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Chapter 1

Introduction

This dissertation aims to present the homotopy theory in homotopy type theory. In

particular, we will compute several homotopy groups of spheres in this framework and

develop the cohomological Serre spectral sequence originally proposed by Floris van

Doorn [vD18] to discover more approaches to computing harder homotopy groups of

spheres.

Invented by Bertrand Russell [Rus08], type theory served originally as a device

to avoid the logical paradoxes like the Russell paradox. With the works by many

people, especially Church [Chu40, Chu41] and Per Martin-Löf [ML75], type theory

was developed into a formal system in mathematics based around λ-calculus. One

influential system is Per Martin-Löf’s type theory (also known as intuitionistic type

theory), which was proposed as an alternative to set theory, as a foundation for

constructive mathematics.

The philosophy of constructive mathematics is “proof by construction”. Explicitly,

to prove a proposition P is the same as finding a method to construct a shred of

evidence ensuring P . Therefore, an algorithm can always be extracted from the

proof. Theoretically, this enables one to use the computer to check proofs written

in homotopy type theory. Various works on these “proof assistants” (computerized

proof-writing programs) have been published as a new-rising field. For instance, see

[Coq] for Coq, [Lea] for Lean, and [Agd] for Agda.

Homotopy type theory (HoTT) is a new branch of mathematics that interprets

Martin-Löf type theory from a homotopical perspective. It was developed around

2006 by Awodey and Warren [AW09] and Voevodsky [Voe12]. Types in HoTT are

regarded as spaces, and elements of types are regarded as points of spaces. Functions

between types can be seen as continuous maps between spaces. The key idea of such

homotopical interpretation is that identity a = b of two elements in a type A can be

regarded as a path from point a to point b in the space A. The advantage of these
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correspondences is that we can study the spaces and algebraic structures without

establishing any point-set topology. It allows us to perform similar manipulations to

homotopy theory in HoTT, like homotopies, loop spaces, path concatenations, etc.,

as long as they are homotopy invariant. Thus, a ∞-groupoid structure on types can

be formalized, yielding that further homotopy theory can be established in HoTT.

On the other hand, it provides a shortcut for proving propositions for all ∞-toposes.

See [KL16] and [Shu19].

Homotopy Theory

Originated in algebraic topology, homotopy theory is a study of problems in which

homotopies between maps get involved. Nowadays, it has become an independent dis-

cipline because the objects studied in homotopy theory can be defined independently

of the underlying topology.

One fundamental problem in homotopy theory is to tell to what extent two spaces

are “different” up to homotopy equivalence. The measurement of such “difference”

is usually some algebraic invariants associated with the spaces, such as homotopy

groups. If we can prove that homotopy groups of two spaces are different, we can

say these two are distinct. So the algebraic invariants like homotopy groups provide

much information about spaces, making them easier to distinguish efficiently.

A natural question is to ask what the homotopy groups of a space X look like,

which we write as πk(X). Furthermore, since spaces can be built from spheres, cal-

culating their homotopy groups becomes a central problem in classical homotopy

theory. Unfortunately, it turns out to be a very hard problem. Even for the simplest

case when X = Sn, results are barely known. But there are still numerous tools to

tackle the problem, apart from some basic conclusions that can be derived directly.

One of great interest is the spectral sequences. They are the generalizations of exact

sequences and one of the most powerful computational tools in homotopy theory. A

list of computations can be found in [WX10].

As such a powerful weapon in classical homotopy theory, one is curious if it can

be formalized in HoTT. The hint is to consider Brown’s representability in classical

homotopy. It is homotopy invariant so that we can realize a similar construction in

HoTT. In particular, we can define cohomology through this method in HoTT. This

implies that under the suitable amendment, it is possible to develop the theory of

spectral sequences in HoTT. Indeed, Floris van Doorn [vD18] implemented this idea

in his doctoral thesis. Moreover, in light of the language of spectra, spectral sequences

in HoTT are more fruitful in potential in the HoTT version of stable homotopy theory.
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Content of the Thesis

The first two chapters, following the introduction, review the basic homotopy type

theory and relevant results on homotopy groups of spheres in HoTT. The reference

for these parts is [Uni13].

