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1. Preliminary: Almost Complex Structure

We assume the familiarity of smooth manifolds and vector bundles in this note.
We will always assume the manifolds are smooth and finite dimensional unless
otherwise stated.

Let V be a real vector space with dimension 2n. A complex structure on V is
an endomorphism J : V → V such that J2 = −id. We can complexify V into a
C-vector space by tensoring a C. J can be extended to V ⊗C by J(v⊗z) = J(v)⊗z
for v ∈ V, z ∈ C. As a linear transformation, J2 = −id has two eigenvalues i and
−i. Denote the eigenspace associated with i by V 1,0, and the one associated with
−i by V 0,1. Now we can write V ⊗ C = V 1,0 ⊕ V 0,1.

Exercise 1.1. Every element in V 1,0 can be written in the form v ⊗ 1 − Jv ⊗ i.
Similarly, every element in V 0,1 can be written in the form v ⊗ 1 + Jv ⊗ i.

We can apply this idea to the tangent space of a manifold M .
1
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Definition 1.2. Let M be a manifold. An almost complex structure on M
is a vector bundle isomorphism J : TM → TM such that J2 = −id. A manifold
admitting an almost complex structure is called an almost complex manifold.

This J turns TM into a C-vector bundle, but does not turn M into a complex
manifold because it tells us nothing about the local diffeomorphisms. By defini-
tion, if M admits an almost complex structure, then M is even-dimensional and
orientable (Exercise). A famous theorem by Borel and Serre said that the only
spheres admitting an almost complex structure is S2 and S6.

Example 1.3 (4-sphere). Recall the first Pontryagin class of a real vector bundle
E → M with a complex structure J is given by the second Chern class: p1(E) =
−c2(E ⊗ C) ∈ H4(M). One can decompose E ⊗ C = (E, J) ⊕ (E,−J). Write
E = (E,−J). By Whitney sum formula and cj(E) = (−1)jcj(E),

c2(E ⊗ C) = c2(E ⊕ E) = c2(E) + c1(E)c1(E) + c2(E)

= 2c2(E)− (c1(E))2.(1)

Suppose S4 has an almost complex structure J . Apply (1) to TS4 → S4, we get

p1(TS
4) = 2c2(TS

4E)− (c1(TS
4))2.

Since H2(S4) = 0, the signature of S4 is σ(S4) = 0. By Hirzebruch signature
theorem, 1

3p1(TS
4) · [S4] = σ(S4) = 0. Hence

0 =
1

3
p1(TS

4) · [S4]

=
(
2c2(TS

4E)− (c1(TS
4))2

)
· [S4].

Note that c2 is the top Chern class of TS4, so it is the Euler class. Evaluating at
[S4], c2 · [S4] = χ(S4) = 2. This implies (c1(TS

4))2 · [S4] = 4, which is impossible
because H2(S4) = 0. Contradiction!

We can complexify TM to TM ⊗ C and decompose it into T 1,0 ⊕ T 0,1, where
T 1,0 is the eigenspace associated with i and T 0,1 is the eigenspace associated with
−i. Dually, we can decompose the complexified cotangent bundle into (T 1,0)∗ and
(T 0,1)∗.

Given a complex manifold M with an atlas {(U, ϕ)}, we can obtain a canoni-
cal almost complex structure through the following: start with a local coordinate
(z1, · · · , zn) for some arbitrarily chosen p ∈ U ⊂ M , where zj = xj + iyj . A basis
for TpM can be chosen to be the span of {∂xj

, ∂yj
}. Set J : TM → TM restricting

at p to be Jp(∂xj
) = ∂yj

and Jp(∂yj
) = −∂xj

. It is an easy exercise to check that J
is an almost complex structure.

Definition 1.4. An almost complex structure J on a manifold M is said to be
integrable if it comes from a complex structure.

We have two methods leading to the same theorem deciding whether an almost
complex structure is integrable.

Definition 1.5. Let M be a manifold, and E ⊂ TM be a subbundle of rank k.
Then

• E is involutive if the Lie bracket of any two sections of E is again a section;
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• E is integrable if for any point p ∈ M , there is a neighborhood U of p
with a diffeomorphism ϕU : U → Rn−k such that E |U= ker(dϕU ). That
is, any fiber ϕ−1

U is a submanifold of U with tangent space E | ϕ−1
U .

Theorem 1.6 (Frobenius). Let M be a manifold and E ⊂ TM be a subbundle of
rank k. Then E is involutive iff E is integrable. If M further admits a complex
structure with dimCM = n, then E involutive iff E is holomorphically integrable
(i.e. ϕU in the definition of integrability is chosen to be holomorphic).

Definition 1.7. Let M be a manifold with an almost complex structure J . Then
(M,J) is called real analytic if M has a real analytic atlas, and in each of these
local coordinate charts, J is a real analytic family of matrices.

Theorem 1.8 (Newlander-Nirenberg, version 1). Let (M,J) be real analytic. Then
J is integrable iff T 0,1 is involutive.

Another way to state the Newlander-Nirenberg theorem is via the Nijenhuis
tensor. Let X,Y be vector fields on M . The Nijenhuis tensor of X,Y is

NJ(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ].

One can check that NJ = 0 iff [T 0,1, T 0,1] ⊂ T 0,1, i.e. T 0,1 is involutive. So we
have:

Theorem 1.9 (Newlander-Nirenberg, version 2). J is integrable iff NJ = 0.

In the following chapter, we will see that the vanishing of Nijenhuis tensor can

be characterized by other criteria, e.g. d = ∂ + ∂ or ∂
2
= 0.

2. Complexes

2.1. de Rham Complexes. Proofs of this section are omitted. See Chapter 5 of
course notes of C3.3 Differentiable Manifolds for details.

Recall that an n-form of a manifold M is a section of the Grassmann exterior
algebra of cotangent bundle. Namely, Ωm(M) = C∞(M,

∧n
T ∗M). Here

∧•
V

for an arbitrary finite dimensional R-vector space V is a graded associative algebra∧•
V =

⊕∧k
V together with an injective linear map ı : V →

∧•
V with

∧0
V = V

and
∧1

V = ı(V ) ∼= V , which is universal.
We have an exterior derivative d : Ω•(M) → Ω•+1(M) such that it is universal

and linear, with the following properties:

(1) d2 = 0;
(2) for any ω ∈ Ωk(M) and η ∈ Ωℓ(M), we have d(ω∧η) = dω∧η+(−1)kω∧dη;
(3) for any F :M → N smooth, ω ∈ Ω•(M), we have d(F ∗ω) = F ∗dω;

For any f ∈ Ω0(M), df ∈ Ω1(M), for any vector field X, we define

df(X) = LXf = Xf,

where LXω, the Lie derivative of k-form ω, is given by

LXω(p) = lim
t→0

(ϕXt )∗(ω(ϕXt (p)))− ω(p)
t

https://courses-archive.maths.ox.ac.uk/node/49349
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for p ∈ M , where ϕXt is the flow of X near p. In general, let V0, · · · , Vk be vector
fields. Then the exterior derivative of a k-form is given by

dω(V0, · · · , Vk) =
k∑

j=0

(−1)jLVj
(ω(V0, · · · , V̂j , · · · , Vk))+∑

j<ℓ

(−1)j+ℓω([Vj , Vk], V0, · · · , V̂j , · · · , V̂ℓ · · · , Vk).

In particular, when k = 1,

dω(V0, V1) = LV0
(ω(V1))− LV1

(ω(V0))− ω([V0, V1]).
(Ω•(M), d) now constitutes a well-defined cochain complex:

0→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ · · · .

An k-form ω is called closed if dω = 0, and called exact if dη = ω for some
(k − 1)-form η.

Definition 2.1. The k-th de Rham cohomology group of M is defined to be

Hk
dR(M) =

closed k-forms

exact k-forms
.

Corollary 2.2. H0
dR(M) = {f ∈ C∞(M) | df = 0} = locally constant functions on M =

Rπ0M .

Lemma 2.3. de Rham cohomology is a graded commutative algebra with multiplica-
tion given by [α]∧ [β] = [α∧β]. Hence, H∗

dR : Manifoldsop → GradedCommAlg
is a well-defined contravariant functor.

Let F : M → N . We can pull back the k-forms on N via F ∗, commuting with
the exterior derivative d. In fact, F ∗ induced a map on de Rham cohomology group
F ∗ : H∗

dR(N) → H∗
dR(M), where [ω] ∈ H∗

dR(N) is sent to [F ∗ω] ∈ H∗
dR(M). This

map only depends only on the homotopy class of F .

Lemma 2.4. Let H : M × [0, 1]→ N be a smooth homotopy between F0, F1, with
Ft = H |M×{t}. Then F ∗

0 = F ∗
1 .

Corollary 2.5. If A is a deformation retract of M , then M and A have the same
de Rham cohomology.

Corollary 2.6 (Poincaré lemma). Let U ⊂ Rn be a smoothly contractible subspace.
Then Hk

dR(U) = 0 for all k > 0.

Poincaré lemma also exists in compactly supported de Rham cohomology H∗
dR,c.

Let M be a manifold, consider the projection π : M × R→ M . The push-forward
map (NOT pullback π∗!) π∗ : Ω∗

c(M ×R)→ Ω∗−1
c (M) defined an induced map of

π on compactly supported de Rham complex as follows: note that every compactly
supported form on M × R is a linear combination of two types of form

(1) π∗ω · f(x, t) for ω ∈ Ω∗(M × R) and f being a function with compact
support. In this case,

π∗(π
∗ω · f(x, t)) = 0;

(2) π∗ω · f(x, t)dt. In this case,

π∗(π
∗ω · f(x, t)dt) = ω

∫ ∞

−∞
f(x, t)dt.
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It is an easy exercise to show that π∗ is a cochain map, hence it induces a map on
compactly supported de Rham cohomology π∗ : H∗

dR,c(M × R)→ H∗−1
dR,c(M). Now

let e = e(t)dt be a compactly supported 1-form on R integrating to 1. Define e∗ :
Ω∗

c(M)→ Ω∗+1
c (M×R) by sending ω to π∗(ω)∧e. One can check e∗ is a well-defined

cochain map (Exercise). So e∗ induces a map e∗ : H∗
dR,c(M)→ H∗+1

dR,c(M ×R). We
have

Lemma 2.7. e∗ and π∗ induce a pair of mutual inverses:

H∗
dR,c(M × R)

π∗−⇀↽−
e∗

H∗−1
dR,c(M).

