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We assume the familiarity of smooth manifolds and vector bundles in this note.
We will always assume the manifolds are smooth and finite dimensional unless
otherwise stated.

Let V be a real vector space with dimension 2n. A complex structure on V is
an endomorphism J : V — V such that J? = —id. We can complexify V into a
C-vector space by tensoring a C. J can be extended to V@ C by J(v®z) = J(v)®2
for v € V,z € C. As a linear transformation, J? = —id has two eigenvalues i and
—i. Denote the eigenspace associated with i by V1'%, and the one associated with
—i by V%1 Now we can write V@ C = V1.0 g V0L,

Exercise 1.1. Every element in V10 can be written in the form v ® 1 — Jv ® 1.
Similarly, every element in V%! can be written in the form v ® 1+ Jv ® i.

We can apply this idea to the tangent space of a manifold M.
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Definition 1.2. Let M be a manifold. An almost complex structure on M
is a vector bundle isomorphism J : TM — TM such that J? = —id. A manifold
admitting an almost complex structure is called an almost complex manifold.

This J turns TM into a C-vector bundle, but does not turn M into a complex
manifold because it tells us nothing about the local diffeomorphisms. By defini-
tion, if M admits an almost complex structure, then M is even-dimensional and
orientable (Exercise). A famous theorem by Borel and Serre said that the only
spheres admitting an almost complex structure is S? and SS.

Example 1.3 (4-sphere). Recall the first Pontryagin class of a real vector bundle
E — M with a complex structure J is given by the second Chern class: p;(F) =
—co(E ® C) € H*(M). One can decompose E ® C = (E,J) @ (E,—J). Write
E = (E,—J). By Whitney sum formula and ¢;(E) = (—1)’¢;(E),

c2(E®C) =co(E®FE) = c2(E) + c1(E)ei(E) + c2(E)
(1) = 203(E) — (e2(E))*.
Suppose S* has an almost complex structure J. Apply (1) to T.S* — S, we get
p1(TS*) = 2¢3(TS'E) — (e (TS))*.

Since H2(S*) = 0, the signature of S* is o(S%) = 0. By Hirzebruch signature
theorem, 3p;(T'S*) - [S] = 0(5*) = 0. Hence

0= %pl(TS4) 1

= (262(TS'B) — (cx(TS")?) - (57

Note that ¢y is the top Chern class of T'S%, so it is the Euler class. Evaluating at
[S4], ¢ - [S*] = x(S*) = 2. This implies (c1(7'S*))? - [S*] = 4, which is impossible
because H?(S*) = 0. Contradiction!

We can complexify TM to TM ® C and decompose it into 700 @ T%!, where
T10 is the eigenspace associated with ¢ and T%! is the eigenspace associated with
—i. Dually, we can decompose the complexified cotangent bundle into (7%°)* and
(TO,l)*_

Given a complex manifold M with an atlas {(U, ¢)}, we can obtain a canoni-
cal almost complex structure through the following: start with a local coordinate
(21, -+, 2zn) for some arbitrarily chosen p € U C M, where z; = z; + iy;. A basis
for T,,M can be chosen to be the span of {0,,,0,,}. Set J : TM — TM restricting
at p to be J,(9z,) = 9,, and J,(9,,) = —0,,. It is an easy exercise to check that .J

j
is an almost complex structure.

Definition 1.4. An almost complex structure J on a manifold M is said to be
integrable if it comes from a complex structure.

We have two methods leading to the same theorem deciding whether an almost
complex structure is integrable.

Definition 1.5. Let M be a manifold, and E C TM be a subbundle of rank k.
Then

e Fis involutive if the Lie bracket of any two sections of F is again a section;
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e F is integrable if for any point p € M, there is a neighborhood U of p
with a diffeomorphism ¢y : U — R"™F such that E |y= ker(d¢y). That
is, any fiber qﬁl}l is a submanifold of U with tangent space F | gbal.

Theorem 1.6 (Frobenius). Let M be a manifold and E C TM be a subbundle of
rank k. Then E is involutive iff E is integrable. If M further admits a complex
structure with dime M = n, then E involutive iff E is holomorphically integrable
(i.e. ¢y in the definition of integrability is chosen to be holomorphic).

Definition 1.7. Let M be a manifold with an almost complex structure J. Then
(M, J) is called real analytic if M has a real analytic atlas, and in each of these
local coordinate charts, J is a real analytic family of matrices.

Theorem 1.8 (Newlander-Nirenberg, version 1). Let (M, J) be real analytic. Then
J is integrable iff T is involutive.

Another way to state the Newlander-Nirenberg theorem is via the Nijenhuis
tensor. Let X,Y be vector fields on M. The Nijenhuis tensor of X,Y is

N (X,Y) = [JX,JY] - JJX,Y] - J[X,JY] - [X,Y].

One can check that N; = 0 iff [T%1, 791 ¢ T%! ie. T%! is involutive. So we
have:

Theorem 1.9 (Newlander-Nirenberg, version 2). J is integrable iff Ny = 0.

In the following chapter, we will see that the vanishing of Nijenhuis tensor can
be characterized by other criteria, e.g. d =9 + 0 or 3 =o.

2. COMPLEXES

2.1. de Rham Complexes. Proofs of this section are omitted. See Chapter 5 of
course notes of C3.3 Differentiable Manifolds for details.

Recall that an n-form of a manifold M is a section of the Grassmann exterior
algebra of cotangent bundle. Namely, Q™(M) = C>(M, \" T*M). Here \*V
for an arbitrary finite dimensional R-vector space V is a graded associative algebra
A°V =@ A*V together with an injective linear map 2 : V — A°V with A’V =V
and \' V =4(V) 2V, which is universal.

We have an exterior derivative d : Q*(M) — Q*+1(M) such that it is universal
and linear, with the following properties:

(1) d* =0;
(2) for any w € Q¥(M) and n € Q(M), we have d(wAn) = dwAn+(—1) wAdn;
(3) for any F': M — N smooth, w € Q*(M), we have d(F*w) = F*dw;

For any f € Q°(M), df € Q' (M), for any vector field X, we define
df(X)=Lxf=XF,
where £ xw, the Lie derivative of k-form w, is given by

Lxw(p) = lim (¢tX)*(W(¢tX(p))) — W(p)

t—0 t
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for p € M, where ¢;* is the flow of X near p. In general, let Vj,--- , Vi be vector
fields. Then the exterior derivative of a k-form is given by
k .
dw(Vo, -+, Vi) = Z(_l)Jﬁyj(w(V07... Vi Vi) +
j=0
S [V, Vil Vs Voo, Voo, Vi),
j<t

In particular, when k =1,
dw(Vo, Vi) = Ly, (w(V1)) = Ly, (w(V0)) = w([Vo, i)
(Q*(M),d) now constitutes a well-defined cochain complex:

0— QM) S o' (M) S o2m) -

An k-form w is called closed if dw = 0, and called exact if dp = w for some

(k — 1)-form 7.

Definition 2.1. The k-th de Rham cohomology group of M is defined to be

closed k-forms

HE (M) = ——————.
ar(M) exact k-forms

Corollary 2.2. H),(M) = {f € C>(M) | df =0} = locally constant functions on

R7oM,

Lemma 2.3. de Rham cohomology is a graded commutative algebra with multiplica-
tion given by (o] A[B] = [wAB]. Hence, Hj, : Manifolds”” — GradedCommAlg
is a well-defined contravariant functor.

Let FF: M — N. We can pull back the k-forms on N via F*, commuting with
the exterior derivative d. In fact, F* induced a map on de Rham cohomology group
F* : H;p(N) = Hjp(M), where [w] € Hj,(N) is sent to [F*w] € Hjp(M). This
map only depends only on the homotopy class of F'.

Lemma 2.4. Let H: M x [0,1] = N be a smooth homotopy between Fy, Fy, with
Fiy = H |prxqy- Then Fy = FY.

Corollary 2.5. If A is a deformation retract of M, then M and A have the same
de Rham cohomology.

Corollary 2.6 (Poincaré lemma). Let U C R™ be a smoothly contractible subspace.
Then HYL(U) =0 for all k > 0.

Poincaré lemma also exists in compactly supported de Rham cohomology Hjp, ...
Let M be a manifold, consider the projection 7 : M x R — M. The push-forward
map (NOT pullback 7*!) 7, : Q5(M x R) — Q* (M) defined an induced map of
7 on compactly supported de Rham complex as follows: note that every compactly
supported form on M x R is a linear combination of two types of form

(1) 7w - f(z,t) for w € Q*(M x R) and f being a function with compact
support. In this case,

me(mw - f(x,t)) = 0;
(2) 7w - f(x,t)dt. In this case,

e (mrw - f(z, t)dt) = w/jo flx, t)dt.

