbb{R}^n \to N_{\mathbb{R}^{n+k}/M^k},$$

where the first map $M^k \times \mathbb{R}^n \to M^k \times \mathbb{R}^n$ sends (x, v) to (x, g(x)v).

• If $M^k = S^k$ has a framing F that extends to a (k + 1)-disk, then $[S^k, F] = \emptyset$.

$$f \circ g : M^k \times \mathbb{R}^n \to M^k \times \mathbb{R}^n \to N_{\mathbb{R}^{n+k}/M^k},$$

where the first map $M^k \times \mathbb{R}^n \to M^k \times \mathbb{R}^n$ sends (x, v) to (x, g(x)v).

- If $M^k = S^k$ has a framing F that extends to a (k + 1)-disk, then $[S^k, F] = \emptyset$.
- $[S^k, F]$ is non-trivial iff F is twisted, hence determined by an element in $\pi_k(SO(n))$.

17 / 35

All framing on S^k are classified by $\pi_k(SO(n))$.

I ∃ ►

э

All framing on S^k are classified by $\pi_k(SO(n))$. Hopf (1935) and Whitehead (1942) introduce a homomorphism based on the above fact, called the *J*-homomorphism:

 $J: \pi_k(SO(n)) \to \pi_{n+k}(S^n).$

All framing on S^k are classified by $\pi_k(SO(n))$. Hopf (1935) and Whitehead (1942) introduce a homomorphism based on the above fact, called the *J*-homomorphism:

$$J: \pi_k(SO(n)) \to \pi_{n+k}(S^n).$$

After stabilizing, it changed into a more familiar form:

$$J:\pi_k(SO)\to\pi_k^s.$$

All framing on S^k are classified by $\pi_k(SO(n))$. Hopf (1935) and Whitehead (1942) introduce a homomorphism based on the above fact, called the *J*-homomorphism:

$$J: \pi_k(SO(n)) \to \pi_{n+k}(S^n).$$

After stabilizing, it changed into a more familiar form:

$$J: \pi_k(SO) \to \pi_k^s.$$

Theorem (Bott, 1959)

 $\pi_k(SO)$ is 8-periodic. In particular, one has

Theorem (Adams 1966, Quillen 1971, Sullivan 1974)

The image of J is a direct summand of π_n^s , and is cyclic for all n. In particular,

- If $n \equiv 0, 1 \mod 8$, then |im J| = 2.
- ② If $n \equiv 3,7 \mod 8$, then |im J| is the denominator of $B_{2k}/(4k)$, where B_{2k} is the Bernoulli number.
- im J is trivial in other cases.

Theorem (Adams 1966, Quillen 1971, Sullivan 1974)

The image of J is a direct summand of π_n^s , and is cyclic for all n. In particular,

- If $n \equiv 0, 1 \mod 8$, then |im J| = 2.
- ② If $n \equiv 3,7 \mod 8$, then |im J| is the denominator of $B_{2k}/(4k)$, where B_{2k} is the Bernoulli number.
- im J is trivial in other cases.

The Bernoulli number is defined by the generating function

$$\frac{x}{e^x-1}=\sum_{k=0}^\infty\frac{B_kx^k}{k!}.$$

Theorem (Adams 1966, Quillen 1971, Sullivan 1974)

The image of J is a direct summand of π_n^s , and is cyclic for all n. In particular,

- If $n \equiv 0, 1 \mod 8$, then |im J| = 2.
- ② If $n \equiv 3,7 \mod 8$, then |im J| is the denominator of $B_{2k}/(4k)$, where B_{2k} is the Bernoulli number.
- **3** im *J* is trivial in other cases.

The Bernoulli number is defined by the generating function

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} \frac{B_k x^k}{k!}.$$

The following is a list of some Bernoulli numbers:

Smooth Structures

 Albert Yang (Penn)
 From Exotic Spheres to Stable Homotopy The
 Feb 2024

3

20 / 35

Facts

- All homotopy spheres admit (stable) framings.
- $\Omega_n^{fr} \cong \pi_n^s$.
- Elements in Ω_n^{fr} satisfies $[\Sigma^n, F_1] [\Sigma^n, F_2] = [S^n, F]$.
- $[S^n, F]$ is completely determined by *J*-homomorphism.