Corollary 2.8 (Poincaré lemma for compactly supports). Let U ⊂ Rn be a smoothly
contractible subspace. Then Hk

dR,c(U) = 0 for all 0 ≤ k < n, and Hn
dR,c(U) ∼= R.

Here the last isomorphism in n-th compactly supported de Rham cohomology is given
by applying π∗ iteratively.

Mayer-Vietoris sequences work for both de Rham complexes and compactly sup-
ported de Rham complexes. Namely,

Theorem 2.9 (Mayer-Vietoris). LetM = U∪V with U, V open. Then the following
sequence is exact:

0→ Ω∗(M)→ Ω∗(U)⊕ Ω∗(V )→ Ω∗(U ∩ V )→ 0

(ω, τ) 7→ τ − ω .

In the compactly supported case,

0←− Ω∗
c(M)←− Ω∗

c(U)⊕ Ω∗
c(V )←− Ω∗

c(U ∩ V )←− 0

(−ȷ∗ω, ȷ∗ω) ←[ ω ,

where ȷ∗ is induced by the inclusion ȷ of open subsets of M to M , extending a form
on a open subset by zero to a form on M .

Like in usual cohomology theory, the following results hold for (compactly sup-
ported) de Rham cohomology.

Theorem 2.10 (Künneth formula). Let M,N be manifolds. Then for every n ≥ 0,

Hn
dR(M ×N) =

⊕
p+q=n

Hp
dR(M)⊗Hq

dR(N).

If further M,N admit finite good covers (i.e. open cover {Uj} with all the Uj and
all their non-empty finite intersections are contractible), then

Hn
dR,c(M ×N) =

⊕
p+q=n

Hp
dR,c(M)⊗Hq

dR,c(N).

Theorem 2.11 (Poincaré duality for orientable manifolds). If M is an orientable
manifold of dimension n admitting a finite good cover, then for any integer 0 ≤ p ≤
n,

Hp
dR(M) ∼= (Hn−p

dR,c(M))∗,

where the isomorphism is induced by the non-degenerate bilinear form∫
M

: Hp
dR(M)⊗R H

n−p
dR,c(M)→ R.

If the de Rham cohomology of M is finite-dimensional, then we also have

Hp
dR,c(M) ∼= (Hn−p

dR (M))∗.
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Theorem 2.12 (Poincaré duality for non-orientable manifolds). IfM is a manifold
of dimension n admitting a finite good cover, then for any integer 0 ≤ p ≤ n, there
are non-degenerate bilinear forms∫

M

: Hp
dR(M)⊗R H

n−p
dR,c(M,L)→ R,

and ∫
M

: Hp
dR,c(M)⊗R H

n−p
dR (M,L)→ R.

where L is the line bundle over M .

Proof of the last three theorems in this section can be found in Chapter I of Bott
& Tu’s book Differential Forms in Algebraic Topology .

2.2. Dolbeault Complexes. Let J be an almost complex structure on the man-
ifold M . Recall that J induces a bundle map J : T ∗M → T ∗M by Jω(V ) =
ω(J(V )), so we can decompose T ∗M ⊗ C into (T 1,0)∗ ⊕ (T 0,1)∗, where (T 1,0)∗ is
the eigenspace associated with i and (T 0,1)∗ is the eigenspace associated with −i.

If J is integrable, then it makes sense to use the complex coordinates (z1, · · · , zn)
in local coordinate charts with zj = xj+iyj in real coordinate (x1, · · · , xn, y1, · · · , yn).
Now T 1,0 is spanned by ∂zj = 1

2 (∂xj − i∂yj ), T
0,1 is spanned by ∂zj = 1

2 (∂xj + i∂yj ).

Thus, (T 1,0)∗ is spanned by dzj =
1
2 (d(xj)− id(yj)), (T

0,1)∗ is spanned by

dzj =
1

2
(d(xj)− id(yj))

. It is straightforward that

dzj(∂zk) = δjk, dzj(∂zk) = 0,
dzj(∂zk) = 0, dzj(∂zk) = δjk.

We define

p,0∧
T ∗M =

(
1,0∧
T ∗M

)∧p

,

0,q∧
T ∗M =

(
0,q∧
T ∗M

)∧q

,

and
p,q∧
T ∗M =

p,0∧
T ∗M ⊗

0,q∧
T ∗M.

We refer to the sections of
∧p,q

T ∗M as (p, q)-form. In local holomorphic coordi-
nate, a (p, q)-form ω can be written as

ω =
∑
|α|=p
|β|=q

fdzα ∧ dzβ,

where α = (α1, · · · , αp) and β = (β1, · · · , βq), and dzα = dzα1 ∧ · · · ∧ dzαp and
dzβ = dzβ1 ∧ · · · ∧ dzβq . Note that

d(fdzα ∧ dzβ) =
n∑

j=1

∂zj (f)dzj ∧ dzα ∧ dzβ +

n∑
j=1

∂zj (f)dzj ∧ dzα ∧ dzβ.

https://www.maths.ed.ac.uk/~v1ranick/papers/botttu.pdf
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This implies d(
∧p+q

) ⊂
∧p+1,q ⊗

∧p,q+1
. Hence we can decompose d = ∂ + ∂,

where

∂ : Ωp,qM = Ωp+1,qM,

∂ : Ωp,qM = Ωp,q+1M.

Here Ωp,q(M) = C∞(M,
∧p,q

T ∗M). It is obvious that ∂ω = ∂ω. (Check!) The
operator ∂, ∂ satisfies their own Leibniz’s rules. Namely, for ω ∈ Ωk(M) and
η ∈ Ωℓ(M),

∂(ω ∧ η) = ∂ω ∧ η + (−1)kω ∧ ∂η,

∂(ω ∧ η) = ∂ω ∧ η + (−1)kω ∧ ∂η.

It is immediate that ∂2 = ∂
2
= 0. From d2 = 0, we know (∂ + ∂)2 = ∂2 + ∂∂ +

∂∂ + ∂
2
= 0. So ∂∂ = −∂∂.

In general, if J is not necessarily integrable, it does NOT make sense to give
a basis for (T 0,1)∗ and (T 1,0)∗ via dzj and dzj . In this case, d has four types of
components instead of two:

d : Ωp,q → Ωp+1,q ⊕ Ωp,q+1 ⊕ Ωp+2,q−1 ⊕ Ωp−1,q+2.

Let us give an example to demonstrate this phenomenon. Let ω ∈ Ω1(M). ω has
(1, 0)-type if for πi,j = projection of Ωk onto Ωi,j (i+ j = k), ω(V ) = ω(π1,0V ) =
π1,0ω(V ), and ω(π0,1V ) = π0,1ω(V ) = 0, where V is an arbitrary vector field. By
definition, dω(V0, V1) = LV0

(ω(V1))− LV1
(ω(V0))− ω[V0, V1]. Note that

π2,0dω(V0, V1) = dω(π1,0V0, π1,0V1),

π1,1dω(V0, V1) = dω(π1,0V0, π0,1V1) + dω(π0,1V0, π1,0V1),

π0,2dω(V0, V1) = dω(π0,1V0, π0,1V1).

None of them can be guaranteed to vanish. If J is integrable, then by Newlander-
Nirenberg theorem,

π0,2dω(V0, V1) = −ω[π0,1V0, π0,1V1] = −ω(π0,1W ) = 0

for some W ∈ T 0,1. On the other hand, if π0,2dω = 0 for a (1, 0)-form ω, then

π1,0ω[π0,1V0, π0,1V1] = 0

for all V0, V1. This implies that [T 0,1, T 0,1] ⊂ T 0,1, i.e. T 0,1 is involutive. Packaging
the information we obtain the following result.

Theorem 2.13. Let (M,J) be an almost complex manifold. TFAE:

(1) J is integrable;
(2) T 0,1 is involutive;
(3) d : Ω1,0 → Ω2,0 ⊕ Ω1,1;
(4) d : Ω0,1 → Ω0,2 ⊕ Ω1,1;
(5) d : Ωp,q → Ωp+1,q ⊕ Ωp,q+1.

We now assume J is integrable in the following paragraphs.

Definition 2.14. Fix p. Since ∂
2
= 0, the (p, ∗)-forms on a manifold M of dimen-

sion n constitute a cochain complex:

0→ Ωp,0(M)
∂−→ Ωp,1(M)

∂−→ Ωp,2(M)
∂−→ · · · ∂−→ Ωp,n−p(M)→ 0,



8 JINGHUI YANG

called the Dolbeault complex of M . The (p, q)-th Dolbeault cohomology
group of M is then defined to be

Hp,q

∂
(M) =

ker ∂

im ∂
.

The complex dimension of Hp,q

∂
(M), denoted hp,q(M), is called the Hodge num-

bers of M .

Similarly, we can give the definition of the conjugate Dolbeault cohomology by

Hp,q
∂ (M) =

ker ∂

im ∂
.

From the definition, Hp,0

∂
(M) is the holomorphic sections of

∧p
(T ∗M)1,0. If M

is closed, then Hp,0

∂
(M) is clearly finite dimensional. This holds in general case:

Lemma 2.15. If M is a closed complex manifold, then Hp,q

∂
(M) is a finite dimen-

sional vector space.

Theorem 2.16 (∂-Poincaré lemma). For any ω ∈ Ωp,q(D), where q > 0 and
D ⊂ Cn is a polydisc (possibly unbounded), ω is both ∂-exact and ∂-closed.

Given a Dolbeault cohomology, one would wonder its relationship with de Rham
cohomology. Unfortunately, there are NO natural maps between Dolbeault coho-
mology groups and de Rham cohomology groups on general complex manifolds.
However, we can construct ones through other objects.

Definition 2.17. Note that ∂∂(∂ + ∂) = ∂∂∂ = −∂∂2 = 0, we may get a cochain
complex with differentials ∂∂ and ∂+ ∂. The (p, q)-th Bott-Chern cohomology
group is defined to be

Hp,q
BC(M) =

ker(∂ + ∂ : Ωp,q → Ωp+1,q ⊕ Ωp,q+1)

im (∂∂ : Ωp−1,q−1 → Ωp,q)
.