M =
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It is an easy exercise to show that m, is a cochain map, hence it induces a map on
compactly supported de Rham cohomology . : Hjp (M x R) — H;glc(M) Now
let e = e(t)dt be a compactly supported 1-form on R integrating to 1. Define e, :
Qi (M) — QM xR) by sending w to 7* (w) Ae. One can check e, is a well-defined
cochain map (Exercise). So e, induces a map e : Hjp (M) — H;E’IC(M x R). We
have

Lemma 2.7. e, and 7, induce a pair of mutual inverses:
Hip,o(M x R) = = H3zL(M).

Corollary 2.8 (Poincaré lemma for compactly supports). Let U C R™ be a smoothly
contractible subspace. Then Hfp (U) =0 for all 0 < k < n, and Hjp (U) = R.
Here the last isomorphism in n-th compactly supported de Rham cohomology is given
by applying . iteratively.

Mayer-Vietoris sequences work for both de Rham complexes and compactly sup-
ported de Rham complexes. Namely,

Theorem 2.9 (Mayer-Vietoris). Let M = UUV with U,V open. Then the following
sequence is exact:

0= (M) -Q"U)e Q" (V)= Q*(UNV) =0
(w,T) = T—w
In the compactly supported case,
0 QM)+~ O (V)«2(UNV)«0
(=, puw) = w

where 7. 1s induced by the inclusion 7 of open subsets of M to M, extending a form
on a open subset by zero to a form on M.

Like in usual cohomology theory, the following results hold for (compactly sup-
ported) de Rham cohomology.

Theorem 2.10 (Kiinneth formula). Let M, N be manifolds. Then for everyn >0,
Hip(M x N)= @ Hjp(M)® Hip(N).
ptg=n

If further M, N admit finite good covers (i.e. open cover {U;} with all the U; and
all their non-empty finite intersections are contractible), then

Hip (M x N)= @ Hip (M) ® Hip (N).
ptg=n

Theorem 2.11 (Poincaré duality for orientable manifolds). If M is an orientable
manifold of dimension n admitting a finite good cover, then for any integer 0 < p <
n7

Hip(M) = (Hypo(M))",

where the isomorphism is induced by the non-degenerate bilinear form
[ s () @m HEOD = R,
If the de Rham cohomology of M is finite-dimensional, then we also have

Hp (M) = (Hgp"(M))".
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Theorem 2.12 (Poincaré duality for non-orientable manifolds). If M is a manifold
of dimension n admitting a finite good cover, then for any integer 0 < p < n, there
are non-degenerate bilinear forms

/ HE (M) @5 HIZ(M, L) > R,
M

and
[+ g (00 5 H (0. 1) > B
M

where L is the line bundle over M.

Proof of the last three theorems in this section can be found in Chapter I of Bott
& Tu’s book Differential Forms in Algebraic Topology.

2.2. Dolbeault Complexes. Let J be an almost complex structure on the man-
ifold M. Recall that J induces a bundle map J : T*M — T*M by Jw(V) =
w(J(V)), so we can decompose T*M @ C into (TH9)* & (T%)*, where (T1°)* is
the eigenspace associated with i and (T%!)* is the eigenspace associated with —i.

If J is integrable, then it makes sense to use the complex coordinates (z1,- - , z5,)
in local coordinate charts with z; = x;+iy; in real coordinate (z1, -, Zn, Y1, -+ , Yn)-
Now 710 is spanned by 9., = 3(8,, —i0,,), T*" is spanned by 0z = $(9,, +1i9y,).
Thus, (T1°)* is spanned by dz; = 1(d(z;) — id(y;)), (T®!)* is spanned by

4% = 5(d(z;) — idly;)

. It is straightforward that

dZ]' (8Zk:) = 6]"“ de (aﬁ) =0,
dz;(0:,) =0,  dz;(0z) = ju-

We define
p,0 1,0 Ap
NT*M = ( N T*M) ,
0,q 0,q N
NT*M = ( N T*M) ,
and

P,q P,0 0,q
NTM = \T"Me \T*M.

We refer to the sections of A”’? T*M as (p,q)-form. In local holomorphic coordi-
nate, a (p, ¢)-form w can be written as

where a = (a1, ,p) and B = (f1,---,By), and dzq = dza, N -+ A dz,, and
dzg = dzg, \--- Ndzg,. Note that

d(fdze Adzg) =Y 0., (f)dz; Adza NdZg+ Y 0:(f)dZ; A dza A dZ.
j=1 j=1
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This implies d(A”T?) c A*T" @ AP, Hence we can decompose d = 9 + 9,
where

Q:QOPINM = QPrhapy,
0 : QPN = QPatipg,

Here QP4(M) = C>(M, \"*T*M). Tt is obvious that dw = Ow. (Check!) The
operator 0,0 satisfies their own Leibniz’s rules. Namely, for w € QF(M) and
n € Q4(M),

AwAn) =0wAn+ (=1)Fw A dn,

AwAn) =0wAn+(=1)*wAdn.

It is immediate that 2 = @ = 0. From d? = 0, we know (0 + 9)% = 9% + 90 +
90 +0" = 0. So 99 = —d0.

In general, if J is not necessarily integrable, it does NOT make sense to give
a basis for (T%1)* and (T1°)* via dz; and dz;. In this case, d has four types of
components instead of two:

d: QP4 Qptla ey Qp.atl o QOPt+2.a-1 o Qp—La+2

Let us give an example to demonstrate this phenomenon. Let w € Q'(M). w has
(1,0)-type if for m; ; = projection of QF onto Q%7 (i +j = k), w(V) = w(m V) =
m1,0w(V), and w(mp1V) = mp1w(V) = 0, where V is an arbitrary vector field. By
definition, dw(Vy, V1) = Ly, (w(V1)) — Ly, (w(Vp)) — w[Vo, V1]. Note that
ma,0dw(Vo, V1) = dw(m1,0Vo, m1,0V1),
m,1dw(Vo, Vi) = dw(m,0Vo, m0,1 V1) + dw(mo,1 Vo, m1,0V1),
mo,2dw(Vo, V1) = dw(mo,1 Vo, m0,1V1).

None of them can be guaranteed to vanish. If J is integrable, then by Newlander-
Nirenberg theorem,

7,2dw(Vo, V1) = —w(mo 1 Vo, mo 1 V1] = —w(mo,1 W) =0
for some W € T%1. On the other hand, if mp adw = 0 for a (1,0)-form w, then
m1,0w[m0,1 Vo, m0,1 V1] = 0

for all Vy, V1. This implies that [T, 791 ¢ T%1 ie. T%! is involutive. Packaging
the information we obtain the following result.
Theorem 2.13. Let (M, J) be an almost complex manifold. TFAE:

(1) J is integrable;

(2) T is involutive;

(3) d: QI,O N QQ,O @ Ql,l’.

(4) d: Qo,l N QO,Z o) Ql,l;

(5) d: QP9 — Qrtla g Qpatl,

We now assume J is integrable in the following paragraphs.

Definition 2.14. Fix p. Since 7 = 0, the (p, x)-forms on a manifold M of dimen-
sion n constitute a cochain complex:

0 — rO(M) & ort (M) & ar2(M) & - D () 5 0,
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called the Dolbeault complex of M. The (p,q)-th Dolbeault cohomology
group of M is then defined to be

B ker 0

© imd’

The complex dimension of Hg’q(M ), denoted hP-7(M), is called the Hodge num-
bers of M.

P.q
Hy" (M)

Similarly, we can give the definition of the conjugate Dolbeault cohomology by

ker 0
() =

imod "
From the definition, Hg’O(M) is the holomorphic sections of AP (T*M)*0. If M

is closed, then Hg’O(M ) is clearly finite dimensional. This holds in general case:

Lemma 2.15. If M is a closed complex manifold, then Hg’q(M) s a finite dimen-
sional vector space.

Theorem 2.16 (0-Poincaré lemma). For any w € QP4(D), where ¢ > 0 and
D C C" is a polydisc (possibly unbounded), w is both O-evact and O-closed.

Given a Dolbeault cohomology, one would wonder its relationship with de Rham
cohomology. Unfortunately, there are NO natural maps between Dolbeault coho-
mology groups and de Rham cohomology groups on general complex manifolds.
However, we can construct ones through other objects.