Facts

- All homotopy spheres admit (stable) framings.
- $\Omega_n^{fr} \cong \pi_n^s$.
- Elements in Ω_n^{fr} satisfies $[\Sigma^n, F_1] [\Sigma^n, F_2] = [S^n, F]$.
- $[S^n, F]$ is completely determined by *J*-homomorphism.

We have a homomorphism:

$$\Theta_n \to \pi_n^s / \operatorname{im} J.$$

The kernel of this map is denoted by Θ_n^{bp} , which consists of the homotopy spheres that bound framed manifolds.

Theorem (Kervaire-Milnor, 1963)

• If $n \neq 2 \mod 4$, then there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n^s/J \to 0.$$

2 If $n \equiv 2 \mod 4$, then there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n^s/J \xrightarrow{\Phi} \mathbb{Z}/2 \to \Theta_{n-1}^{bp} \to 0,$$

where Φ is the Kervaire invariant.

3 If n is even, then $\Theta_n^{bp} = 0$.

(4) If n = 4k - 1, then

$$\Theta_n^{bp} \cong \mathbb{Z}/(2^{2k-2}(2^{2k-1}-1)c_k),$$

where c_k is the numerator of $4B_{2k}/k$.

• Problem of computing stable homotopy groups of spheres!

3 N 3

- Problem of computing stable homotopy groups of spheres!
- Central to homotopy theory, but extremely hard.

1 Motivation: Exotic Spheres

2 Kervaire-Milnor Theory

3 Computation of Stable Homotopy Groups of Spheres

$$\pi_k^s = \operatorname{colim}_n \pi_{n+k}(S^n).$$

- (日)

æ

• Recall that the stable homotopy group of spheres (or the stable stems) are

$$\pi_k^s = \operatorname{colim}_n \pi_{n+k}(S^n).$$

Hopf (1931), Freudenthal (1938), Whitehead (1950), Pontryagin (1950), Rokhlin (1951): k ≤ 3, geometric methods.

$$\pi_k^s = \operatorname{colim}_n \pi_{n+k}(S^n).$$

- Hopf (1931), Freudenthal (1938), Whitehead (1950), Pontryagin (1950), Rokhlin (1951): k ≤ 3, geometric methods.
- **Starting of algebraic machinery**: Serre (1951) used Serre spectral sequences on iterated loop spaces and determined *k* < 9.

$$\pi_k^s = \operatorname{colim}_n \pi_{n+k}(S^n).$$

- Hopf (1931), Freudenthal (1938), Whitehead (1950), Pontryagin (1950), Rokhlin (1951): k ≤ 3, geometric methods.
- **Starting of algebraic machinery**: Serre (1951) used Serre spectral sequences on iterated loop spaces and determined *k* < 9.
- Toda (1962) introduced the Toda bracket, a secondary composition, and determined $k \leq 19$ together with the EHP sequences (Whitehead 1953, James 1957).

24 / 35

$$\pi_k^s = \operatorname{colim}_n \pi_{n+k}(S^n).$$

- Hopf (1931), Freudenthal (1938), Whitehead (1950), Pontryagin (1950), Rokhlin (1951): k ≤ 3, geometric methods.
- **Starting of algebraic machinery**: Serre (1951) used Serre spectral sequences on iterated loop spaces and determined *k* < 9.
- Toda (1962) introduced the Toda bracket, a secondary composition, and determined $k \le 19$ together with the EHP sequences (Whitehead 1953, James 1957).
- **Milestone**: Introduction of the stable homotopy category, by Spanier and Whitehead (1962), and Boardman (1965).

• Remarkable computation tool: Adams spectral sequences by Adams (1958), $E = H\mathbb{Z}/p$.

< 4[™] >

→ ∃ →

э

- Remarkable computation tool: Adams spectral sequences by Adams (1958), $E = H\mathbb{Z}/p$.
- Adams-Novikov spectral sequences by Novikov (1967), E = MU.