Definition 2.18. One can check (∂+∂)∂∂ = 0. Similar to the preceding definition,
we can define the (p, q)-th Aeppli cohomology group to be

Hp,q
A (M) =

ker(∂∂)

im (∂ + ∂)
.

There are natural maps

(2.19)

H•,•
BC(M)

H•,•
∂ (M) H•

dR(M) H•,•
∂

(M)

H•,•
A (M)

ϑ

We give a brief illustration on this diagram and encourage the readers to [5] for a
detailed discussion. The middle horizontal double arrows are given by the Frölicher
spectral sequence that will be introduced in the next section. The maps from
Bott-Chern cohomology to (conjugate) Dolbeault cohomology, and then to Aeppli
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cohomology are induced by the definitions. Explicitly, for example, since a d-closed
form is again ∂-closed, there is a natural map

{α ∈ Ωp,q : dα = 0} → Hp,q

∂
.

It follows from ∂∂∂ = 0 that we have a canonical map

Hp,q
BC → Hp,q

∂
.

Finally, we have the following theorem about ϑ in the diagram:

Theorem 2.20. Let the underlying complex manifold be M .

(1) If ϑ is injective, then all maps are isomorphism.
(2) If M satisfies ∂∂-lemma, i.e. (ker ∂ ∩ ker ∂ ∩ im d) ⊂ im ∂∂, then ϑ is

injective.

There are various criteria regarding the ∂∂-lemma. The most commonly used
one is that if M is Kähler, then M satisfies ∂∂-lemma (see Lemma 4.37). In [5],
the author gave another characterization: for any k ≥ 0 and dimCM = n,

∆k :=
∑

p+q=k

(
dimCH

p,q
BC(M) + dimCH

n−q,n−p
BC (M)

)
− 2bk ≥ 0,

and the equality holds iff M satisfies ∂∂-lemma. Focusing on both Bott-Chern
cohomology and Aeppli cohomology, M satisfies ∂∂-lemma iff

∑
k

∣∣∣∣∣∣
∑

p+q=k

dimCH
p,q
BC(M)− dimCH

p,q
A (M)

∣∣∣∣∣∣ = 0.

2.3. *Off-topic: An Invitation to the Frölicher Spectral Sequence. Spec-
tral sequences are very powerful tools in algebraic topology. They can be used
to compute various (co)homology and determine some multiplicative structures on
them. Spectral sequences are the generalization of long exact sequences which
associate to chain complexes with filtrations.

Definition 2.21. A filtrated R-module A is an R-module with an increasing
sequence of submodules FpA ⊂ Fp+1A indexed by p ∈ Z, such that

⋃
p FpA = A

and
⋂

p FpA = {0}. The filtration is bounded if FpA = {0} for sufficiently small p

and Fp′A = A for sufficiently large p′. The associated graded module of {FpA}
is defined by GpA = FpA/Fp−1A.

Similarly, we can define the cofiltration on an R-module A to be a decreasing
sequence of submodules F p+1A ⊂ F pA indexed by p ∈ Z, with the conditions
in analog to the above definition in the way as you would expect. In fact, we
can package the information to define a functor F with domain being a poset and
codomain being Ch(A) for A an abelian category. But this part is of less interest
to this topic. Given the cofiltrated R-module A, we can also define the associated
graded module of {F pA} by GpA = F pA/F p+1A.

Definition 2.22. A cofiltrated cochain complex is a cochain complex (C•, d•)
together with a cofiltration {F pCn} of each Cn, such that F 0(C•) = C• and
Fn+1(Cn) = 0 for all n, and the differential preserves the cofiltration, namely
d(F p(Cn)) ⊂ F p(Cn+1), where F p(Cn) = F p(C•)∩Cn. This implies that we have
an associated graded cochain complex {GpC•}.
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Let C• be a cochain complex and F • be a decreasing filtration on C• preserved
by d. F • induces a decreasing filtration on cohomology, defined by

F pHk(C•) = {α ∈ Hk(C•) : α = [x] for some x ∈ F pCk}.

We will use the notion F pHk if the underlying cochain complex is clear. If we
focus on the cocycles and coboundaries, we can set Zk = (ker dk) ∩ Ck and Bk =
(im dk−1) ∩ Ck, and define

F pZk = F p(C•) ∩ Zk = F p(Ck) ∩ Zk,

F pBk = F p(C•) ∩Bk = F p(Ck) ∩ Zk.

Note that F p+1Zk = F p+1(Ck) ∩ Zk ⊂ F p(Ck) ∩ Zk = F pZk, and so F • induces
a decreasing filtration on Z•, and similarly on B•. Note that Hk = Zk/Bk, we set

F pHk =
(ker dk) ∩ F pCk

(im dk−1) ∩ F pCk
=
F pZk

F pBk
.

It is straightforward to check both definitions for F pHk(C•) are equivalent, with
F p+1Hk ⊂ F pHk, F 0Hk = Hk, and F k+1Hk = 0. Note that F p+1Bk = F p+1Zk ∩
F pBk, we get

F p+1Hk =
F pZk

F pBk
=

F pZk

F p+1Zk ∩ F pBk
∼=
F p+1Zk + F pBk

F pBk

by the second isomorphism theorem. The associated graded pieces GpHk is then

(2.23) GpHk :=
F pHk

F p+1Hk
∼=

F pZk

F p+1Zk + F pBk
.

The associated graded homology is closely related to the homology by definition.
A natural question is to analyze what the associated graded homology looks like
for an arbitrary cochain complex. It is usually not easy to know exactly how the
right-hand side of equation 2.23 behaves, so we would like to form a sequence
of approximations to the associated graded homology from the associated graded
cochain complex itself. The idea is that, for each F pCk, we take those cochains
whose coboundary lives in some higher filtration level F p+r, modulo forms in the
next filtration level F p+1 with the same property (i.e. coboundary in F p+r), and
module coboundaries in F p of elements in a lower filtration, F p−r+1. If r is large
enough, then F p−r+1 gives C∗ and F p+r gives {0}. In this case,

{x ∈ F pCk | dx ∈ F p+rCk+1}
{y ∈ F p+1Ck | dy ∈ F p+rCk+1}+ d(F p−r+1Ck−1) ∩ F pCk

∼=
F pZk

F p+1Zk + F pBk
.

When r = 0, the left-hand side is just F pCk/F p+1Ck. Now move from one approx-
imating space to another, we define (write k = p+ q)

Ep,q
r :=

{x ∈ F pCp+q | dx ∈ F p+rCp+q+1}
{y ∈ F p+1Cp+q | dy ∈ F p+r+1Cp+q+1}+ d(F p−r+1Cp+q−1) ∩ F pCp+q

.

It is clear that Ep,q
0 = F pCp+q/F p+1Cp+q. When r is large enough, then we denote

(2.24)

Ep,q
∞ = lim

r→∞
Ep,q

r :=
{x ∈ F pCp+q | dx = 0}

{y ∈ F p+1Cp+q | dy = 0}+ d(Cp+q−1) ∩ F pCp+q
∼=

F pHp+q

F p+1Hp+q
.
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At r = 0, since the differential d is compatible with the filtration, it induces a map
d0 by

Ep,q
0 =

F pCp+q

F p+1Cp+q

d0−→ F pCp+q+1

F p+1Cp+q+1
= Ep,q+1

0 .

Exercise 2.25. Check that d induces a map d1 by

Ep,q
1

d1−→ Ep+1,q
1 .

Hint: write down the definition of E1-page.

Consider
F pCp+q

F p+1Cp+q

d0−→ F pCp+q+1

F p+1Cp+q+1

d0−→ F pCp+q+2

F p+1Cp+q+2
.

d20 = 0 since d2 = 0. Taking the cohomology at the middle term gives

Hp,q+1(E∗,∗
0 , d0) =

ker d0
im d0

=
{x∈FpCp+q+1|dx∈Fp+1Cp+q+2}

Fp+1Cp+q+1

d(Fp+1Cp+q)+Fp+1Cp+q+1

Fp+1Cp+q+1

=
{x ∈ F pCp+q+1 | dx ∈ F p+1Cp+q+2}

d(F p+1Cp+q) + F p+1Cp+q+1

= Ep,q+1
1 .

In fact, this formula holds for each r ≥ 0. That is, Er+1-page will be the cohomology
of (Er, dr)-page. We have the following theorem:

Theorem 2.26. For each r ≥ 0, the cochain complex (C•, d) gives rise to Ep,q
r

dr−→
Ep+r,q−r+1

r , and the cohomology of (E∗,∗
r , dr) is isomorphic to E∗,∗

r+1, where p, q are
natural integers.

For a detailed proof, the readers are referred to [6]. To summarize, we make the
following definition.

Definition 2.27. A (cohomological) spectral sequence consists of

• An R-module Ep,q
r for each natural numbers p, q and each integer r ≥ 0.

• Differentials dr : Ep,q
r → Ep+r,q−r+1

r such that d2r = 0 and Er+1 is the
cohomology of (Er, dr).

A spectral sequence converges if for every p, q, if r is large enough, then dr vanishes
on Ep,q

r . In this case, Ep,q
r is independent of r and it is actually Ep,q

∞ (Check!).

Now we focus on Ωk =
⊕

p+q=k Ω
p,q with underlying manifold M of dimension

n. We assume further that M is Kähler (so d = ∂ + ∂, see next section). Define
the filtration on Ωk by

F pΩk =
⊕
i≥p

i+j=k

Ωi,j .

Obviously, F 0Ωk = Ωk and Fn+1Ωk = {0} for all k. We use the construction in
the preceding paragraphs to get

Ep,q
0 =

F pΩp+q

F p+1Ωp+q
=

⊕
i≥p

i+j=p+q
Ωi,j⊕

i≥p+1
i+j=p+q

Ωi,j
∼= Ωp,q.
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One can check that d0 = ∂ (Exercise. Hint: write down the element and use
d = ∂ + ∂). Moreover, dr = 0 for all r ≥ 1. By Theorem 2.26,

Ep,q
1 = Hp,q

∂
(M).