Definition 2.17. Note that 99(0 + 0) = 090 = —09" = 0, we may get a cochain
complex with differentials 90 and 9 + 0. The (p, ¢)-th Bott-Chern cohomology
group is defined to be

_ ker(Q+9: QP17 — Qrtha g Opatl)

p,q
Hpe (M) im (99 : Qp=La=l — Qpa)

Definition 2.18. One can check (0+0)99 = 0. Similar to the preceding definition,
we can define the (p, ¢)-th Aeppli cohomology group to be

- ~ ker(90)
HAT (M) = im (8 +0)
There are natural maps
Hpe (M)
J{ﬂ \
(2.19) Hy* (M) —= H3p(M) <—— H3"*(M)
1Y (M)

We give a brief illustration on this diagram and encourage the readers to [5] for a
detailed discussion. The middle horizontal double arrows are given by the Frolicher
spectral sequence that will be introduced in the next section. The maps from
Bott-Chern cohomology to (conjugate) Dolbeault cohomology, and then to Aeppli
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cohomology are induced by the definitions. Explicitly, for example, since a d-closed
form is again O0-closed, there is a natural map

{a € Q7 da =0} — HZ".
It follows from 090 = 0 that we have a canonical map
HZL — Hg’q.
Finally, we have the following theorem about ¥ in the diagram:

Theorem 2.20. Let the underlying complex manifold be M.

(1) If 9 is injective, then all maps are isomorphism.
(2) If M satisfies 00-lemma, i.e. (kerd Nkerd Nimd) C imAdd, then ¥ is
injective.

There are various criteria regarding the agﬂemma. The most commonly used
one is that if M is Kéhler, then M satisfies d0-lemma (see Lemma 4.37). In [7],
the author gave another characterization: for any k > 0 and dim¢ M = n,

AF = N (dime HRE (M) + dime Hy ™" 7P(M)) — 2by, > 0,
p+q=k

and the equality holds iff M satisfies 85—lemma.7Focusing on both Bott-Chern
cohomology and Aeppli cohomology, M satisfies d0-lemma iff

1Y dime HBE(M) — dime HY(M)| = 0.
k  |ptq=k

2.3. *Off-topic: An Invitation to the Frolicher Spectral Sequence. Spec-
tral sequences are very powerful tools in algebraic topology. They can be used
to compute various (co)homology and determine some multiplicative structures on
them. Spectral sequences are the generalization of long exact sequences which
associate to chain complexes with filtrations.

Definition 2.21. A filtrated R-module A is an R-module with an increasing
sequence of submodules F,A C Fj11A indexed by p € Z, such that |J, F,A = A
and (), Fj,A = {0}. The filtration is bounded if F,A = {0} for sufficiently small p
and Fy A = A for sufficiently large p’. The associated graded module of {F,A}
is defined by G, A = F,A/F,_1 A.

Similarly, we can define the cofiltration on an R-module A to be a decreasing
sequence of submodules FP*'A C FPA indexed by p € Z, with the conditions
in analog to the above definition in the way as you would expect. In fact, we
can package the information to define a functor F' with domain being a poset and
codomain being Ch(A) for A an abelian category. But this part is of less interest
to this topic. Given the cofiltrated R-module A, we can also define the associated
graded module of {F?A} by GPA = FPA/FPT1A.

Definition 2.22. A cofiltrated cochain complex is a cochain complex (C*,d®)
together with a cofiltration {FPC™} of each C™, such that F°(C®) = C® and
FntY(C™) = 0 for all n, and the differential preserves the cofiltration, namely
d(FP(C™)) C FP(C™*1), where FP(C™) = FP(C*)NC™. This implies that we have
an associated graded cochain complex {GPC*}.



10 JINGHUI YANG

Let C*® be a cochain complex and F'® be a decreasing filtration on C'*® preserved
by d. F'*® induces a decreasing filtration on cohomology, defined by

FPH*(C®) = {a € H*(C®) : a = [z] for some z € FPC*}.

We will use the notion FPHF” if the underlying cochain complex is clear. If we
focus on the cocycles and coboundaries, we can set Z*¥ = (kerd*) N C* and B* =
(im d*=1) N C*, and define

FrzF = FP(C*)n zF = FP(C*)n Z*¥,

FPB* = FP(C*)n BY = Fr(C*)n Z*.
Note that FPHLZF = Fp+i(C*k)n ZF c FP(C*) N ZF = FPZ*, and so F'* induces
a decreasing filtration on Z°, and similarly on B®. Note that H* = Z*/B*  we set
(kerd*) N FPC*  FPZk

FPH* = = :
(imd*1)n FrCk  FrBFk

It is straightforward to check both definitions for FP H*(C®) are equivalent, with
Frrigh c FPHY FOHY = H* and F*1HF = 0. Note that FPH1BF = Frtlzkn
FPBF we get

otk Frzk _ Frzk ~ Fr+lzk 4 prpk
FrBk — Frtlzkn prBk FrBk
by the second isomorphism theorem. The associated graded pieces GPH* is then
FrHk Frzk
(2.23) GPH* = =

- Frlgk — petizk 4 ppRE
The associated graded homology is closely related to the homology by definition.
A natural question is to analyze what the associated graded homology looks like
for an arbitrary cochain complex. It is usually not easy to know exactly how the
right-hand side of equation 2.23 behaves, so we would like to form a sequence
of approximations to the associated graded homology from the associated graded
cochain complex itself. The idea is that, for each FPC*, we take those cochains
whose coboundary lives in some higher filtration level F?*" modulo forms in the
next filtration level FP*! with the same property (i.e. coboundary in FP*"), and
module coboundaries in F? of elements in a lower filtration, FP~"*1. If r is large
enough, then FP~"*! gives C* and FP*" gives {0}. In this case,
{x € FPC* | dx € FPtrCr+1} Frzk

~

{y € Fr+1CF | dy € FrtrCF1} 4 d(Fr—r+1Ck—1) 0 FrCk ~ Frtizk 4 Bk’

When r = 0, the left-hand side is just F?C*/FPT1C*. Now move from one approx-
imating space to another, we define (write k = p + q)

Era {x € FPCPT1 | dx € FPTrCPTatl}
"7 {y € FrtiCrta | dy € FprtlCptatl) 4 d(Fp-rtlCpta-1)y 0 FrOprta’

It is clear that E}'Y = FPCPT4/FPTICP+4 When r is large enough, then we denote

(2.24)
{x € FPCP*9 | dx = 0} FrHPta

P4 — i Pq — = .
Bt = lim By {y € FrriCr+a | dy = 0} + d(Crra=1)n FrCrta ~ FpHlfpta
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At r = 0, since the differential d is compatible with the filtration, it induces a map
do by
1
P _ FrCPta d_0> FrCprtat _ ppatl
0 Fr+HlCpta Fp+HlCp+atl o -

Exercise 2.25. Check that d induces a map d; by

a4 +1,
EPY = EPTHA,
Hint: write down the definition of F1-page.

Consider
FPCPte FrCPtetl FprOprtat2
do, o, .
Fr+1(p+a Fp+1(Cp+a+l Fp+1(Cp+q+2
d? = 0 since d? = 0. Taking the cohomology at the middle term gives

ker d {zGFpC"Jqurl|dx€Fp+1Cp+q+2}
Hp,q+1(E*,* do) = erdo _ Frrigpratl
o »%0 imd d(Fr+1Cp+a)+ Fpr+1Cp+a+l
0 Fr+1Cp+a+1

{z € FPOPHa+L | dp € Freloptat?)
- d(FPHiCvta) + FrriCptatl
g1
= ot

In fact, this formula holds for each » > 0. That is, F,1-page will be the cohomology
of (E,,d,)-page. We have the following theorem:

Theorem 2.26. For eachr > 0, the cochain complex (C*,d) gives rise to EP? LN
Eptra=r+l - and the cohomology of (EX*,d,) is isomorphic to E:j:l, where p,q are
natural integers.

For a detailed proof, the readers are referred to [6]. To summarize, we make the
following definition.

Definition 2.27. A (cohomological) spectral sequence consists of
e An R-module EP9 for each natural numbers p, ¢ and each integer r > 0.
e Differentials d, : EP? — EPT™4="+1 guch that d> = 0 and E,;; is the
cohomology of (E,,d,).
A spectral sequence converges if for every p, q, if r is large enough, then d,. vanishes
on EP4. In this case, EP? is independent of r and it is actually E£:4 (Check!).