In Chapter 2, we start with the introduction to Martin-Löf type theory. We

present several types of particular importance. Then we introduce some basic con-

cepts in homotopy type theory, including the univalence axiom that will be presumed

throughout the rest of the paper. After that, we briefly introduce the set theory in

HoTT. We present the notion of contractible spaces and several propositions asso-

ciated with them. Finally, we talk about the inductive types and higher inductive

types. The natural numbers type N is an essential example of inductive types. The

higher inductive types correspond to the spaces with cell structures in classical ho-

motopy theory. For instance, the n-truncation is an operation to turn a general type

into an n-truncated space. All these manipulations are standard in HoTT.

In Chapter 3, we define the homotopy groups of the space X as the 0-truncation

of n-th loop space of X. We then sketch the proof of π1(S
1) = Z and introduce

two propositions on n-connected spaces to calculate πk(S
n) for k < n. Afterward,

we discuss the fiber sequences and the associated long exact sequences of homotopy

groups. A crucial example is the Hopf fibration S1 → S3 → S2. The long exact

sequence of homotopy groups associated to it induces the relations of πk(S
3) and

πk(S
2), yielding πk(S

3) = πk(S
2) for all k ≥ 3. At last, we talk about the Freudenthal

suspension theorem and deduce π3(S
2) = Z from it.

In chapter 4, we first introduce the notion of Eilenberg-MacLane spaces K(G, n)

for an abelian group G, and define the ordinary cohomology of type X by the 0-

truncation of the mapping space from X to K(G, n). We show the cohomology of

spheres has the desired results. Next, we introduce the language of spectra and define

the generalized cohomology theory in this new language. Then we discuss the exact

couples and spectral sequences in HoTT. As another crucial example, we introduce

the generalized Atiyah-Hirzebruch spectral sequences and use them to prove the Serre

spectral sequences. In the end, we calculate the cohomology of K(Z, 2) and ΩSn.

Inspired by EKMM [EKMM97], we present a conjecture on the form of the universal

coefficient theorem in HoTT, and state how to use it to get πn+1(S
n) = Z, combining

the cohomology of K(Z, 2) and ΩSn.
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Chapter 2

Backgrounds in Homotopy Type
Theory

This chapter begins with the Martin-Löf (intuitionistic) type theory and its homotopy

interpretation. This chapter serves as an introduction to homotopy type theory for

those unfamiliar with the topic. For a detailed discussion, the readers are referred to

the great book [Uni13].

2.1 Martin-Löf (Intuitionistic) Type Theory

Developed by Martin-Löf et al. [ML75], the Martin-Löf (intuitionistic) type theory

is originally a modification of Alonzo Church’s type system [Chu40] to formalize the

constructive mathematics. Unlike the Zermelo-Fraenkel set theory, which has the

deductive system of first-order logic with axioms, the Martin-Löf type theory has

its own deductive system: it does not rely on any superstructures like first-order

logic. Informally, a deductive system is a collection of rules for deriving things called

judgments. There is only one kind of judgment in the deductive system of first-

order logic (where the set theory is formulated): a given proposition has a proof. A

rule of this logic is actually a process of “construction of proof”. Thus, the sentence

“judgment P has a proof” significantly differs from the proposition P itself. However,

the deductive system on which the type theory is based has only one notion, the types.

There are two kinds of judgments in type theory. One of them is a : A, pronounced as

“a is an element of A”. In this system, propositions are defined by particular types.

Proving a proposition P is the same as constructing an element p (called a witness)

in the proposition type P . This is the reason why the logic that type theory follows

is called constructive. One should be warned that if a type A can be treated as a
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set, then “a : A” is a judgment, but a ∈ A is a proposition. Although they share the

same meaning, they exist at two different levels in logic.

The treatment of equality in type theory, which will bring much juice later, is

another difference from set theory. For elements a, b in type A, we can define a

new type “a =A b”. The subscript of “=” can be dropped if the underlying type

is specified. When “a = b” is inhabited, we say a and b are propositionally equal.