Turn to the E∞-page. By equation 2.24,

Ep,q
∞ =

F pHk

F p+1Hk
.

Summing up all possible p,⊕
p+q=k

Ep,q
∞ =

⊕
0≤p≤k

F pHk

F p+1Hk
= Hk(M),

which is the de Rham cohomology of M . This is part of the Frölicher spectral
sequence. Explicitly,

Theorem 2.28. Let M be a compact Kähler manifold. Then the Frölicher spectral
sequence (E∗,∗

r , dr) collapses at E1-page (i.e. dr = 0 for all r ≥ 1, and so E∞ = E1).
Furthermore, there is a isomorphism Hk(M) =

⊕
p+q=kH

p,q

∂
(M).

So in the diagram 2.19, the horizontal double arrows are exactly the Frölicher
spectral sequences given above.

Corollary 2.29. Let M be a compact complex manifold. Then the Hodge number
hp,q and the Betti number bk satisfy∑

p+q=k

hp,q ≥ bk.

In particular, if M is Kähler, then the equality is achieved.

Proof. Note that dimEp,q
r ≥ dimEp,q

r+1, since Er+1 is the cohomology of (Er, dr).
By Theorem 2.28, Ep,q

1
∼= Hp,q

∂
, and

Hk(M) =
⊕

p+q=k

Hp,q

∂
(M).

This implies ∑
p+q=k

dimEp,q
1 ≥

∑
p+q=k

dimEp,q
∞ = bk.

□

Corollary 2.30. Let M be a compact complex manifold. Then
∑

p,q(−1)p+qhp,q =

χ(M).

3. Kähler Manifolds

Let (M,J) be an almost complex manifold. J2 = −id. Recall that

Definition 3.1. A Riemannian metric g on a smooth manifoldM is a smoothly
varying family of inner products on the fibers of the tangent bundle. Explicitly, for
each ξ ∈M , a map gξ : TξM × TξM → R satisfying

(1) g(u, v) is R-linear in u for all v.
(2) g(u, v) = g(v, u) for any u, v ∈ TξM .
(3) g(u, u) ≥ 0 and g(u, u) = 0 iff u = 0.
(4) If s1, s2 ∈ C∞(M,TM), then g(s1, s2) ∈ C∞(M).
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g is a (real) bundle metric. We introduce the Hermitian metric on bundles for
future reference.

Definition 3.2. Let E →M be a complex vector bundle over a smooth manifold
M . A Hermitian metric hE on E is a smooth family of Hermitian inner products
on the fibers of E. That is, for each ξ ∈M , hEξ : Eξ × Eξ → C satisfies

(1) hE(u, v) is C-linear in u for each v ∈ Eξ.

(2) hE(u, v) = hE(v, u).
(3) hE(u, u) ≥ 0 and hE(u, u) = 0 iff u = 0.
(4) If s1, s2 ∈ C∞(M,E), then hE(s1, s2) ∈ C∞(M).

Actually, hE is equivalent to a C-anti-linear bundle isomorphism h♭ : E → E∗ with

h♭(u)(v) = hE(v, u).

We say g is compatible with J if g(u, v) = g(Ju, Jv). Let (M,ω) be a
symplectic manifold. Say ω is compatible with J if ω(u, v) = ω(Ju, Jv).

Theorem 3.3. Let (g, J, ω) be a compatible triple. Then any two determines the
third.

We refer the proof to the notes by Dekun. In particular, given (J, ω), we can
define the Riemannian metric g(u, v) = ω(u, Jv). Given (g, J), we can define
ω(u, v) = g(Ju, v), which is a non-degenerate 2-form (NOT necessarily closed).

Definition 3.4. A Kähler manifold (M, g, J, ω) is a complex manifold with a
compatible triple (g, J, ω), where J is integrable, such that dω = 0. This ω is
sometimes called the Kähler form.

One can get a Kähler structure from a Hermitian metric. Let (M,J) be an
almost complex manifold and h = hTM be a Hermitian metric on TM (as a C-
vector bundle). Separating h into real and imaginary parts gives h(u, v) = g(u, v)+
iω(u, v), then one can check that g is a Riemannian metric onM and ω is a 2-form,
i.e. ω ∈ Ω2(M). Since

h(J(u), J(v)) = i · (−i) · h(u, v) = h(u, v),

we have

g(J(u), J(v)) = g(u, v),

ω(J(u), J(v)) = ω(u, v).

Similarly, h(J(u), v) = ih(u, v) implies g(J(u), v) = ω(u, v) and ω(J(u), v) =
−g(u, v). We sometimes refer to the compatible triple (g, J, ω) as a Hermitian
structure. In local holomorphic coordinates {zj}, let H ∈ GL n(C) be the matrix
with entries hjk = h(∂zj , ∂zk), then H = H∗ and H is thus positive definite. Recall
that there is a natural C-vector bundle isomorphism

(TM, J)
ϕ−→ T 1,0M

v 7→ 1

2
(v − iJ(v)).

To find the Riemannian metric, write zj = xj + iyj . Note that ϕ(∂xj
) = ∂zj and

ϕ(∂yj
) = ϕ(J(∂xj

)) = i∂zj . Thus we have, for instance,

g(∂xj , ∂xk
) = ℜh(∂zj , ∂zk) = ℜhjk,

g(∂xj
, ∂yk

) = ℜh(∂zj , i∂zk) = ℜ(−ih(∂zj , ∂zk)) = ℑhjk.

http://jinghui-yang1998.com/files/0624Symp.pdf
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So in the basis ∂x1
, · · · , ∂xn

, ∂y1
, · · · , ∂yn

, g is the 2n× 2n-matrix

G =

[
ℜH ℑH
−ℑH ℜH

]
.

Next consider the 2-form ω. It is not hard to find

ω(∂xj
, ∂xk

) = −ℑh(∂zj , ∂zk) = −ℑhjk,
ω(∂xj

, ∂yk
) = −ℑh(∂zj , i∂zk) = ℜhjk,

ω(∂yj , ∂yk
) = −ℑh(i∂zj , i∂zk) = −ℑhjk.

Extend ω bilinearly to the complexified tangent spaces TM⊗C. We want to express
ω in terms of dzj and dzk. Note that

ω(∂zj , ∂zk) = ω(∂xj
− i∂yj

, ∂xk
+ i∂yk

)

= ω(∂xj
, ∂xk

)− iω(∂yj
, ∂xk

) + iω(∂xj
, ∂yk

) + ω(∂yj
, ∂yk

)

= −ℑhjk + iℜhjk + iℜhjk −ℑhjk
= 2ihjk.

Similar computations show that ω(∂zj , ∂zk) = 0, ω(∂zj , ∂zk) = 0. This yields

ω =
i

2

∑
hjkdzj ∧ dzk.

In particular, ω is of type (1, 1).

Example 3.5. Equip C with the standard metric such that ∂z1 , · · · ∂zn is a unitary
basis. Then H = idn, G =

(
id 0
0 id

)
is the standard metric on R2n, and

ω =
i

2

∑
dzj ∧ dzj =

∑
dxj ∧ dyj

is the standard symplectic form on R2n. Note dω = 0, so it is Kähler.

Example 3.6. CPn admits a U(n+1)-invariant Kähler structure. Let z1, · · · , zn+1

be the standard coordinates on Cn+1 and ρ = ∥z∥2 =
∑

j z
2
j . Set

ω̃ =
i

2π
∂∂ log ρ =

i

2π

[
∂∂ρ

ρ
− ∂ρ ∧ ∂ρ

ρ2

]
=

i

2π

[
∥z∥2

∑
dzj ∧ dzj − (

∑
zjdzj) ∧ (

∑
zjdzj)

∥z∥4

]
.

It is U(n+1)-invariant since it only depends on ρ. It is also C×-invariant since the
numerator and denominator are homogeneous of degree 4. Hence ω̃ pushes forward
to a 2-form ω on CPn. To see that the resulting 2-form ω is positive definite (i.e.
ω(J(·), ·) > 0), we evaluate it at the point (1 : 0 : 0 : · · · : 0). This is clearly
positive. Appealing to U(n + 1)-invariance to see that ω is positive definite at all
points. This is known as the Fubini-Study form.

Proposition 3.7. (M, g, J, ω) is a Kähler manifold iff for each ξ ∈ M , there
are local holomorphic coordinates z1, · · · , zn centered at ξ such that the Hermitian
metric satisfies

h = idn +O
(∑

|zi|2
)
.
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Theorem 3.8. (M, g, J, ω) is Kähler manifold iff for each ξ ∈ M , there exists a
neighborhood of ξ and f : U → R smooth, such that

ω = i∂∂f on U.

Here f is called a local Kähler potential.

Proof. (⇐) is trivial by dω = (∂ + ∂)(i∂∂f) = 0. For (⇒), let U be a coordinate
chart identified with a polydisc. By Poincaré’s Lemma, we know that dω = 0, and
ω = dη for some η on U . Extend ω and η to C-vector fields and let η be real, i.e.
η1,0 = η0,1. ω is of type (1, 1), yielding

dη = ∂η1,0 + ∂η0,1.

So ∂η1,0 = 0 = ∂η0,1. Applying the ∂-Poincaré’s Lemma, we know that there exists
φ on U with ∂φ = η1,0 and ∂φ = η0,1. Let f = 2ℑφ = i(φ− φ), then

i∂∂f = −∂∂φ+ ∂∂φ = ∂η1,0 + ∂η0,1 = dη = ω.

□

4. Hodge Theory

4.1. Elliptic Operators. Let M be a manifold.

Definition 4.1. A linear differential operator of order k is a F-linear map
L : C∞(M,F) → C∞(M,F) that for any choice of local coordinates at ξ ∈ M , it
takes the form

Lf(ξ) =
∑
|α|≤k

aα(ξ)D
αf =

∑
α1+α2+···+αn≤k

aα1,··· ,αn(ξ)∂
α1
x1
∂α2
x2
· · · ∂αn

xn
f.

So L is a polynomial in vector fields.