Now we focus on QF = @p tg=k 77 with underlying manifold M of dimension

n. We assume further that M is Kéhler (so d = 0 + 0, see next section). Define
the filtration on QF by
Frof = @ .
i>p

i+j=k
Obviously, FOQF = QF and F"T1QF = {0} for all k. We use the construction in
the preceding paragraphs to get

D iz O

Eé),q _ FrQpta _ i+j:£+q ~ OPa,

- OFPTIQP @ isp Q9
i+j=p+q
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One can check that dy = 0 (Exercise. Hint: write down the element and use
d =0+ 0). Moreover, d, = 0 for all » > 1. By Theorem 2.26,

EDT = Hg’q(M).
Turn to the E-page. By equation 2.24,

k
EPa — e
. FrtlHk
Summing up all possible p,
Frgk &
6}) B = Fw+1fik::£{(ﬂ4%
p+q=k 0<p<k

which is the de Rham cohomology of M. This is part of the Frolicher spectral
sequence. Explicitly,

Theorem 2.28. Let M be a compact Kdhler manifold. Then the Frélicher spectral
sequence (E**,d,.) collapses at E-page (i.e. d,. =0 for allr > 1, and so Es, = E1).
Furthermore, there is a isomorphism H*(M) =@, . HY q(M)

So in the diagram 2.19, the horizontal double arrows are exactly the Frolicher
spectral sequences given above.

Corollary 2.29. Let M be a compact complex manifold. Then the Hodge number
hP% and the Betti number by satisfy

Z hP > by
p+q=Fk
In particular, if M is Kdhler, then the equality is achieved.

Proof. Note that dim E?? > dim E}},, since E,; is the cohomology of (E,,d,).
By Theorem 2.28, E9 = Hg’q7 and
P.q
@

p+q=k
This implies
> dimEP? > > dim ERT = by,
p+q=k pt+q=k
(]
Corollary 2.30. Let M be a compact complex manifold. Then 3= (—1)PHIhPe =
X(M).

3. KAHLER MANIFOLDS
Let (M, J) be an almost complex manifold. J? = —id. Recall that

Definition 3.1. A Riemannian metric g on a smooth manifold M is a smoothly
varying family of inner products on the fibers of the tangent bundle. Explicitly, for
each £ € M, amap ge : Te M x T M — R satisfying

(1

(2
(3
(4

g(u,v) is R-linear in u for all v.
g(u,v) = g(v,u) for any u,v € T¢ M.
g(u,u) >0 and g(u,u) =0 iff u = 0.

)
|
) If 81,52 € C°(M,TM), then g(s1, s2) € C°(M).
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g is a (real) bundle metric. We introduce the Hermitian metric on bundles for
future reference.

Definition 3.2. Let F — M be a complex vector bundle over a smooth manifold
M. A Hermitian metric h¥ on F is a smooth family of Hermitian inner products
on the fibers of E. That is, for each £ € M, h? : B¢ x B¢ — C satisfies

(1) h¥(u,v) is C-linear in u for each v € E.

(2) hB(u,v) = hE(v,u).

(3) hf(u,u) >0 and hf(u,u) =0 iff u = 0.

(4) If 51,82 € C®°(M, E), then h¥ (s, s2) € C(M).
Actually, h¥ is equivalent to a C-anti-linear bundle isomorphism &’ : E — E* with

R (w)(v) = kP (v, u).
We say ¢ is compatible with J if g(u,v) = g(Ju,Jv). Let (M,w) be a

symplectic manifold. Say w is compatible with J if w(u,v) = w(Ju, Jv).

Theorem 3.3. Let (g,J,w) be a compatible triple. Then any two determines the

third.
We refer the proof to the notes by Dekun. In particular, given (J,w), we can
define the Riemannian metric g(u,v) = w(u,Jv). Given (g,J), we can define

w(u,v) = g(Ju,v), which is a non-degenerate 2-form (NOT necessarily closed).

Definition 3.4. A Kahler manifold (M, g, J,w) is a complex manifold with a
compatible triple (g, J,w), where J is integrable, such that dw = 0. This w is
sometimes called the Kahler form.

One can get a Kéhler structure from a Hermitian metric. Let (M,J) be an
almost complex manifold and h = hTM be a Hermitian metric on TM (as a C-
vector bundle). Separating h into real and imaginary parts gives h(u,v) = g(u,v)+
iw(u,v), then one can check that g is a Riemannian metric on M and w is a 2-form,
ie. we Q%(M). Since

h(J(u), J(v)) =1 (=i) - h(u,v) = h(u,v),
we have
g9(J(u), J(v)) = g(u,v),
w(J(u), J(v)) = w(u,v).
Similarly, h(J(u),v) = ih(u,v) implies g(J(u),v) = w(u,v) and w(J(u),v) =
—g(u,v). We sometimes refer to the compatible triple (g, J,w) as a Hermitian
structure. In local holomorphic coordinates {z;}, let H € GL,,(C) be the matrix

with entries hj, = h(0.;,0., ), then H = H* and H is thus positive definite. Recall
that there is a natural C-vector bundle isomorphism

(TM,J) L 700
v %(v —iJ(v)).

To find the Riemannian metric, write z; = x; + iy;. Note that ¢(0,,) = 0., and
#(0y,;) = ¢(J(0r,;)) = i0.,. Thus we have, for instance,

g(ﬁx‘j?axk) = §Rh(azpazk) = %hjk’

g(arjvayk) = 8%h(azj’iazk) = %(_ih(azj’azk)) = %h]k


http://jinghui-yang1998.com/files/0624Symp.pdf
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So in the basis 0z,, -+ ,0s,, 0y, - ,0y,, g is the 2n X 2n-matrix
G- RH SH
- |-SH RH|

Next consider the 2-form w. It is not hard to find
W(0yz;,0ry,) = —Sh(0,;,0.,,) = —SShyy,
w(0y,,0y,) = —Sh(0s,,i0s,) = Rhjr,
w(0y,;,0y,) = —Sh(i0.;,i0;,) = —Shjp.

Extend w bilinearly to the complexified tangent spaces TM @ C. We want to express
w in terms of dz; and dzj. Note that

W(0z,,0=;) = wW(0z; — 10y, , Oz, +i0y,)
= w(0a,,02,) — iw(9y,,02,) + iw(0z;, By, ) + w(0y,, Oy,)
= —Shji + iR, + iR — Shik
= 2ihs.

Similar computations show that w(0.,,0;,) = 0, w(9z, 0%;) = 0. This yields
1
w=g > hjrdz; A dz.
In particular, w is of type (1,1).

Example 3.5. Equip C with the standard metric such that 0,,, --- 0, is a unitary
basis. Then H =id,,, G = (i1 9) is the standard metric on R*", and

w:%Zdzj/\diTj:dej/\dyj

is the standard symplectic form on R?". Note dw = 0, so it is Kéhler.

Example 3.6. CP" admits a U(n+1)-invariant Ké&hler structure. Let z1,- -+, zp41
be the standard coordinates on C"™! and p = ||z = > 7. Set

5= L GBlogp— 1[990 90N 0p
w—2ﬂ8810gp—27r[ 5 ]

P p
_ i Rl X dzy A dzj — (3 Fd2) A (3 2d7)
2 (Bl '

It is U(n + 1)-invariant since it only depends on p. It is also C*-invariant since the
numerator and denominator are homogeneous of degree 4. Hence & pushes forward
to a 2-form w on CP". To see that the resulting 2-form w is positive definite (i.e.
w(J(+),-) > 0), we evaluate it at the point (1 : 0 : 0 : --- : 0). This is clearly
positive. Appealing to U(n + 1)-invariance to see that w is positive definite at all
points. This is known as the Fubini-Study form.

Proposition 3.7. (M,g,J,w) is a Kdhler manifold iff for each §& € M, there
are local holomorphic coordinates z1,- -+ ,z, centered at & such that the Hermitian

metric satisfies
h=id, +0 (Z |zi|2) .
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Theorem 3.8. (M, g, J,w) is Kdihler manifold iff for each £ € M, there exists a
neighborhood of € and f : U — R smooth, such that

w=1i00f onU.
Here f is called a local Kdahler potential.
Proof. (<) is trivial by dw = (0 + 0)(i00f) = 0. For (=), let U be a coordinate
chart identified with a polydisc. By Poincaré’s Lemma, we know that dw = 0, and
w = dn for some 7 on U. Extend w and n to C-vector fields and let n be real, i.e.

nt0 =n01. wis of type (1,1), yielding
dn = on*® + on®L.
So Ont0 =0 = on°1. Applying the O-Poincaré’s Lemma, we know that there exists
¢ on U with ¢ = n'% and 9p = n°1. Let f = 23¢ = i(p — P), then
i00f = —00p + 00 = on*° + ot = dn = w.