- Remarkable computation tool: Adams spectral sequences by Adams (1958), $E = H\mathbb{Z}/p$.
- Adams-Novikov spectral sequences by Novikov (1967), E = MU.
- May spectral sequence by May (1964), to compute E_2 -page of Adams spectral sequence. Respectively, Ravenel (1978) introduced the **chromatic spectral sequences** to compute E_1 -page of the Adams-Novikov spectral sequence, E = BP.

- Remarkable computation tool: Adams spectral sequences by Adams (1958), $E = H\mathbb{Z}/p$.
- Adams-Novikov spectral sequences by Novikov (1967), E = MU.
- May spectral sequence by May (1964), to compute E_2 -page of Adams spectral sequence. Respectively, Ravenel (1978) introduced the chromatic spectral sequences to compute E_1 -page of the Adams-Novikov spectral sequence, E = BP.
- Barratt, Mahowald, Tangora, Bruner, Nakamura, etc. computed differentials and π_k^s at mod 2, 3, 5 via MaySS, Toda brackets, Massey products, power operations, etc. in 1960-1980s. They determined π_k^s up to n = 45 at mod 2, n = 108 at mod 3, and n = 999 at mod 5.

- 4 同 ト 4 三 ト - 4 三 ト - -

- Remarkable computation tool: Adams spectral sequences by Adams (1958), $E = H\mathbb{Z}/p$.
- Adams-Novikov spectral sequences by Novikov (1967), E = MU.
- May spectral sequence by May (1964), to compute E_2 -page of Adams spectral sequence. Respectively, Ravenel (1978) introduced the **chromatic spectral sequences** to compute E_1 -page of the Adams-Novikov spectral sequence, E = BP.
- Barratt, Mahowald, Tangora, Bruner, Nakamura, etc. computed differentials and π_k^s at mod 2, 3, 5 via MaySS, Toda brackets, Massey products, power operations, etc. in 1960-1980s. They determined π_k^s up to n = 45 at mod 2, n = 108 at mod 3, and n = 999 at mod 5.
- More results later...

- Remarkable computation tool: Adams spectral sequences by Adams (1958), $E = H\mathbb{Z}/p$.
- Adams-Novikov spectral sequences by Novikov (1967), E = MU.
- May spectral sequence by May (1964), to compute E_2 -page of Adams spectral sequence. Respectively, Ravenel (1978) introduced the **chromatic spectral sequences** to compute E_1 -page of the Adams-Novikov spectral sequence, E = BP.
- Barratt, Mahowald, Tangora, Bruner, Nakamura, etc. computed differentials and π_k^s at mod 2, 3, 5 via MaySS, Toda brackets, Massey products, power operations, etc. in 1960-1980s. They determined π_k^s up to n = 45 at mod 2, n = 108 at mod 3, and n = 999 at mod 5.
- More results later...
- Most recent: Isaksen (2019) and Isaksen-Xu-Wang (2020, 2023) used the motivic Adams spectral sequences to determine π^s_k up to n = 90 at mod 2.

Here's the picture of the 2-primary parts of π_k^s from Hatcher, for $i \leq 60$.

Here's the picture of the 3-primary parts of π_k^s from Hatcher, for $i \leq 108$.

Computational Results

Here's the picture of the 5-primary parts of π_k^s from Hatcher, for $i \leq 999$.

Albert Yang (Penn)

< ∃⇒

æ

Theorem (Serre, Toda, Kervaire-Milnor, Isaksen, Isaksen-Wang-Xu)

 S^1, S^3, S^5 and S^{61} are the **only odd-dimensional spheres** with a unique smooth structure.

Theorem (Serre, Toda, Kervaire-Milnor, Isaksen, Isaksen-Wang-Xu)

 S^1, S^3, S^5 and S^{61} are the **only odd-dimensional spheres** with a unique smooth structure.

Theorem (Behrens-Hill-Hopkins-Mahowald)

The only even-dimensional spheres below dimension 140 which have unique smooth structures are S^2 , S^6 , S^{12} , S^{56} and perhaps S^4 .