Remark 4.2. In another approach by Grothendieck, a linear differential operator of
order k is defined inductively with respect to k. Namely, When k = 0, Diffk(M)

is just the multiplication by a smooth function. When k > 0, L ∈ Diffk(M) iff

[L, f ] ∈ Diffk−1(M) for any f ∈ C∞(M).

Let E → M , F → M be vector bundles over M . We can define a linear dif-
ferential operator of order k in Diffk(M ;E,F ) to be L : C∞(M,E)→ C∞(M,F ),
which has the same form as above, with aα(ξ) ∈ hom(Eξ, Fξ). The explicit expres-
sion for L in local coordinates depends strongly on the choice of coordinates, but
the highest order part can be defined invariantly. This part is called the principal
symbol of L.

Definition 4.3. Let L : C∞(M,E) → C∞(M,F ) and ξ ∈ M . Its principle
symbol σk(L) at ξ is

σk(L) =
∑
|α|=k

aα(ξ)(iξ)
α,

obtained from the highest order derivatives by replacing ∂
αj
xj with iξ

αj

j .

The principle symbol of L ∈ Diffk(M ;E,F ) can also be related to cotangent
bundles as follows. For any v ∈ T ∗

ξ (M), choose f ∈ C∞(M) with df(ξ) = v. Claim
that

σk(L)(v) = lim
t→∞

e−itL(eitf )

tk
.
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Indeed,

∂xj
eitf = (it∂xj

f)eitf ,

∂αj
xj
eitf = (it∂xjf)

αjeitf + ψ(t)eitf ,

where ψ(t) is the lower order terms in t. This implies

e−itL(eitf ) = tkσk(L) + ψ(t).

If f ∈ C∞(M), then for any v ∈ T ∗
ξ (M),

σk(fL)(v) = f(ξ)σk(L)(v).

This implies that σk(L) ∈ C∞(T ∗M,π∗ hom(E,F )) for π : T ∗M →M .

Example 4.4. If k = 1, then σ1(L)(v) = i[L, f ](ξ) for any smooth function f such
that df(ξ) = v. If k = 2, then similarly

σ2(L)(v) = −
1

2
[[L, f ], f ] (ξ).

Definition 4.5. An operator L is called elliptic at ξ ∈ M if σk(L) is nowhere
vanishing for any v ∈ T ∗

ξ (M)\{0}. L is elliptic if it is elliptic at all ξ ∈M .

Example 4.6. Let ∆ = −
∑
∂2xj

, the negative of the Laplacian in Rn. The prin-
ciple symbol of it is simply

σ2(∆)(ξ) = −
∑

(iξj)
2 =

∑
(ξj)

2 = |ξ|2.

So ∆ is an elliptic operator.

4.2. Formal Adjunctions. We assume that (M, g) is a Riemannian manifold in
this section. There is an L2-pairing on C∞(M):

C∞
c (M)× C∞

c (M)
(·,·)M−−−−→ F

(f1, f2) 7→
∫
M

f1 · f2dVg,

and the norm

∥f∥2L2 = (f, f)L2(M) =

∫
M

|f |2dVg,

where Vg is the volume form. Define L2(M) to be the completion of C∞
c (M) with

respect to ∥ · ∥L2 . If E is an F-vector bundle over M equipped with an F-bundle
metric hE , then there is an L2-pairing on C∞

c (M,E):

C∞
c (M,E)× C∞

c (M,E)
(·,·)E−−−→ F

(s1, s2) 7→
∫
M

hE(s1, s2)dVg,

which yields the completion L2(M,E).

Definition 4.7. Let L ∈ Diffk(M ;E,F ), and E →M , F →M be vector bundles
overM with bundle metric hE = (−,−)E , hF = (−,−)F , respectively. The formal

adjoint of L is the operator L∗ ∈ Diffk(M ;F,E) such that

(Ls, s̃)F = (s, L∗s̃)E ,

where s ∈ C∞
c (M◦, E), s ∈ C∞

c (M◦, F ), and M◦ is the interior of M (in case M is
not closed).
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Proposition 4.8. The formal adjoint of an elliptic operator is again elliptic.

Proof. Let L ∈ Diffk(M ;E,F ) be an elliptic operator. The principle symbol of L∗

satisfies

(σk(L)(x)u, v)F = (u, σk(L
∗)(x)v)E

for all x ∈ T ∗
ξM , u ∈ Eξ, v ∈ Fξ. That is, σk(L

∗) = (σk(L))
∗. □

Remark 4.9. The principal symbol is actually a homomorphism:

σk+ℓ(L ◦ L′) = σk(L) ◦ σℓ(L′),

where L, L′ are linear differential operators of order k, ℓ, respectively.

Theorem 4.10. Let M be a closed smooth manifold, E →M and F →M be two
vector bundles, and L ∈ Diffk(M ;E,F ). If L is elliptic, then

(1) kerL = kerC∞ L = {u ∈ C∞(M,E) : Lu = 0} is finite dimensional.
(2) imL = L(C∞(M,E)) is a closed subspace of C∞(M,F ).
(3) cokerL = C∞(M,F )

/
L(C∞(M,E)) ∼= kerL∗ is finite dimensional.

Corollary 4.11.

C∞(M,E) ∼= kerL⊕ imL∗,

C∞(M,F ) ∼= kerL∗ ⊕ imL.

This is also true if we replace all instances of C∞ with L2-spaces. Moreover,

kerC∞ L = kerL2 L.

This is called the elliptic regularity. In this case, L : C∞(M,E) → C∞(M,F )
and L : L2(M,E)→ L2(M,F ) are called Fredholm operators.

A general version of the elliptic regularity uses the theory of Sobolev spaces. We
will not discuss this due to space limitations.

4.3. Formal Adjoint of d. In de Rham complexes, the differential

d ∈ Diff1(M ;

k∧
T ∗M,

k+1∧
T ∗M)

is a linear differential operator of order 1 for each k ≥ 0. A natural question to ask
is what is the principle symbol of d.

Lemma 4.12. σ1(d)(v) = iv ∧ −, for all v ∈ T ∗
ξM .

Proof. Since σ1(d)(v) = i[d, f ](ξ) :
∧k

T ∗
ξM →

∧k+1
T ∗
ξM , where df(ξ) = v, for

every ω ∈
∧k

T ∗
ξM ,

σ1(d)(v)(ω) = i[d, f ](ξ)(ω)

= i(d(fω)− fdω)
= i(df ∧ ω + fdω − fdω)
= idf ∧ ω
= iv ∧ ω.

□
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Let (M, g) be Riemannian manifold of dimension n. Then
∧k+1

T ∗M has a
bundle metric given by g for all k. It makes sense to define the formal adjoint of d,
denoted by δ. Before we discuss the property of δ, we need the following notion:

Definition 4.13. If V is a vector field and ω ∈ Ωk(M), then the interior product
of V and ω is

ı(V )(ω) = V ⌟ ω ∈ Ωk−1(M),

where

(V ⌟ ω)(V1, · · · , Vk−1) = ω(V, V1, · · · , Vk−1).

g gives rise to a bundle isomorphism g♭ : TM → T ∗M by sending v ∈ TM to
g(v,−). Write g♯ : T ∗M → TM for its inverse. Then g♭ takes the basis of TM to

its dual basis. For each nonzero η ∈ T ∗
ξM and ω ∈

∧k
T ∗
ξM , ω can be uniquely

decomposed as η ∧ ω′ + ω′′. Note

ı(g♯η)(ω) = |η|2ω′

by writing η =
∑
αjdxj and looking at the value of (η ∧ ω′)(

∑
αj∂xj , V1, · · · , Vk).

Hence,

g(η ∧ α, β) = g(η ∧ α, η ∧ β′ + β′′)

= g(η ∧ α, η ∧ β′) = g(η, η)g(α, β′)

= |η|2g(α, β′)

= g(α, ı(g♯η)β),

i.e. the adjoint of ext(η) is ı(g♯η). Moreover, it is easy to see that

ext(η)ı(g♯η)(ω) = |η|2η ∧ ω′,

ı(g♯η)ext(η)(ω) = |η|2ω′′.

Thus

(ext(η)ı(g♯η) + ı(g♯η)ext(η))(ω) = |η|2ω.

Lemma 4.14. Let δ = d∗ : Ωk(M)→ Ωk−1(M). Then

σ1(δ)(v) = −i · ı(g♯v)
for all v ∈ T ∗

ξM , where (M, g) is a Riemannian manifold with g compatible with
the action of i.

Proof. Write ext(η) := η ∧ −. By Proposition 4.8, it suffices to find the formal ad-
joint of σ1(d)(v) = i ext(v). By preceding discussion, the formal adjoint of σ1(d)(v)
is just −i · ı(g♯v). Note that a negative sign is needed since g is invariant under
multiplication of i, i.e. g(u, v) = g(iu, iv). □

Definition 4.15. The Hodge Laplacian, also known as the Laplace–de Rham
operator, of k-forms on a Riemannian manifold is the differential operator

∆k : Ωk(M)→ Ωk(M),

defined as

∆k = dδ + δd = (d+ δ)2 |Ωk .

Remark 4.16. In the definition above, we implicitly use the fact that δ2 = 0. This
fact will be proved in the next section.
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By Remark 4.9 and preceding discussion, the principle symbol of ∆k is

σ2(∆k)(v) = (σ1(d)σ1(δ) + σ1(δ)σ1(d))(v)

= ext(v)ı(g♯v) + ı(g♯v)ext(v) = |v|2.

So ∆k is elliptic. Furthermore, ∆k is self-adjoint. That is, ∆∗
k = ∆k, since (dδ)∗ =

δ∗d∗ = dδ and (δd)∗ = d∗δ∗ = δd.

Theorem 4.17 (Maximum principle). The only functions f satisfying ∆f = 0
(called the harmonic functions) on a closed, connect and oriented Riemannian
manifold are the constant functions.

Proof. Let f ∈ ker∆. Then

0 = g(∆f, f) = g(dδf, f) + g(δdf, f) = g(δf, δf) + g(df, df) = ∥δf∥2 + ∥df∥2.

This implies f is constant. In fact, we proved ker∆k = ker δ ∩ ker d (“⊃” is
obvious). □

Theorem 4.18 (Hodge’s theorem for the de Rham complex). Let M be a closed
Riemannian manifold. For each k, we have

Ωk(M) = ker∆k ⊕ im∆k = ker∆k ⊕ im d⊕ im δ.