4. HOoDGE THEORY
4.1. Elliptic Operators. Let M be a manifold.

Definition 4.1. A linear differential operator of order k is a F-linear map
L: C*(M,F) — C>®(M,F) that for any choice of local coordinates at & € M, it
takes the form

LIE) = Y aal€)Df = Yo o, (05105200 ).

la|<k artazttan, <k

So L is a polynomial in vector fields.

Remark 4.2. In another approach by Grothendieck, a linear differential operator of
order k is defined inductively with respect to k. Namely, When k = 0, Diff* (M)
is just the multiplication by a smooth function. When k£ > 0, L € Diffk(M) iff
[L, f] € Diff*"*(M) for any f € C(M).

Let E — M, F — M be vector bundles over M. We can define a linear dif-
ferential operator of order k in Diff*(M; E, F) to be L : C>°(M, E) — C*°(M, F),
which has the same form as above, with a4 (§) € hom(Eg, F¢). The explicit expres-
sion for L in local coordinates depends strongly on the choice of coordinates, but
the highest order part can be defined invariantly. This part is called the principal
symbol of L.

Definition 4.3. Let L : C*(M,E) — C*(M,F) and £ € M. Its principle
symbol o (L) at £ is
k(L) = aa(€)(i€)",
|| =k
obtained from the highest order derivatives by replacing 8;1]’ with if?j.

The principle symbol of L € Diffk(M ; E, F) can also be related to cotangent
bundles as follows. For any v € T (M), choose f € C°°(M) with df (§) = v. Claim
that ity

—/L,L 3
(L) (v) = Tim & E)

t—o00 tk
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Indeed,

Oy, = (itd,, f)e,

053¢ = (itd,, )™ "™ +p(t)e™,
where v(t) is the lower order terms in ¢. This implies

e_”L(e”f) = tkak(L) + ().
If f € C°°(M), then for any v € T (M),
ok (fL)(v) = f(§)or(L)(v).

This implies that o, (L) € C°(T*M,7* hom(E, F)) for 7 : T*M — M.
Example 4.4. If k = 1, then o1 (L)(v) = i[L, f](€) for any smooth function f such
that df (§) = v. If k = 2, then similarly

72(L)(0) =~ [IL. /1. 11 €).

Definition 4.5. An operator L is called elliptic at £ € M if o;(L) is nowhere
vanishing for any v € T¢(M)\{0}. L is elliptic if it is elliptic at all { € M.

Example 4.6. Let A = — % ng the negative of the Laplacian in R™. The prin-
ciple symbol of it is simply
a(A)(€) = = D _(i€))* = D _(&)* = [¢f*.
So A is an elliptic operator.
4.2. Formal Adjunctions. We assume that (M, g) is a Riemannian manifold in
this section. There is an L?-pairing on C*°(M):
O (M) x O (M) L2,

(f1, f2) = /M J1+ f2dVy,

F

and the norm
15 = (7. Drzan = [ 17PdV%,

where V; is the volume form. Define L*(M) to be the completion of C°(M) with
respect to || - ||p2. If E is an F-vector bundle over M equipped with an F-bundle
metric h¥, then there is an L%-pairing on C°(M, E):

C®(M,E) x C=(M,E) 22, F

(51752)'—>/ hE(s1,59)dVy,
M

which yields the completion L?(M, E).

Definition 4.7. Let L € Diffk(M; E F),and E — M, F — M be vector bundles
over M with bundle metric h¥ = (—, —)g, hf = (—, —)F, respectively. The formal
adjoint of L is the operator L* € Diff* (M; F, E) such that

(LS, E)F = (87 L*g)E7

where s € C*(M°, E), s € C(M°, F), and M® is the interior of M (in case M is
not closed).
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Proposition 4.8. The formal adjoint of an elliptic operator is again elliptic.

Proof. Let L € Diff* (M; E, F) be an elliptic operator. The principle symbol of L*
satisfies

(on(L)(@)u, v) P = (u, 0 (L") (2)0)E
for all z € Ty M, u € E¢, v € F¢. That is, 0, (L") = (ox (L))" O

Remark 4.9. The principal symbol is actually a homomorphism:
orse(Lo L) = ou(L) o oy(L'),
where L, L’ are linear differential operators of order k, £, respectively.

Theorem 4.10. Let M be a closed smooth manifold, E — M and F — M be two
vector bundles, and L € Diffk(M; E,F). If L is elliptic, then

(1) ker L = kergeo L = {u € C°(M, E) : Lu = 0} is finite dimensional.

(2) im L = L(C*(M, E)) is a closed subspace of C*°(M, F).

(3) coker L = C°°(M,F)/L(C>(M,E)) = ker L* is finite dimensional.

Corollary 4.11.
C*(M,E) > ker L ®imL",
C®(M,F) 2 ker L* @im L.
This is also true if we replace all instances of C™ with L?-spaces. Moreover,
kerce L = kery2 L.

This is called the elliptic regularity. In this case, L : C*(M,E) — C*(M,F)
and L : L*(M,E) — L*(M, F) are called Fredholm operators.

A general version of the elliptic regularity uses the theory of Sobolev spaces. We
will not discuss this due to space limitations.

4.3. Formal Adjoint of d. In de Rham complexes, the differential
k k-+1
d € Dift' (M; \T*M, \ T*M)

is a linear differential operator of order 1 for each k > 0. A natural question to ask
is what is the principle symbol of d.

Lemma 4.12. 01(d)(v) =iv A —, for allv € Ty M.

Proof. Since o1 (d)(v) = ild, f](€) : A" TEM — AT T¢ M, where df(§) = v, for
every w € /\kTg"‘M7

o1(d)(v)(w) = ild, f](§)(w)
= i(d(fw) — fdw)
=i(df Nw+ fdw — fdw)
=idf Nw

= Aw.
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Let (M,g) be Riemannian manifold of dimension n. Then AT T*M has a
bundle metric given by ¢ for all k. It makes sense to define the formal adjoint of d,
denoted by ¢. Before we discuss the property of §, we need the following notion:

Definition 4.13. If V is a vector field and w € Q¥(M), then the interior product
of V and w is
1(V)(w) =V sw e Q1 (M),
where
(Vaw) (Vi Viemr) =w(V, Vi, -, Vimr).

¢ gives rise to a bundle isomorphism ¢° : TM — T*M by sending v € TM to
g(v,—). Write g¥ : T*M — TM for its inverse. Then ¢ takes the basis of TM to

its dual basis. For each nonzero n € T/ M and w € /\k T¢M, w can be uniquely
decomposed as n A w’ + w”. Note

g n)(w) = |n*w’
by writing 7 = > a;dz; and looking at the value of (n A w')(D a0y, Vi, -+, Vi).
Hence,
g e, B) =g nanAp +p")
=g Ao B =gnng(e,B)
= [nl*g(a, B)
= glov g n)B),
i.e. the adjoint of ext(n) is 2(g*n). Moreover, it is easy to see that
ext(n)u(g*n) (W) = [n*n Ao,
(g n)ext(n)(w) = 7"
Thus
(ext(n)u(g*n) + a(gFn)ext(n))(w) = [n*w.
Lemma 4.14. Let § = d* : Q¥(M) — QF=Y(M). Then
71(8)(v) = —i - u(g*v)

for allv € TEM, where (M, g) is a Riemannian manifold with g compatible with
the action of i.

Proof. Write ext(n) :==n A —. By Proposition 4.8, it suffices to find the formal ad-
joint of o1 (d)(v) = iext(v). By preceding discussion, the formal adjoint of o1 (d)(v)
is just —i - 2(g%v). Note that a negative sign is needed since g is invariant under
multiplication of i, i.e. g(u,v) = g(iu, iv). a

Definition 4.15. The Hodge Laplacian, also known as the Laplace-de Rham
operator, of k-forms on a Riemannian manifold is the differential operator
Ap : QF (M) — QF(M),
defined as
Ak :d6+(5d: (d+5)2 |Qk .