In other word, “a = b” is a proposition, but not a statement of judgment. To give

the “equality judgment”, we write “a ≡ b : A” (or simply “a ≡ b”) to mean the

definitional equality. Unlike the previous case, ”a ≡ b” now represents “equality by

definition” in our common sense.

Remark 2.1.1. To summarize, type theory is based on the deductive system with two

kinds of judgments:

1. a : A, “a is an element of type A”;

2. a ≡ b : A, “a and b are definitionally equal elements of type A”.

In type theory, judgments may depend on assumptions of the form x : A, where x

is a variable and A is a type. We can assume a propositional equality, like p : x = y,

but we cannot assume a judgmental equality x ≡ y since it is not a type. Logically,

a judgmental equality is not a “proposition”, so we cannot “prove” it. A judgment

given at the outset is called an axiom.

The rules of the deductive system on which type theory is based is another thing

of interest. Like the ones in the deductive system of first-order logic, the rules in

our settings are what allow us to conclude one judgment from a collection of others.

When we specify a type (a judgment), what we really do is specify the following rules:

1. Formation Rules: How to form new types of this kind.

2. Introduction Rules (Constructor): How to construct elements of that type.

3. Elimination Rules (Eliminator): How to use elements of that type. This is

equivalent to how to define functions out of that type.

4. Computational Rules: How an eliminator acts on a constructor.

5. Uniqueness Rules: Express uniqueness of maps into or out of that type.

Note. Uniqueness rules are often propositional. In this paper, we will only

consider them if necessary.
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The formation, introduction, and computational rules usually come with defini-

tions. To gain an intuitive understanding of type theory, we will provide several

examples that are essential for the future with extra explanations of their elimination

rules. In our settings, the following fact is always presumed:

Fact 2.1.2. For any type A with a : A, there is a reflexivity of a given by refla :

a =A a.

2.1.1 Non-dependent Function Types

Definition 2.1.3. Let A, B be types. Write A→ B to denote the non-dependent

type of functions with domain A and codomain B. Let a be an element of A.

We can apply an element f in type A → B (called a function or map) on a to get

the value of f at a. Denote it by f(a). f(a) is then an element in B. The elimination

rules for non-dependent function types are function applications.

λ-abstraction is another way to state the introduction rules without introducing

a name for the function. Suppose f : A → B is given by f(x) ≡ Φ, where Φ is

an expression that uses x. Then Φ : B is an element dependent on x : A. Write

λ(x : A).Φ to indicate the same function f , i.e.

f(x) ≡ λ(x : A).Φ : A→ B.

If a function f has two inputs a : A, b : B, then we can take one variable at a

time to avoid using product types in §2.1.2. That is, we choose Φ ≡ f(a, b) : C for

f : A→ B → C. Rewritten in λ-abstraction,

f ≡ λa.λb.Φ.

This is called currying.

2.1.2 Product Types

Types can be seen as elements of a “super-collection”. In particular, we can regard

all types are elements of a super-collection called the universe U . Proceed with this

process, we obtain a hierarchy of universes U0 : U1 : U2 : · · · , where each Ui is an

element of Ui+1. We assume that the universes are cumulative; that is, if A : Ui for
some i, then A : Uj for all j ≥ i. For convenience, we write A : U to avoid mentioning

the level i explicitly.
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Definition 2.1.4. Let A,B : U be types. The product type (or Cartesian prod-

uct) of A and B is A × B : U . The elements in A × B are (a, b) : A × B for a : A

and b : B.

Definition 2.1.5. The unit type 1 : U is a nullary product type with only one

unique element ∗ : 1.

The elimination rules for the product type can be described via
∏
-types (see

§2.1.3). To be explicit, we define the recursor for the product type by

recA×B :
∏
C:U

(A→ B → C) → A×B → C,

with defining function recA×B(C, g, (a, b)) ≡ g(a)(b), where g : A → B → C. So for

every function f : A×B → C, we can represent it via the recursor

f((x, y)) ≡ recA×B(C, λx.λy.f).