In particular,

Hk
Hod(M) = ker∆k

∼= Hk
dR(M) =

ker d

im d
=

ker∆k ⊕ im d

im d

is finite dimensional. Here Hk
Hod is called the Hodge cohomology.

We need to justify im∆k = im d⊕ im δ. “⊂” is clear by definition. Observe that

d∆k = dδd = ∆k+1d, δ∆k = δdδ = ∆k−1δ.

From Ωk(M) = ker∆k ⊕ im∆k, we see that for u ∈ Ωk(M),

du = d(u0 +∆ku
′),

where u0 is the part of u lying in ker∆k. By ker∆k = ker d ∩ ker δ, du0 = 0. This
yields

du = d∆ku
′ = dδdu′.

Hence im d ⊂ im (dδ) and im δ ⊂ im (δd). This implies

im∆k = im (dδ)⊕ im (δd) = im d⊕ im δ.

Proof of Theorem 4.18 amounts to the fact that ∆k is elliptic. The readers are
referred to [2] for a detailed proof.

4.4. Hodge Star Operator.

Definition 4.19. Let (M, g) be a closed and orientable Riemannian manifold with
dimM = n. For any α, β ∈ Ωk(M), 0 ≤ k ≤ n, we define the Hodge star

⋆ : Ωk(M)
≃−→ Ωn−k(M) by

α ∧ ⋆β = g(α, β)dVg,

where Vg is the volume form. In general coordinate chart,

dVg =
√
|det g|dx1 ∧ · · · ∧ dxn.
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Example 4.20. Consider (R3, gR3), where gR3 is the standard metric, with the
volume form dVg = dx1 ∧ dx2 ∧ dx3. Then

⋆ 1 = dx1 ∧ dx2 ∧ dx3,
⋆ dx1 = dx2 ∧ dx3, ⋆dx2 = −dx1 ∧ dx3, ⋆dx3 = dx1 ∧ dx2,
⋆ (dx1 ∧ dx2) = dx3, ⋆(dx2 ∧ dx3) = dx1, ⋆(dx1 ∧ dx3) = −dx2,
⋆ (dx1 ∧ dx2 ∧ dx3) = 1.

Proposition 4.21. ⋆2 |Ωk= ±id. In fact,

⋆2 |Ωk= (−1)k(n−k).

Proof. It suffices to check on a basis element dxI = dxi1 ∧ · · · ∧ dxik , i1 < · · · < ik.
Let J = (j1, · · · , jn−k) be the complementary increasing multi-index. We want to
find out the multiplication of signs of the permutations: sgn(σ) · sgn(τ), where σ
takes IJ to (1, · · · , n) and τ takes JI to (1, · · · , n). Denote J be the reverse of
J (i.e. a decreasing multi-index). Note that the sign is the same if we replace
JI → (1, · · · , n) with IJ → (n, · · · , 1). This yields

sgn(σ) · sgn(τ) = sgn(σ) · sgn(IJ → (n, · · · , 1))
= (sgn(σ))2 · sgn(I → I) · sgn(J → J) · sgn((1, · · · , n)→ (n, · · · , 1))
= sgn(I → I) · sgn(J → J) · sgn((1, · · · , n)→ (n, · · · , 1))

= (−1)ℓ,

where

ℓ =
(k − 1)k + (n− k − 1)(n− k) + n(n− 1)

2
= k2+n2−n−kn ≡ k(n−k) mod 2.

□

Remark 4.22. The L2-pairing on Ωk(M) is

⟨α, β⟩ =
∫
M

α ∧ ⋆β,

which is an inner product. On can use this to express δ = d∗ through ⋆ and d. Let
α ∈ Ωk(M) and β ∈ Ωk+1(M), and M be a closed manifold, then

⟨dα, β⟩ = ⟨α, δβ⟩ =
∫
M

dα ∧ ⋆β

=

∫
M

d(α ∧ ⋆β)− (−1)k
∫
M

α ∧ d(⋆β)

= (−1)k+1

∫
M

α ∧ d(⋆β)(Stokes’ Theorem)

= (−1)k+1 · (−1)k(n−k)

∫
M

α ∧ ⋆ ⋆ d(⋆β)(Proposition 4.21)

= (−1)kn+1+k(1−k)

∫
M

α ∧ ⋆(⋆d ⋆ β)

= (−1)kn+1 ⟨α, ⋆d ⋆ β⟩ .

Thus,

δβ = d∗β = (−1)kn+1(⋆d⋆)β.
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Corollary 4.23. For any α, β ∈ Ωk(M),

⟨α, β⟩ = ⟨⋆α, ⋆β⟩ .

Proof. By direct computation,

⟨⋆α, ⋆β⟩ =
∫
⋆α ∧ ⋆ ⋆ β

= (−1)k(n−k)

∫
⋆α ∧ β

= (−1)2k(n−k)

∫
β ∧ ⋆α

=

∫
g(β, α)Vg =

∫
g(α, β)Vg

= ⟨α, β⟩ .

□

Corollary 4.24. δ = (−1)kn+1 ⋆ d⋆. It is then easy to see that δ2 = 0. Moreover,
⋆∆k = ∆n−k⋆.

Theorem 4.25 (Poincaré duality). Let M be a closed and orientable manifold and
dimM = n. Then its de Rham cohomology satisfies

Hk
dR(M) ∼= Hn−k

dR (M),

for any 0 ≤ k ≤ n.

Proof. This follows immediately from Corollary 4.24 by taking the kernels of both
sides of ⋆∆k = ∆n−k⋆. □

Now we assume (M, g, J, ω) is a Kähler manifold with complex dimension m.
Extend J to differential forms, i.e. ω ∈ Ωk(M) giving Jω ∈ Ωk(M),

(Jω)(V1, · · · , Vk) = ω(JV1, · · · , JVk).

So J acts on Ωp,q(M) by multiplication by ip−q (because for V = V 1,0 ⊕ V 0,1, J
acts on V 1,0 by multiplication by i, and by −i on V 0,1). Define dc = J−1 ◦ d ◦ J :
Ωk(M)→ Ωk+1(M). Since d = ∂ + ∂, we can write

dcω = J−1(∂ + ∂)Jω = J−1(∂ + ∂)ip−qω

= ip−q(J−1∂ω + J−1∂ω) = ip−q

(
1

ip+1−q
∂ω +

1

ip−(q+1)
∂ω

)
=

1

i
∂ω + i∂ω = i(∂ − ∂)ω.

It is easy to check that ddc = −dcd and (dc)2 = 0. We can then define a cochain
complex of k-forms with differentials dc. Denote the cohomology of this new com-
plex by H•

dc(M).

Proposition 4.26. The formal adjoint of dc is − ⋆ dc⋆.

Proof. Basically copy of Remark 4.22. □
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The Hodge star operator can also be extended to complexified k-forms. Namely,
we require that

α ∧ ⋆β = h(α, β)dVg,

where h is the Hermitian metric onM . If α =
∑
uI,JdzI∧dzJ and β =

∑
vI,JdzI∧

dzJ both have type (p, q), then

h(α, β) =
∑

uI,JvI,J ,

and so (under appropriately chosen orthogonal frame)

α ∧ ⋆β = h(α, β)dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn.
In particular, since dVg has type (n, n), ⋆ is a C-linear isometry Ωp,q(M) →
Ωn−q,n−p(M). Like dc, we can define the formal adjoint of ∂ and ∂ to be

∂∗ : Ωp,q(M)→ Ωp−1,q(M), ∂
∗
: Ωp,q(M)→ Ωp,q−1(M).

Proposition 4.27. ∂∗ = − ⋆ ∂⋆, and ∂∗ = − ⋆ ∂⋆.

Proof. For any ω ∈ Ωp−1,q(M) and η ∈ Ωp,q(M),

⟨∂ω, η⟩Ωp,q = ⟨ω, ∂∗η⟩Ωp−1,q

=

∫
∂ω ∧ ⋆η =

∫
∂(ω ∧ ⋆η)− (−1)p−1

∫
ω ∧ ∂(⋆η)

=

∫
d(ω ∧ ⋆η)− (−1)p−1

∫
ω ∧ ∂(⋆η)

= (−1)p
∫
ω ∧ ∂(⋆η)(Stokes’ Theorem)

= (−1)p · (−1)(p−1)(m−p+1)

∫
ω ∧ ⋆ ⋆ ∂(⋆η)(Proposition 4.21)

= (−1)p(1+m−p)−m−1

∫
ω ∧ ⋆

(
⋆∂(⋆η)

)
.

When p is even, p(1 +m− p) is even since m is even, and p(1 +m− p)−m− 1 is
odd. When p is odd, p(1 +m − p) is even, p(1 +m − p) −m − 1 is also odd. In
particular, (−1)p(1+m−p)−m−1 = −1. So ∂∗ = − ⋆ ∂⋆. Proof of the other equality
is the similar. □

For operators p ∈ {d, dc, ∂, ∂}, we define the complexified Hodge-Laplacian
to be ∆p = pp∗ + p∗p. By Example 4.4, it is not hard to find

σ2(∆dc)(v) = |v|2,

σ2(∆∂)(v) =
1

2
|v|2,

σ2(∆∂)(v) =
1

2
|v|2.

Since σ2(∆d) = σ2(∆dc) = 2σ2(∆∂) = 2σ2(∆∂), all of ∆d,∆dc ,∆∂ , σ2(∆∂ are
elliptic. So we have Hodge theories for them as follows.

Theorem 4.28 (Hodge’s theorem for the Dolbeault complex). Let M be a closed
Kähler manifold, whose C-dimension is m = 2n, where 2n is its corresponding
R-dimension. For each k, the cohomology groups

(1) Hp,q
Hod,∂(M) = ker∆∂ |Ωp,q∼= Hp,q

∂ (M)
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(2) Hp,q

Hod,∂
(M) = ker∆∂ |Ωp,q∼= Hp,q

∂
(M)

(3) Hk
Hod,dc(M) = ker∆dc |Ωk

∼= Hk
dc(M)

are finite dimensional. Moreover,

Ωp,q(M) = ker ∂ ∩ ker ∂
∗ ⊕ ∂

(
Ωp,q−1(M)

)
⊕ ∂∗

(
Ωp,q+1(M)

)
,

and the Hodge star ⋆ induces the Poincaré duality:

⋆ : Hp,q
Hod,∂(M)

∼=−→ Hn−p,n−q
Hod,∂ (M).