Remark 4.16. In the definition above, we implicitly use the fact that §2 = 0. This
fact will be proved in the next section.
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By Remark 4.9 and preceding discussion, the principle symbol of Ay is
o2(Ak)(v) = (01(d)01(0) + 1(8)o1(d))(v)
= ext(v)2(g*v) + 2(g*v)ext(v) = |v]?.
So Ay, is elliptic. Furthermore, Ay, is self-adjoint. That is, A} = Ay, since (dd)* =
§*d* = dé and (6d)* = d*6* = dd.

Theorem 4.17 (Maximum principle). The only functions f satisfying Af = 0
(called the harmonic functions) on a closed, connect and oriented Riemannian
manifold are the constant functions.

Proof. Let f € ker A. Then
0=g(Af, f)=g(dsf, f) +g(3df, f) = g(6.£,6f) + g(df, df) = |0 fI* + [|df||*.

This implies f is constant. In fact, we proved ker Ay = kerd Nkerd (“D” is
obvious). O

Theorem 4.18 (Hodge’s theorem for the de Rham complex). Let M be a closed
Riemannian manifold. For each k, we have

Qk(M) =ker A, ®im A, =ker A, ®imd P im.

In particular,

kerd kerAp ®imd
Hizoq(M) = ker Ay = Hlp (M) = — = ——=>

imd imd
is finite dimensional. Here Hf_, is called the Hodge cohomology.
We need to justify im Ay = imd@imd. “C” is clear by definition. Observe that
dA = déd = Apiad, AL = 6dd = Ap_10.

From QF(M) = ker Ay @ im Ay, we see that for u € QF(M),

du = d(ug + Agu'),
where ug is the part of u lying in ker Aj. By ker Ay = kerd Nkerd, dug = 0. This
yields

du = dAyy = dddu’.
Hence imd C im (dd) and im§ C im (dd). This implies

im Ay = im (dd) ®im (6d) = imd & im 4.

Proof of Theorem 4.18 amounts to the fact that Ay is elliptic. The readers are
referred to [2] for a detailed proof.

4.4. Hodge Star Operator.

Definition 4.19. Let (M, g) be a closed and orientable Riemannian manifold with
dimM = n. For any a,8 € QF(M), 0 < k < n, we define the Hodge star

*: QF (M) = Q" F(M) by
aA*B = g(a, B)dVy,

where Vj is the volume form. In general coordinate chart,

dVy = +/|det gldz1 A -+ A day,.
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Example 4.20. Consider (R?, grs), where ggs is the standard metric, with the
volume form dV,; = dx1 A dxa A dzz. Then

* 1 =dx; Adxs Adrs,

*dry = dro Ndrs, *drs = —dry Ndxs, *dxrz = dri Adxs,

* (dxy Ndxe) = drs, *(dxg Adrg) =dxy, *(dxy Adrs) = —dxs,
* (dz1 A dze Ndzxs) = 1.

Proposition 4.21. %? |gx= +id. In fact,
2 [gu= (~1)H00).

Proof. It suffices to check on a basis element dz; = dzi, A--- Adzi,, 91 < -+ < .
Let J = (j1, - ,jn—k) be the complementary increasing multi-index. We want to
find out the multiplication of signs of the permutations: sgn(o) - sgn(7), where o
takes IJ to (1,---,n) and 7 takes JI to (1,---,n). Denote J be the reverse of
J (i.e. a decreasing multi-index). Note that the sign is the same if we replace
JI — (1,--- ,n) with IJ — (n,---,1). This yields

sgn(o) - sgn(7) = sgn(o) - sgn(IJ — (n,--- 1))
= (sgn(0))? -sgn(I — I)-sgn(J — J) -sgn((1,---,n) = (n,---,1))
=sgn(l — I)-sgn(J — J)-sgn((1,---,n) = (n,---,1))
= (-1)",
where
(k—Dk+(n—k—1)(n—k)+n(n-1)
2

{= = k?*4n?*—n—kn = k(n—k) mod 2.
O

Remark 4.22. The L2-pairing on QF(M) is

(a, ) = /M o A¥B,

which is an inner product. On can use this to express § = d* through x and d. Let
a € QF(M) and 8 € QFF1(M), and M be a closed manifold, then

(da, B) = (a, 68) = /M do A%
= / dla AxB) — (—1)k/ a A d(xB)
M M
(Stokes’ Theorem) = (71)’”1/ a A d(*5)
M

(Proposition 4.21) = (=1~ (fl)k("*k)/ a Axxd(xf)
M

_ (71)kn+1+k(17k)/ a/\*(*d*ﬂ)
M

= (=D (a,%d* B) .

Thus,
88 = d*B = (1) (xdx).
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Corollary 4.23. For any o, 3 € QF(M),
(a,B) = (xa,xB) .

Proof. By direct computation,
(xa, %) = /*a/\**ﬁ
= (—1)k(n=R) /*a A B
= (—1)2kn=h) /ﬂ A K

- [96.01%, = [ a5,
= <a76> .
O

Corollary 4.24. § = (—1)""*! x dx. It is then easy to see that 6> = 0. Moreover,
*Ak = An,k*.

Theorem 4.25 (Poincaré duality). Let M be a closed and orientable manifold and
dim M = n. Then its de Rham cohomology satisfies

Hgp (M) = Hip *(M),
forany 0 <k <n.

Proof. This follows immediately from Corollary 4.24 by taking the kernels of both
sides of *Ap = A,_p*. O

Now we assume (M, g, J,w) is a Kahler manifold with complex dimension m.
Extend J to differential forms, i.e. w € QF(M) giving Jw € QF(M),

(Jw)(V1,~-- ,Vk) :w(JVl,m 7JVk).

So J acts on QP*9(M) by multiplication by i?~? (because for V = V10 g VOl
acts on V19 by multiplication by i, and by —i on V%!). Define d* = J='odo J :
QF (M) — QFFY(M). Since d = 0 + 9, we can write

dw=J10+9)Jw=J I+ )i’ Tw

_ 1 1 =
gy -1 —1 _ i
= Y] 0w+ J0w) = P71 (Z-p+1—q Ow + Z‘p(q+1)aw>
1 _ _
= 0w + 10w = (0 — J)w.
i

It is easy to check that dd® = —d°d and (d°)?> = 0. We can then define a cochain
complex of k-forms with differentials d°. Denote the cohomology of this new com-
plex by H3.(M).

Proposition 4.26. The formal adjoint of d° is — x d“x.
Proof. Basically copy of Remark 4.22. (]
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The Hodge star operator can also be extended to complexified k-forms. Namely,
we require that
a A3 = h(a, B)dVy,
where h is the Hermitian metricon M. If & = ) uy jdzrAdZy and 8 =Y vy jdzr A
dz ;y both have type (p, ¢), then
= Z u[,Jma

and so (under appropriately chosen orthogonal frame)
aAxB=h(a,B)dzy A+ Ndzy NdZT A -+ A dZy,.

In particular, since dV, has type (n,n), * is a C-linear isometry QP4(M) —
Qn=4n=P(M). Like d°, we can define the formal adjoint of 9 and 9 to be

O - QPI(M) — QPTRI(M), 3 QPI(M) — QPITH(M).
Proposition 4.27. §* = — % 0x, and 0 = —  O«.
Proof. For any w € QP~14(M) and n € QP9(M),
(0w, n)gpa = (W, "N gp-1.0

/c’)w/\*n /5‘w/\*77 —1)P~ /W/\a(*ﬁ)
— /d(w/\*ﬁ) — (=Pt /wAa(*ﬁ)
(Stokes” Theorem ) = (=1)? /w A O(*7)

(Proposition 4.21) = (=1)P - (=1)p=Dlm=pt) /w A x x O(xT))

= (—1)p<1+m_p)_m_1/w/\*(*g(*n)).

When p is even, p(1 +m — p) is even since m is even, and p(1 +m —p) —m — 1 is
odd. When p is odd, p(1 + m — p) is even, p(1 + m —p) —m — 1 is also odd. In
particular, (—1)P(+m=p)=m=1 — _1 G5 9* = — « J%. Proof of the other equality
is the similar. (]

For operators p € {d, d®,d,d}, we define the complexified Hodge-Laplacian
to be A, = pp* + p*p. By Example 4.4, it is not hard to find

72D 0) = ol
72(85)(0) = 5o,

72(85)(0) = gl

Since 02(Aq) = 02(Age) = 202(A5) = 202(Ayp), all of Ay, Age, Ay, 02(Ay are
elliptic. So we have Hodge theories for them as follows.