Theorem (Serre, Toda, Kervaire-Milnor, Isaksen, Isaksen-Wang-Xu)

 S^1, S^3, S^5 and S^{61} are the **only odd-dimensional spheres** with a unique smooth structure.

Theorem (Behrens-Hill-Hopkins-Mahowald)

The only even-dimensional spheres below dimension 140 which have unique smooth structures are S^2 , S^6 , S^{12} , S^{56} and perhaps S^4 .

Conjecture

 S^n has a unique smooth structure if either $n \le 6$, or n = 12, 56, 61.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

More Results

In general, below dimension 90, one has (picture from Isaksen-Wang-Xu's paper "Stable homotopy groups of spheres: from dimension 0 to 90")

k	v_1 -torsion at the prime 2	v_1 -torsion at odd primes	v_1 -periodic	Group of smooth structures
1			2	
2			2	
3			8.3	
4				?
5				
6	2			
7			16.3.5	b_2
8	2		2	$\overline{2}$
9	2		2^{2}	$2 \cdot 2^2$
10		3	2	2.3
11			8.9.7	<i>b</i> ₃
12				
13		3		3
14	2.2			2
15	2		32-3-5	$b_4 \cdot 2$
16	2		2	$\overline{2}$
17	2^{2}		2^{2}	$2 \cdot 2^3$
18	8		2	2.8
19	2		8.3.11	$b_5 \cdot 2$
20	8	3		8.3
21	2^{2}			$2 \cdot 2^2$
22	2^{2}			$\overline{2}^2$
23	2.8	3	16.9.5.7.13	$b_{6} \cdot 2 \cdot 8 \cdot 3$
24	2		2	$\frac{3}{2}$
25			2^{2}	2.2
26	2	3	2	$\overline{2}^2 \cdot 3$
27			8.3	b7
			• • •	

More Results

In general, below dimension 90, one has (picture from Isaksen-Wang-Xu's paper "Stable homotopy groups of spheres: from dimension 0 to 90")

28	2			2
29		3		3
30	2	3		3
31	2^{2}		64-3-5-17	$b_8 \cdot 2^2$
32	2^{3}		2	2 ³
33	2^{3}		2^{2}	$2 \cdot 2^4$
34	$2^2 \cdot 4$		2	$2^{3} \cdot 4$
35	2^{2}		8.27.7.19	$b_9 \cdot 2^2$
36	2	3		2.3
37	2^{2}	3		$2 \cdot 2^2 \cdot 3$
38	2.4	3.5		2.4.3.5
39	2 ⁵	3	16.3.25.11	$b_{10} \cdot 2^5 \cdot 3$
40	$2^{4} \cdot 4$	3	2	24.4.3
41	2^{3}		2 ²	$2 \cdot 2^4$
42	2.8	3	2	$2^2 \cdot 8 \cdot 3$
43	· · ·		8.3.23	b11
44	8			8
45	$2^{3} \cdot 16$	9.5		$2 \cdot 2^3 \cdot 16 \cdot 9 \cdot 5$
46	24	3		24.3
47	$2^{3} \cdot 4$	3	32.9.5.7.13	$b_{12} \cdot 2^3 \cdot 4 \cdot 3$
48	$2^{3} \cdot 4$		2	$2^{3} \cdot 4$
49		3	2^{2}	<u>2</u> ·2·3
50	2^{2}	3	2	$2^{3} \cdot 3$
51	2.8		8.3	$b_{13} \cdot 2 \cdot 8$
52	2^{3}	3		$2^{3} \cdot 3$
53	24			$2 \cdot 2^4$
54	2.4			2.4