If the codomain of f is allowed to vary based on the choice of (x, y) : A× B, i.e.

f :
∏

(z:A×B)C(z), then the recursor, which we renamed by inductor in this case, is

indA×B :
∏

C:A×B→U

(∏
x:A

∏
y:B

C(x, y)

)
→

∏
z:A×B

C(z)

with defining function indA×B(C, f, (a, b)) ≡ f(a)(b). Note that when C is constant,

the inductor coincides with the recursor. Unless otherwise stated, we will only intro-

duce the inductors for simplicity.

Example 2.1.6. Projection functions

pr1 : A×B → A, pr1((a, b)) ≡ a

pr2 : A×B → B, pr1((a, b)) ≡ b

can be represented by

pr1 ≡ recA×B(A, λa.λb.a), pr2 ≡ recA×B(B, λa.λb.b).

2.1.3
∏
-types and

∑
-types

Definition 2.1.7.
∏
-types are also called dependent function types. Elements

of them are functions whose codomain types can vary depending on elements of

the domain to which function is applied (called dependent functions). We write∏
(x:A)B(x) to denote the

∏
-type with domain A and codomains B(x) dependent on

x : A. Again, the elimination rule for
∏
-types is function applications.
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Example 2.1.8. Let
∏

(x:A)B(x) be a
∏
-type. If B is constant, then

∏
(x:A)B(x) ≡

A→ B, the non-dependent function type.

Definition 2.1.9.
∑

-types are also called dependent pair types. It is a general-

ization of product type such that it allows the second component to vary depending

on the choice of the first component. We write
∑

(x:A)B(x) to denote the
∑

-type

with the first component A and the second component B(x) dependent on x : A. The

elements of
∑

(x:A)B(x) are of the forms (a, b), where a : A and b : B(a).

Example 2.1.10. Let
∑

(x:A)B(x) be a
∑

-type. If B is constant, then
∑

(x:A)B(x) ≡
A×B, the product type.

Like in §2.1.2, the elimination rule for
∑

-types can be described similarly by

inductor (recursor as a special case when codomain is constant):

ind∑
(x:A)B(x) :

∏
C:

∑
(x:A)B(x)→U

∏
x:A

∏
y:B(x)

C(x, y)

→
∏

z:
∑

(x:A)B(x)

C(z)

with

ind∑
(x:A)B(x)(C, f, (a, b)) ≡ f(a)(b).

Remark 2.1.11. The elimination rules for non-dependent cases are also called recur-

sion principle, while for dependent cases they are called induction principle.

2.1.4 Coproduct Types

Definition 2.1.12. Let A,B : U . The coproduct type of A and B is A + B : U .
Elements in A+B are constructed by

• Left injection: inl(a) : A+B for a : A;

• Right injection: inr(b) : A+B for b : B.

Definition 2.1.13. The empty type 0 : U is a nullary coproduct type with no

inhabitants.

Induction principle for coproduct types can be stated via

indA+B :
∏

C:A+B→U

(∏
a:A

C(inl(a)) →
∏
b:B

inr(a)

)
→

∏
x:A+B

C(x)

8



with defining equations

indA+B(C, f0, f1, inl(a)) ≡ f0(a),

indA+B(C, f0, f1, inr(b)) ≡ f1(a),

where f0 : A→ C and f1 : B → C are functions chosen such that

f(inl(a)) ≡ f0(a), f(inr(b)) ≡ f1(b),

for every function f we desire to construct out of A+B.

Example 2.1.14 (Boolean Type). The Boolean type 2, also known as 0-dimensional

sphere, has exactly two elements 0, 1 : 2. It can be constructed by coproduct of two

copies of 1, i.e. 2 ≡ 1+ 1. The induction principle for 2 is a special case of the one

for the coproduct type.

2.1.5 Identity Types

At the beginning of this chapter, we mentioned that the propositional equality of two

elements a, b : A is in fact a new type a =A b, called an identity type. If we have

an element p in this new type, we call it a path between a and b in the space A.

If a ≡ b : A, then by Fact 2.1.2, there is an element refla : a = b, called the constant

path at a.

The induction principle for the identity types are also known as path induction.