Similar results hold for ∂, dc.

4.5. Lefschetz Operator and Kähler Identities. Let (M, g, J, ω) be a Kähler
manifold.

Definition 4.29. The Lefschetz operator L on (M, g, J, ω) is

L : Ωk(M)→ Ωk+2(M)

α 7→ ω ∧ α

After complexifying, it restricts to

L : Ωp,q(M)→ Ωp+1,q+1(M).

Lemma 4.30. The formal adjoint of L, denoted by Λ : Ωk(M) → Ωk−2(M), is
given by Λ = (−1)k ⋆ L⋆.

Proof. Indeed, for α ∈ Ωk(M) and β ∈ Ωk+2(M),

⟨Lα, β⟩ = ⟨α,Λβ⟩

=

∫
Lα ∧ ⋆β =

∫
ω ∧ α ∧ ⋆β

= (−1)2k
∫
α ∧ ω ∧ ⋆β

= (−1)(k+2)(m−k−2)

∫
α ∧ ⋆ ⋆ (ω ∧ ⋆β)

=
〈
α, (−1)(k+2)(m−k−2)(⋆L⋆)β

〉
Note (k + 2)(m− k − 2) = k(m− k) + 2(m− 2k − 2). When k is odd, k(m− k) is
odd; when k is even, k(m − k) is even. In particular, (−1)(k+2)(m−k−2) = (−1)k,
which yields the lemma. □

The famous Kähler identities are the core of this section.

Theorem 4.31 (Kähler Identities). Let (M, g, J, ω) be a Kähler manifold, then

(1) [∂
∗
, L] = i∂.

(2) [∂, L] = −i∂, [Λ, ∂] = −i∂∗, [Λ, ∂] = i∂
∗
.

(3) ∂∂
∗
= −∂∗∂ and ∂∂∗ = −∂∗∂.

(4) ∆∂ = ∆∂ = ∆d/2 = ∆dc/2.
(5) dcd∗ = −d∗dc, d(dc)∗ = −dc∗d, [Λ, d] = −(dc)∗.

The proof of these identities is fruitful. However, I will not present them in this
paper. One can see Theorem 34 in Chapter 6.4 of my note on Complex Geometry
for details.

http://jinghui-yang1998.com/files/Complex_Geometry.pdf
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Corollary 4.32. [∆∂ , L] = 0, [∆d, L] = 0.

Corollary 4.33. Let (M, g, J, ω) be a Kähler manifold, then

dω = ∂ω = ∂ω = dcω = δω = ∂∗ω = ∂
∗
ω = (dc)

∗
ω = 0.

Definition 4.34. Let p ∈ {d, dc, ∂, ∂}. A form α is called p-harmonic if pα = 0.

Corollary 4.35 (Hodge decomposition). If (M, g, J, ω) is a Kähler manifold, then

Hk
dR(M) ∼= Hk

dc(M) ∼=
⊕

p+q=k

Hp,q
∂ (M) ∼=

⊕
p+q=k

Hp,q

∂
(M).

Moreover, conjugation induces an isomorphism Hp,q
∂ (M) ∼= Hq,p

∂ (M), and ⋆ opera-
tor induces an isomorphism

⋆ : Hp,q

∂
(M)→ Hn−q,n−p

∂
(M).

Proof. Since ∆d = ∆dc = 2∆∂ = 2∆∂ , we can deduce

ker∆d |Ωk= ker∆dc |Ωk= ker∆∂ |⊕
p+q=k Ωp,q= ker∆∂ |⊕p+q=k Ωp,q .

Also, for any harmonic form α of type (p, q), α has type (q, p), and ∆∂α = ∆∂α = 0.
So α is also harmonic. □

Corollary 4.36 (ddc-Lemma). Let α be a form such that dα = 0, dcα = 0, and
α = dγ for some γ, then α = ddcβ for some β.

Proof. Write γ = γ0+d
cγ1+(dc)

∗
γ2 using Ωk−1(M) = ker∆dc⊕im (dc)⊕im (dc)

∗
.

So

α = dγ = dγ0 + ddcγ1 + d (dc)
∗
γ2.

Since ker∆dc = ker∆d = ker d ∩ ker d∗, dγ0 = 0. On the other hand,

0 = dcα = dcddcγ1 + dcd (dc)
∗
γ2 = −(dc)2dγ1 − dc (dc)∗ dγ2 = −dc (dc)∗ dγ2.

Thus, − (dc)
∗
dγ2 = d (dc)

∗
γ2 ∈ ker dc ∩ im (dc)

∗
= {0}. So α = ddcγ1. Write

β = γ1 and we are done. □

If

ker d ∩ ker dc ∩ im d = im ddc

holds over R, then it continues to hold over C. Since on C, ddc = i(∂+∂)(∂−∂) =
2i∂∂, ddc-Lemma in C is equivalent to the following lemma:

Lemma 4.37 (∂∂-Lemma). Let (M, g, J, ω) be a Kähler manifold. If α ∈ Ωp,q(M)
is d-closed and either ∂ or ∂-exact, then there exists β ∈ Ωp−1,q−1(M) such that
α = ∂∂β.

Proof. Basically copy of Proof of Lemma 4.36. □

Corollary 4.38. Let M be a closed Kähler manifold and m = dimM be its C-
dimension. Let bk = dimHk

dR(M), hp,q = dimHp,q

∂
(M). The following holds:

(1) bk =
∑

p+q=k h
p,q.

(2) hp,q = hq,p = hm−q,m−p = hm−p,m−q.
(3) hp,p ̸= 0 for any p ∈ {1, · · · , n}.
(4) bk is even if k is odd.

Proof. 1 ∼ 3 are trivial. 4 follows from 1 and 2. □
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4.6. Lefschetz Decomposition. Assume that we are working in a closed Kähler
manifold (M, g, J, ω) with dimCM = m = 2n.

Definition 4.39. A form α is called primitive if it is not in the image of L, i.e.
α ̸= ω∧ α̃ for any α̃. We are interested in those who are not primitive because they
come from lower-degree forms.

By Corollary 4.11, we can decompose Ωk into kerL∗ ⊕ imL = kerΛ⊕ imL. So
α is primitive if Λα = 0. Before we continue, we need the following tools.

Lemma 4.40 (Lefschetz identity). [L,Λ] : Ωk(M)→ Ωk(M) satisfies

[L,Λ]α = (k −m)α,

for any α ∈ Ωk(M).

The proof of the lemma is tedious. The reader is referred to Lemma 13 in
Chapter 6.4 of my note on Complex Geometry. With this in hand, we can easily
prove a general version of the preceding lemma.

Corollary 4.41 (Generalized Lefschetz identity). For 0 ≤ k ≤ m and 0 ≤ r ≤
m− k, we have

[Lr,Λ]α = (r(k −m) + r(r − 1))Lr−1α,

for any α ∈ Ωk(M), where M has C-dimension m.

Proof. We do it by induction. The base case is just Lemma 4.40. Note that
[Lr,Λ] = L[Lr−1,Λ] + [L,Λ]Lr−1. By inductive hypothesis, we obtain

[Lr,Λ]α = L[Lr−1,Λ]α+ [L,Λ]Lr−1α

= L ((r − 1)(k −m) + (r − 2)(r − 1))Lr−2α+ (2r − 2 + k −m)Lr−1α

=
(
(r − 1)(k −m) + r2 − 3r + 2 + (k −m) + 2r − 2

)
Lr−1α

= (r(k −m) + r(r − 1))Lr−1α.

□

Remark 4.42. The generalized Lefschetz identity induces an isomorphism Lm−k :
Ωk(M)→ Ω2m−k(M) for k ≤ m.

Lemma 4.43. For k ≤ m, α ∈ Ωk(M) is primitive iff Lm−k+1α = 0.

Proof. [Lm−k+1,Λ]α = 0 by generalized Lefschetz identity. So Lm−k+1Λα =
ΛLm−k+1α. Now Λα ∈ Ωk−2(M), and Lm−(k−2) is an isomorphism on Ωk−2(M).
Lm−k+1 is then injective on Ωk−2(M). This implies Lm−k+1Λα = 0 is equiva-
lent to Λα = 0. On the other hand, Lm−k+1α ∈ Ω2m−k+2(M), and Λm−k+2 :
Ω2m−k+2(M) → Ωk−2(M) is an isomorphism. So Λ is injective on Ω2m−k+2(M).
ΛLm−(k−1)α = 0 is equivalent to Lm−(k−1)α = 0. Hence, α is primitive iff Λα = 0,
iff Lm−k+1α = 0. □

Theorem 4.44 (Lefschetz decomposition of differential forms). Every α ∈ Ωk(M)
admits a unique decomposition of the form α =

∑
Lrαr, where αr is of degree

k − 2r ≤ min(2m− k, k) and primitive.

Proof. WLOG, we assume k ≤ m. Start with uniqueness. Suppose
∑

r≥0 L
rαr = 0.

We want to show αr = 0. If α0 = 0, then L
(∑

Lr−1αr

)
= 0 implies

∑
Lr−1αr = 0

http://jinghui-yang1998.com/files/Complex_Geometry.pdf
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and we are done by induction. Now suppose α0 ̸= 0. Since α0 ∈ Ωk(M) and it is
primitive, we know Lm−k+1α0 = 0. From

Lm−k+1
(∑

Lrαr

)
= 0 = Lm−k+2

(∑
r>0

Lr−1αr

)
︸ ︷︷ ︸

degree k−2

,

and the fact that Lm−k+2 is an isomorphism on Ωk−2, we know
∑

r>0 L
r−1αr = 0.

Induction on k, we get αr = 0 for all r > 0, implying α0 = 0. Combining the
previous result yields the desired result.

To prove the existence, first note

Lm−k+1α ∈ Ω2m−k+2(M) = Lm−k+2
(
Ωk−2(M)

)
.