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More Results

In general, below dimension 90, one has (picture from Isaksen-Wang-Xu's paper "Stable homotopy groups of spheres: from dimension 0 to 90")

k	v_1 -torsion at the prime 2	v_1 -torsion at odd primes	v_1 -periodic	Group of smooth structures
55		3	16.3.5.29	$b_{14} \cdot 3$
56			2	
57	2		2^{2}	$2 \cdot 2^2$
58	2		2	2^{2}
59	2^{2}		8.9.7.11.31	$b_{15} \cdot 2^2$
60	4			4
61			•	
62	2 ⁴	3		2 ³ ·3
63	$2^{2} \cdot 4$		128-3-5-17	$b_{16} \cdot 2^2 \cdot 4$
64	25.4		2	25.4
65	27.4	3	2 ²	$2 \cdot 2^8 \cdot 4 \cdot 3$
66	2 ⁵ ·8		2	26.8
67	2 ³ ·4		8.3	$b_{17} \cdot 2^3 \cdot 4$
68	2 ³	3		23.3
69	2 ⁴		•	$2 \cdot 2^4$
70	$2^{5} \cdot 4^{2}$			$2^{5} \cdot 4^{2}$
71	$2^{6} \cdot 4 \cdot 8$		16.27.5.7.13.19.37	$b_{18} \cdot 2^6 \cdot 4 \cdot 8$
72	27	3	2	27.3
73	2 ⁵		2^{2}	$2 \cdot 2^{6}$
74	4^{3}	3	2	$2 \cdot 4^3 \cdot 3$
75	2	9	8.3	$b_{19} \cdot 2 \cdot 9$
76	$2^{2} \cdot 4$	5		2 ² ·4·5
77	2 ⁵ ·4			$2 \cdot 2^5 \cdot 4$
78	$2^{3} \cdot 4^{2}$	3		$2^{3} \cdot 4^{2} \cdot 3$
79	26.4		32.3.25.11.41	$b_{20} \cdot 2^6 \cdot 4$
80	2 ⁸		2	28
			4 □ ▶	

In general, below dimension 90, one has (picture from Isaksen-Wang-Xu's paper "Stable homotopy groups of spheres: from dimension 0 to 90")

81	$2^{3} \cdot 4 \cdot 8$	3 ²	2^{2}	$2 \cdot 2^4 \cdot 4 \cdot 8 \cdot 3^2$
82	2 ⁵ .8	3.7	2	2 ⁶ ·8·3·7 or 2 ⁴ ·4·8·3·7
83	$2^{3} \cdot 8$	5	8.9.49.43	$b_{21} \cdot 2^3 \cdot 8 \cdot 5$
84	2^{6} or 2^{5}	3 ²		$2^{6} \cdot 3^{2}$ or $2^{5} \cdot 3^{2}$
85	$2^{6} \cdot 4^{2}$ or $2^{5} \cdot 4^{2}$ or	3 ²		$2^{6} \cdot 4^{2} \cdot 3^{2}$ or $2^{5} \cdot 4^{2} \cdot 3^{2}$
	$2^4 \cdot 4^3$ or $2^7 \cdot 4$			or $2^4 \cdot 4^3 \cdot 3^2$ or $2^7 \cdot 4 \cdot 3^2$
86	$2^4 \cdot 8^2$ or $2^2 \cdot 4 \cdot 8^2$	3.5		$2^4 \cdot 8^2 \cdot 3 \cdot 5$ or $2^2 \cdot 4 \cdot 8^2 \cdot 3 \cdot 5$
87	2 ⁵ ·4	•	16-3-5-23	$b_{22} \cdot 2^5 \cdot 4$
88	2 ⁴ ·4	•	2	24.4
89	2^{3}	•	2^{2}	$\underline{2}\cdot 2^4$
90	$2^{3} \cdot 8 \text{ or } 2^{2} \cdot 8$	3	2	$2^4 \cdot 8 \cdot 3$ or $2^3 \cdot 8 \cdot 3$

- M. A. Kervaire, J. W. Milnor, Groups of Homotopy Spheres: I. Annals of Math. Vol. 77, No. 3, 1962.
- M. A. Hill, M. J. Hopkins, D. C. Ravenel Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem. Cambridge University Press, 2021.
- G. Wang, Z. Xu, Stable homotopy groups. EMS Magazine 128 (2013). DOI 10.4171/MAG/142.

Thank you!

3