We will use this name for the rest of paper. To construct a dependent function f out

of a =A b, we choose a function c :
∏

(a:A)C(a, a, refla) for the family C :
∏

(a,b:A)(a =A

b) → U . Then f :
∏

(a,b:A)

∏
(p:a=Ab)

C(a, b, p) can be represented by

f(a, a, refla) ≡ c(a).

In order words, given dependent functions

C :
∏
x,y:A

(x = y) → U

c :
∏
a:A

C(a, a, refla),

there exists a dependent function ind=A(C, c) :
∏

(x,y:A)

∏
p:x=y C(x, y, p) such that

ind=A(C, c)(a, a, refla) ≡ c(a) for every a : A.

9



2.2 Homotopy Type Theory

The central idea of homotopy type theory (HoTT) is that types can be treated as

spaces, propositional equalities between elements of a type can be treated as paths (or

0-homotopies), and elements of propositional equalities (as new types) can be treated

as (1-)homotopies, and so on. So each type can be seen to have the structure of an

∞-groupoid.

All of basic constructions and axioms to derive a structure of the ∞-groupoid can

be achieved by path induction in §2.1.5. For example, for every x, y : A in a fixed

type A : U , there is a function (x = y) → (y = x) denoted p 7→ p−1, such that

refl−1
x ≡ reflx. Call p−1 the inverse of p. This can be constructed by finding an

element in the type
∏

(A:U)

∏
(x,y:A)(x = y) → (y = x). Let D :

∏
(x,y:A)(x = y) → U

be a family of types with D(x, y, p) ≡ (y = x). By Fact 2.1.2, we have an element

d ≡ λx.reflx :
∏

(x:A)D(x, x, reflx). Then by path induction, there exists an element

p−1 ≡ ind=A(D, d, x, y, p) : (y = x) for each p : (x = y). Using the same method, we

can get the concatenation of p and q, denoted p · q, via the function

(x = y) → (y = z) → (x = z),

where p : x = y and q : y = z for x, y, z : A. The readers are encouraged to work out

the details.

Lemma 2.2.1 ([Uni13], Lemma 2.1.4). The concatenation is associative. That is,

for x, y, z, w : A and p : x = y, q : y = z, r : z = w, we have p · (q · r) = (p · q) · r.

We write Ω(A, a) to denote the type a = a for a : A. It is called a loop space of

A at a. Sometimes we include the basepoint of the loop space and write Ω(A, a) =

((a = a), refla). In general, we can define the n-fold iterated loop space Ωn(A, a)

for n ≥ 0 recursively by

Ω0(A, a) ≡ (A, a),

Ωn+1(A, a) ≡ Ωn(Ω(A, a)).

Theorem 2.2.2 (Eckmann-Hilton, [Uni13], Theorem 2.1.6). The composition opera-

tion on the second loop space is commutative, i.e. α ·β = β ·α for each α, β : Ω2(A, a).
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2.2.1 Fibrations

Let f : A → B be a function between two types. For every x, y : A, the action of f

on paths between x and y is

apf : (x =A y) → (f(x) =B f(y)).

Moreover, apf (reflx) ≡ reflf(x). The existence of such function is ensured by Lemma

2.2.1, [Uni13]. In the dependent case when f :
∏

(x:A)B(x), we need the following

transport lemma to avoid the messy on distinct types.

Lemma 2.2.3 ([Uni13], Lemma 2.3.1). Let P : A→ U be a type family and p : x =A

y. Then there exists a function p∗ : P (x) → P (y).

Write transportP (p, x) to denote the function p∗ for p : x =A y starting at x : A

for the type family P : A → U . We may call P a fibration with base space A,

P (x) a fiber for each x : A, and
∑

(x:A) P (x) the total space. So for u : P (x),

transportP (p, x)(u) is the endpoint of the lifted path of p with starting point u.

Lemma 2.2.4 ([Uni13], Lemma 2.3.8). Let f :
∏

(x:A) P (x) be a dependent function

on type family P : A→ U . Then we have a map

apdf :
∏
p:x=y

transportP (p, x)(f(x)) =P (y) f(y).

Lemma 2.2.5. For a function f : A → B and a type family P : B → U , and any

p : x =A y and u : P (f(x)), we have

transportP◦f (p, u) = transportP (apf (p), u).