Theorem 4.28 (Hodge’s theorem for the Dolbeault complex). Let M be a closed
Kahler manifold, whose C-dimension is m = 2n, where 2n is its corresponding
R-dimension. For each k, the cohomology groups

(1) HEL o(M) = ker Ap |qra™ HE(M)
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(2) Hﬁfd,g(M) = ker Ag |qr.a= Hg’q(M)
(3) HEoq.qe(M) =ker Age |qn= HJ. (M)
are finite dimensional. Moreover,
QPIM) =kerdNkerd © (QPI"HM)) @ (QP9H(M)),
and the Hodge star = induces the Poincaré duality:
*: Hﬁfd,a(M) = Hﬁ;f,’gfq(M).
Similar results hold for 0, d°.

4.5. Lefschetz Operator and Kéhler Identities. Let (M, g, J,w) be a Kéhler
manifold.

Definition 4.29. The Lefschetz operator L on (M, g, J,w) is
L:QF(M) — QF2 (M)

a—wAa

After complexifying, it restricts to
L: QP4(M) — QPFLaL ().
Lemma 4.30. The formal adjoint of L, denoted by A : QF(M) — QF=2(M), is
given by A = (—1)F x Lx.
Proof. Indeed, for o € Q¥(M) and 8 € QF+2(M),
(Lo, B) = (o, AB)

:/La/\*ﬁ:/w/\a/\*ﬁ

:(71)2]“/@/\w/\*ﬁ
= (—1)(’”2)(’”*’“*2)/a/\**(w/\*ﬁ)

= (o, (~1) D R2 (o ) )

Note (k+2)(m —k —2) = k(m — k) + 2(m — 2k — 2). When k is odd, k(m — k) is
odd; when k is even, k(m — k) is even. In particular, (—1)(F+2(m=Fk=2) — (_1)k
which yields the lemma. O

The famous Kahler identities are the core of this section.

Theorem 4.31 (Kéhler Identities). Let (M, g, J,w) be a Kihler manifold, then
(1) [0, L] = id.
(2) [0,L] = —id, [\, 0] = —id*, [A,0] = iD .
(3) 80" = -0 and 00* = —9*0.
(4) Do =Az5=2A04/2= 74 /2.
(5) d°d* = —d*d°, d(d°)* = —d°*d, [A,d] = —(d°)*.

The proof of these identities is fruitful. However, I will not present them in this
paper. One can see Theorem 34 in Chapter 6.4 of my note on Complex Geometry
for details.
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Corollary 4.32. [Ap, L] =0, [Ag, L] = 0.
Corollary 4.33. Let (M, g,J,w) be a Kdhler manifold, then
dw = 0w = 0w = d°w = 6w = O*w =0 w = (d°)* w = 0.
Definition 4.34. Let p € {d,d®,d,0}. A form « is called p-harmonic if pa = 0.

Corollary 4.35 (Hodge decomposition). If (M, g, J,w) is a Kihler manifold, then
HE (M) = HE (M) =~ EB HY(M) = @ HEY(M).
p+q=k ptq=Fk
Moreover, conjugation induces an isomorphism HE4 (M) = HIP (M), and  opera-
tor induces an isomorphism
. P n—q,n—p
*: H (M)—)H5 (M).
Proof. Since Ag = Age = 2Ap = 2A75, we can deduce

ker Ay |or=ker Age |or= ker Ay |@p+q=k or.a= ker Az |@p+q=k Qpa -

Also, for any harmonic form « of type (p, q), @ has type (¢, p), and Agar = Az = 0.
So @ is also harmonic. [l

Corollary 4.36 (dd®-Lemma). Let « be a form such that da = 0, d°a = 0, and
a = dy for some vy, then o = dd°f3 for some .

Proof. Write v = 4o +d°y1+(d¢)" v using Q¥ =1 (M) = ker Age ©im (d°)@im (d°)”.
So
o = dy = dyo + dd°y + d (d°)" .
Since ker Agze = ker Ay = kerd Nkerd*, dyy = 0. On the other hand,
0 = d°a = d°dd®y, + d°d (d°)" y2 = —(d°)?dy — d° (d°)" dryp = —d° (d°)" ds.
Thus, — (d)" dy2 = d(d°)" y2 € kerd® Nim (d)" = {0}. So a = dd°y;. Write

B = v1 and we are done. 0

If
ker d Nker d° Nimd = im dd°®
holds over R, then it continues to hold over C. Since on C, dd® = i(0+09)(0 —0) =
2i00, dd°-Lemma in C is equivalent to the following lemma:

Lemma 4.37 (ag—Lemma).iLet (M, g,J,w) be a Kihler manifold. If a« € QP9(M)
is d-closed and either O or d-ezact, then there exists f € QP~LI=Y(M) such that
a = 005.

Proof. Basically copy of Proof of Lemma 4.36. O

Corollary 4.38. Let M be a closed Kdihler manifold and m = dim M be its C-
dimension. Let by = dim HA; (M), hP4 = dim HEY(M). The following holds:

(1) b =", gp PP

(2) hPd = paP = pm=am=p — pm=pm—q_

(8) hPP £0 for anyp € {1,--- ,n}.

(4) bi is even if k is odd.

Proof. 1 ~ 3 are trivial. 4 follows from 1 and 2. [
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4.6. Lefschetz Decomposition. Assume that we are working in a closed Kéahler
manifold (M, g, J,w) with dim¢ M = m = 2n.

Definition 4.39. A form « is called primitive if it is not in the image of L, i.e.
a # wAa for any &. We are interested in those who are not primitive because they
come from lower-degree forms.

By Corollary 4.11, we can decompose QF into ker L* @ im L = ker A @ im L. So
« is primitive if Ao = 0. Before we continue, we need the following tools.

Lemma 4.40 (Lefschetz identity). [L,A] : QF(M) — QF(M) satisfies
[L, A]la = (kK — m)a,
for any o € QF(M).
The proof of the lemma is tedious. The reader is referred to Lemma 13 in

Chapter 6.4 of my note on Complex Geometry. With this in hand, we can easily
prove a general version of the preceding lemma.

Corollary 4.41 (Generalized Lefschetz identity). For 0 < k < m and 0 < r <
m — k, we have
[L", Al = (r(k —m) 4+ r(r —1)) L™ a,
for any o € Q* (M), where M has C-dimension m.
Proof. We do it by induction. The base case is just Lemma 4.40. Note that
[L",A] = LIL"=*,A] + [L, A]L"~!. By inductive hypothesis, we obtain
[L",Ala = LIL"™* Ala + [L,A]L" '
=L((r—=1D(k-—m)+(r—-2)r—-1))L"2a+2r—2+k—-—m)L" 'a
=((r—1)(k-m)+r*=3r+24+(k—m)+2r—2)L" 'a
=(r(k—m)+r(r—1) L ta.
O

Remark 4.42. The generalized Lefschetz identity induces an isomorphism L™~ :
QF(M) — Q>m=F(M) for k < m.

Lemma 4.43. For k <m, a € Q¥(M) is primitive iff L™ *+1a = 0.

Proof. [L™ %1 Ala = 0 by generalized Lefschetz identity. So L™ F*lAa =
AL 1o, Now Aa € QF2(M), and L™~ =2) is an isomorphism on QF~2(M).
L™=*+1 is then injective on Q*~2(M). This implies L™ **1Aa = 0 is equiva-
lent to A = 0. On the other hand, L™ *la € Q?m=*+2(M), and A™~F+2 :
Q2m=k+2(M) — QF=2(M) is an isomorphism. So A is injective on Q2™=*+2()1).
AL™= (k=D = 0 is equivalent to L™~ *~Dq = 0. Hence, a is primitive iff Ao = 0,
iff Lkl = 0. d

Theorem 4.44 (Lefschetz decomposition of differential forms). Every a € QF(M)
admits a unique decomposition of the form a = Y L"«,., where o, is of degree
k —2r <min(2m — k, k) and primitive.

Proof. WLOG, we assume k < m. Start with uniqueness. Suppose Zrzo L o, = 0.
We want to show a,. = 0. If ag = 0, then L (Z L"*lar) = 0 implies Y. L"ta,. = 0
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and we are done by induction. Now suppose ag # 0. Since oy € QF(M) and it is
primitive, we know L™ ¥+1ay = 0. From

Lm7k+1 (Z LTOé:,-) =0= Lmik+2 (Z LTl@?') s

r>0

degree k—2

and the fact that L™~*%2 is an isomorphism on Q=2 we know Y _ L™ 'a, = 0.
Induction on k, we get o, = 0 for all » > 0, implying oy = 0. Combining the
previous result yields the desired result.