Thus, there exists β ∈ Ωk−2(M) such that Lm−k+1α = Lm−k+2β. So α0 = α−Lβ
is primitive and α = α0 + Lβ. Induction on degrees, we can assume that β has a
Lefschetz decomposition and so does α. □

Theorem 4.45 (Hard Lefschetz theorem). For all k ≤ m, Lm−k induces an iso-

morphism Hk
dR(M)→ H2m−k

dR (M).

Proof. DenoteHk(M) = ker∆d |Ωk(M)
∼= Hk

dR(M). Corollary 4.32 tells us [∆d, L] =

0, so Lm−k : Hk(M)→ H2m−k(M) is injective. On the other hand, dimHk(M) =
dimH2m−k(M) since ⋆ is an isomorphism. Thus, Lm−k is also surjective. □

Corollary 4.46 (Lefschetz decomposition of cohomology). Write Hk(M)prim =
kerLm−k+1 ⊂ Hk(M) for k ≤ m. Then for any k, Hk

dR(M) =
⊕

r L
rHk−2r(M)prim.

Remark 4.47. If k ≤ m, then bk ≤ bk+2 (hp,q ≤ hp+1,q+1, respectively); and if
k ≥ m, then bk ≥ bk+2 (hp,q ≥ hp+1,q+1, respectively). Thus dimHk(M)prim =
bk − bk−2.

In terms of forms, we might observe that Lm−k and ⋆ play similar roles in
decomposition and duality. Naturally, one would ask if there is any relationship
between these two operators. This is answered by the following proposition.

Proposition 4.48. If α ∈ Ωk(M) is primitive, then

⋆
Ljα

j!
= (−1)

k(k+1)
2

Lm−k−jJ(α)

(m− k − j)!
.

The proof of this proposition is done by brute force calculation and is therefore
omitted.

4.7. Hodge Index Theorem.

Definition 4.49. Let Q be a bilinear form on Ω∗(M), satisfying

(1) Q(α, β) = 0, if |α| ≠ |β|.
(2) If α, β ∈ Ωk(M), then

Q(α, β) = (−1)
k(k+1)

2

∫
M

Lm−k(α ∧ β) = (−1)
k(k+1)

2

∫
M

ωm−k ∧ α ∧ β.

We call Q an intersection form on Ω∗(M).

It is easy to check that Q satisfies the following properties: (choose α, β ∈ Ωk)



A BRIEF INTRODUCTION TO HODGE THEORY OF COMPACT KÄHLER MANIFOLDS 27

(1) Q(α, β) = Q(β, α) if k is even, and Q(α, β) = −Q(β, α) if k is odd;
(2) Q(Lα,Lβ) = −Q(α, β).

Theorem 4.50 (Hodge-Riemann bilinear relation). The following holds:

(1) Hp,q(M)prim and Hr,s(M)prim are orthogonal with respect to Q, except for
(p, q) = (r, s). That is, Q(α, β) = 0 for all α ∈ Hp,q(M)prim and β ∈
Hr,s(M)prim with (p, q) ̸= (r, s).

(2) The Lefschetz decomposition Hk
dR(M) =

⊕
LrHk−2r(M)prim is orthogonal

for Q.
(3) If α ∈ Hp,q(M)prim is nonzero, then

ip−qQ(α, α) > 0.

In particular, Q is non-degenerate.

Proof. Note that Q descends to cohomology since, by Stokes Theorem, if α and β
are closed and either of them is exact, then∫

M

Lm−k(α ∧ β) = 0.

(1) If α ∈ Ωp,q(M) and β ∈ Ωr,s(M), then Lm−k(α ∧ β) has type (n − k +
p + r, n − k + q + s). Since the volume form has type (n, n), the integral
vanishes except when −k + p+ r = 0 = −k + q + s, i.e. p+ r = k = q + s.
But k = p+ q, yielding r = q, s = p.

(2) Suppose α = Lrα0, β = Lsβ0, where α0, β0 are primitive and r < s. Since
α0 ∈ Ωk−2s(M)prim, L

m−k+2r+1α0 = 0. We see

Q(α, β) = Q(Lrα0, L
sβ0) = (−1)rQ(α0, L

s−rβ0)

= ±
∫
Lm−k+2r(α0 ∧ Ls−rβ0)

= ±
∫
Lm−k+2r+1α0 ∧ Ls−r−1β0 = 0.

(3) Let α ∈ Ωp,q(M) be primitive. Λα = Λα = 0. So α ∈ Ωq,p(M)prim. By

Proposition 4.48 ⋆α = (−1)
k(k+1)

2 ip−q Lm−kα
(m−k)! , we compute

ip−qQ(α, α) = (−1)
k(k+1)

2 ip−q

∫
Lm−k(α ∧ α)

= (−1)
k(k+1)

2 ip−q

∫
α ∧ Lm−kα

= (m− k)! ∥α∥2 ≥ 0.

This yields the desired result. In particular, Q is non-degenerate.

□

(3) of Theorem 4.50 says that ip−qQ is positive definite on Hp,q(M)prim. The
Hodge index theorem is an immediate corollary describing the index (or the signa-
ture) of the intersection form Q on Hm

dR(M) for a closed Kähler manifold M with
complex dimension m. Recall that

Definition 4.51. The index (or signature) of Q is the number of positive eigen-
values minus the number of negative eigenvalues.
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Note that on Hm
dR(M), Q(α, β) = ±

∫
M
α ∧ β. Define

Q̃(α, β) =

∫
M

α ∧ β.

If M is orientable, Q̃ is non-degenerate since Q̃(α, ⋆α) =
∫
M
α ∧ ⋆α = ∥α∥2 ≥ 0.

Definition 4.52. The index (or signature) of M is the signature of Q̃, denoted
by σ(M).

Theorem 4.53 (Hodge index theorem). Let (M, g, J, ω) be a closed Kähler mani-
fold with complex dimension m. We have

σ(M) =
∑
p,q

(−1)php,q.

Proof. Extend Q̃ to a Hermitian form on Hm
dR(M,C) through Q̃(α, β) =

∫
α ∧ β.

Lefschetz orthogonal decomposition gives Hm
dR(M,C) =

⊕
LrHp,q(M)prim. From

the Hodge-Riemann bilinear relations, (−1)pQ̃ is positive definite on LrHp,q(M)prim.
Thus

σ(M) =
∑

p+q=m−2r

(−1)p dimHp,q(M)prim

=
∑

p+q=m−2r

(−1)p
(
hp,q − hp−1,q−1

)
=

∑
p+q=m−2r

(−1)php,q + (−1)p−1hp−1,q−1

=
∑

p+q=m

(−1)php,q + 2
∑

p+q=m−2r
r ̸=0

(−1)php,q

=
∑

p+q=m

(−1)php,q +
∑

p+q even
p+q ̸=m

(−1)php,q

=
∑

p+q even

(−1)php,q.

On the other hand, by applying complex conjugation,∑
p+q odd

(−1)php,q =
∑

p+q odd

(−1)phq,p = −
∑

p+q odd

(−1)qhq,p = 0.

Hence,

σ(M) =
∑
p,q

(−1)php,q.

□

4.8. *Off-topic: Cohomology with Holomorphic Coefficients and Serre
Duality. In this section, we allow the cohomology to have coefficients in holomor-
phic vector bundle, instead of F = R or C.

Definition 4.54. Let E → M be a C-vector bundle over a Kähler manifold
(M, g, J, ω) of complex dimension m, and hE be a Hermitian metric on E inducing
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h♭ : E → E∗, which is a C-anti-linear bundle isomorphism. Define for each ξ ∈M ,

⋆E :

p,q∧
T ∗
ξM ⊗ Eξ →

m−p,m−q∧
T ∗
ξM ⊗ E∗

ξ

by requiring ⋆E(α⊗ s) = ⋆α⊗ h♭(s).

Remark 4.55. ⋆E is a C-anti-linear isomorphism such that for any α, β ∈ Ωp,q(M,E)

α ∧ ⋆Eβ = hE(α, β)dVg.

Also, ⋆E ⋆ ⋆E = (−1)p+q on
∧p,q

T ∗
ξM ⊗ E.

If (E, hE)→M is holomorphic, then we can define

∂E : Ωp,q(M,E)→ Ωp,q+1(M,E),

∂
∗
E : Ωp,q(M,E)→ Ωp,q−1(M,E).

Proposition 4.56. The Laplacian ∆∂E
= ∂E∂

∗
E + ∂

∗
E∂E is elliptic. Hence, there

is a Hodge decomposition:

Ωp,q(M,E) = ker ∂E ∩ ker ∂
∗
E︸ ︷︷ ︸

ker∆∂E

⊕im ∂E ⊕ im ∂
∗
E ,

and

Hp,q(M,E) ∼= ker∆∂E
|Ωp,q(M,E) .

It is not hard to find ∂
∗
E = −⋆E∗∂E∗⋆E , which generalizes the equality ∂

∗
=

− ⋆ ∂⋆, since

−⋆
(
∂⋆α

)
= −⋆

(
∂(⋆α)

)
= −⋆

(
∂ ⋆ α

)
= − ⋆ ∂ ⋆ α.

Exercise 4.57. Show that ⋆E∆∂E
= ∆∂E∗⋆E∗ . So we have a C-anti-linear isomor-

phism

Hp,q(M,E)
⋆E−−→ Hm−p,m−q(M,E∗).

One can think about the natural pairing

Hp,q(M,E)⊗Hm−p,m−q(M,E∗)→ C
(α, β) 7→

∫
M
α ∧ β.

It is non-degenerate since (α, ⋆Eα) 7→
∫
M
hE(α, α)dVg = ∥α∥2hE . Thus, we have a

C-linear isomorphism (
Hm−p,m−q(M,E∗)

)∗ ∼= Hp,q(M,E).

In this context, it is known as the Serre duality.

Remark 4.58. By Corollary 4.35, the duality becomes

Hq(M,Ωp ⊗ E) ∼=
(
Hm−q(M,Ωm−p ⊗ E∗)

)∗
.

The sheaf Ωm
M is known as the structure sheaf of M , denoted by KM . It satisfies

Hq(M,E) ∼=
(
Hm−q(M,KM ⊗ E∗)

)∗
.
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