To prove the existence, first note
Lm—k—i—la c Q2m—k+2(M) _ Lm—k+2 (Qk—2(M)) .

Thus, there exists 3 € Q¥~2(M) such that L™ *la = L™ 28, So ay = a — LB
is primitive and a = a9 + LS. Induction on degrees, we can assume that § has a
Lefschetz decomposition and so does a. O

Theorem 4.45 (Hard Lefschetz theorem). For all k < m, L™~ " induces an iso-
morphism HY,(M) — H2m=*(M).

Proof. Denote H* (M) = ker A4 lor () = HE. (M). Corollary 4.32 tells us [Ag, L] =
0, so L™=k : HF(M) — H?>™~F(M) is injective. On the other hand, dim H* (M) =
dim H2™ =% (M) since * is an isomorphism. Thus, L™~ is also surjective. d

Corollary 4.46 (Lefschetz decomposition of cohomology). Write H*(M)prim =
ker L™=kt c H*(M) for k < m. Then for anyk, Hf, (M) = @, L"H* 2" (M) prim-

Remark 4.47. If k < m, then by < byyo (hP9 < hPTLITL respectively); and if
k > m, then by > byio (P9 > hPHLIHL ] vespectively). Thus dim H*(M)prim =
by, — br_2.

In terms of forms, we might observe that L™ * and % play similar roles in
decomposition and duality. Naturally, one would ask if there is any relationship
between these two operators. This is answered by the following proposition.

Proposition 4.48. If a € QF(M) is primitive, then
*LJ.'CY —(-1) Bt ) Lm_k_jJ('Oé) .
J! (m—k—j)!
The proof of this proposition is done by brute force calculation and is therefore
omitted.

4.7. Hodge Index Theorem.

Definition 4.49. Let @ be a bilinear form on *(M), satisfying

(1) Q(e, B) =0, if |af # |B].
(2) If o, B € QF(M), then

Qa,f) = (1) /M L™k (a A B) = (-1)" 5 /M W E A A B.

We call @ an intersection form on Q*(M).

It is easy to check that @ satisfies the following properties: (choose «, 8 € QF)
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(1) Q(a, B) = Q(B, ) if k is even, and Q(«, 8) = —Q(B, a) if k is odd;
Theorem 4.50 (Hodge-Riemann bilinear relation). The following holds:

(1) HP9(M)prim and H™*(M)prim are orthogonal with respect to Q, except for
(p,q) = (r,s). That is, Q(e,8) = 0 for all o € HPI(M)prim and § €
HT’S(M)prim thh (p7 Q) 7& (T, S)‘

(2) The Lefschetz decomposition Hn(M) = @ L" H¥=2" (M) pyim is orthogonal
for Q.

(3) If &« € HP9(M)prim is nonzero, then

P71Q (o, @) > 0.
In particular, Q) is non-degenerate.

Proof. Note that @) descends to cohomology since, by Stokes Theorem, if a and
are closed and either of them is exact, then

/M L™ *(aAB)=0.

(1) If @ € QP4(M) and B € Q™(M), then L™ *(a A B) has type (n — k +
p+r,n—k+q+s). Since the volume form has type (n,n), the integral
vanishes except when —k+p+r=0=—-k+q+s,ie. p+r=k=q+s.
But k = p + q, yielding r = ¢q, s = p.

(2) Suppose a = L" g, 8 = L*By, where ay, Sy are primitive and r < s. Since
o € Q725 (M) prim, L™ F2 1oy = 0. We see

Q(a, B) = Q(L" g, L*Bo) = (—1)"Q(co, L* ™" Bo)
::l:/mekJr%"(ao/\LsfrBO)

_ i/Lm7k+2r+1a0 /\Lsfrflﬂo _ 0

(3) Let a € QP9(M) be primitive. Aad = Aa = 0. So @ € QP (M )prim. By

o — J ). m—k—
Proposition 4.48 xa = (—1) =5 z”_qﬁ, we compute

PIQ (0, T) = (—1)" TP / L™ *(a A7)

— (-1 z‘p‘q/a/\Lm‘ka
= (m—k)!af? > 0.

This yields the desired result. In particular, ) is non-degenerate.
O

(3) of Theorem 4.50 says that #~Q) is positive definite on H?9(M)ppim. The
Hodge index theorem is an immediate corollary describing the index (or the signa-
ture) of the intersection form @ on HJJ; (M) for a closed Kéhler manifold M with
complex dimension m. Recall that

Definition 4.51. The index (or signature) of @ is the number of positive eigen-
values minus the number of negative eigenvalues.
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Note that on HJ,(M), Q(a, 8) = + [,, @ A 3. Define
Q.0 = [ anp.
M
If M is orientable, Q is non-degenerate since Q(a, x) = [y @ Axa=|ja]|? > 0.
Definition 4.52. The index (or signature) of M is the signature of @, denoted
by o(M).
Theorem 4.53 (Hodge index theorem). Let (M, g, J,w) be a closed Kihler mani-

fold with complex dimension m. We have

o(M) =" (=1)"hP".
P,
Proof. Extend Q to a Hermitian form on H,(M,C) through @(a,ﬁ) = [anpB.
Lefschetz orthogonal decomposition gives HJj(M,C) = @ L"H?'9(M ) prim. From

the Hodge-Riemann bilinear relations, (—1)P(Q is positive definite on L H?4 (M) prim-
Thus

o(M)= > (=1)"dim H"(M)prim
p+qg=m—2r
= Z (=1)? (hp,qfhpfl,qfl)
p+g=m—2r
= Z (=1)PRP Y 4 (—1)P~ L pp— Lol
p+qg=m—2r
- Z (—=1)PhP? 42 Z (=1)PhP1
ptgq=m p+qg=m—2r
r#0
= Z (—=1)PhP7 + Z (—1)PhPa
pt+qg=m p+q even
ptg#m
e
p+q even

On the other hand, by applying complex conjugation,
Z (—1)PhP? = Z (—1)PhaP = — Z (=1)7h%P = Q.
p+q odd p+q odd p+q odd
Hence,
o(M) =" (=1)"hP.
p.q

]

4.8. *Off-topic: Cohomology with Holomorphic Coefficients and Serre
Duality. In this section, we allow the cohomology to have coefficients in holomor-
phic vector bundle, instead of F =R or C.

Definition 4.54. Let £ — M be a C-vector bundle over a Kahler manifold
(M, g, J,w) of complex dimension m, and h¥ be a Hermitian metric on E inducing
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R’ : E — E*, which is a C-anti-linear bundle isomorphism. Define for each & € M,
P.q m—p,m—q
*p: N\IEM@E.—» N\ TIMeE;
by requiring *z(a ® s) = *a @ h’(s).
Remark 4.55. xg is a C-anti-linear isomorphism such that for any «, 5 € QP9(M, E)
aANxpB = hE(a, B)dV,.
Also, *p x%p = (=1)P 7 on A" T M @ E.
If (E,h¥) — M is holomorphic, then we can define
Op : Y M,E) — QP (M, E),
Dy QPUM, E) — QPi~Y (M, E).

Proposition 4.56. The Laplacian Az = 5E5}; + 5};5E is elliptic. Hence, there
is a Hodge decomposition:

OP9(M,E) =ker g N kerg*E ®Imog ® imé*E,

—_——
ker AEE
and
HP,Q(M, E) = ker AgE |Qp,q(M7E) .
It is not hard to find E*E = —%p-0p-*g, which generalizes the equality 9 =
— % O%, since

—% (0%a) = =% (0(xa))) = —* (Oxa) = —x O xa.

Exercise 4.57. Show that ?EAgE = A5E*¥E*. So we have a C-anti-linear isomor-
phism

HPU(M,E) 22 H™Pm=4()M, E*).

One can think about the natural pairing

HP9(M, E) @ H™ P™=1(M, E*) — C
(o, B) > Jyanp
It is non-degenerate since (o, *pa) — [;, hp(o,a)dVy = ||al|}z. Thus, we have a

C-linear isomorphism
(Hm=Pm=9(M, E*))" = HP9(M, E).
In this context, it is known as the Serre duality.
Remark 4.58. By Corollary 4.35, the duality becomes
HY M, Q" ® B) = (H" (M, Q™" P ® E*))".
The sheaf QF} is known as the structure sheaf of M, denoted by K. It satisfies

HY(M,E) = (H™ 9(M,Ky ® E*))" .
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