Proof. By path induction, it suffices to assume y is x and p is reflx. In this case,

we have to prove transportP◦f (reflx, u) = u = transportP (apf (reflx), u), which is true

judgmentally by definition.

2.2.2 Equivalences

Like the equivalence of elements in a type, we have a notion for the equivalence of

functions and types in a universe.

Definition 2.2.6. Let f, g :
∏

(x:A) P (x) be two dependent functions on a type family

P : A→ U . A homotopy from f to g is a dependent function of type

f ≃ g ≡
∏
x:A

(f(x) = g(x)) .

11



One can check that homotopy is an equivalence relation on each dependent func-

tion type
∏

(x:A) P (x). See Lemma 2.4.2 in [Uni13].

Definition 2.2.7. For a function f : A → B, a quasi-inverse of f is a triple

(g, α, β) consisting of a function g : B → A and two homotopies α : f ◦ g ≃ idB and

β : g ◦ f ≃ idA. We denote the quasi-inverse of f by qinv(f).

Definition 2.2.8. The equivalence of f , denoted by isequiv(f), is a type that

satisfies the following properties:

1. For each f : A→ B, there exists a function qinv(f) → isequiv(f).

2. For each f : A→ B, there exists a function isequiv(f) → qinv(f).

3. For every two elements e1, e2 : isequiv(f), e1 = e2.

One easy example to ensure the existence of isequiv(f) is given by

isequiv(f) ≡

( ∑
g:B→A

(f ◦ g ≃ idB)

)
×

( ∑
h:B→A

(h ◦ f ≃ idA)

)
.

Definition 2.2.9. An equivalence between types A, B is defined to be a function

f : A→ B with an inhabitant of isequiv(f). Write A ≃ B for the type of equivalence

from A to B. So A ≃ B ≡
∑

(f :A→B) isequiv(f).

Type equivalence is an equivalence relation on U . The reader are referred to

Lemma 2.4.12 in [Uni13] for details.

We can also define the equivalence fiberwise: for any two type families P,Q : A→
U , the fiberwise map is f :

∏
(x:A)(P (x) → Q(x)). f is a fiberwise equivalence if

f(x) is an equivalence for all x : A. We have the following theorem:

Theorem 2.2.10 ([Uni13], Theorem 4.7.7). f :
∏

(x:A)(P (x) → Q(x)), defined as

above, is a fiberwise equivalence iff g ≡ λw.(pr1(w), f(pr1(w), pr2(w))) :
∑

(x:A) P (x) →∑
(x:A)Q(x) is an equivalence.

2.2.3 Univalence Axiom

Univalence was introduced by Voevodsky [Voe12] to fill in the gaps of many desired

theorems that were insufficient to prove simply using the Martin-Löf type theory.

Axiom 2.2.11 (Univalence). For any types A,B : U , there is an equivalence

(A =U B) ≃ (A ≃ B).

We always assume the universe U satisfying the univalence axiom. Write ua for

an inhabitant of the type of quasi-inverse functions (A ≃ B) → (A =U B).

12



2.3 Sets

Types can be regarded as sets if they satisfy certain properties. Being a set makes a

type easier to analyze.

Definition 2.3.1. A type P is a mere proposition if for every x, y : A, x = y.

Definition 2.3.2. A type P is a set if for every x, y : A, p, q : x = y, we have p = q.

If A is a mere proposition, then it is a set.

Sets are also known as 0-types, and mere propositions as (−1)-types. This

definition can be generalized to n-type by adding propositional equalities on each

pair of k-paths depending on (k − 1)-paths for k ≤ n + 1. There is a way to decide

whether a type is a set:

Theorem 2.3.3 (Hedberg’s Theorem, [Uni13], Theorem 7.2.5). If a type P is such

that for every x, y : P , either x = y or ¬(x = y) holds, then P is a set. Here

¬(x = y) ≡ (x = y) → 0.

One can apply the theorem to show 2, the natural numbers N (see §2.4.1), and
the integers Z (see §2.4.2.4) are sets.

Lemma 2.3.4 ([Uni13], Lemma 3.3.2). Let P be a mere proposition, x0 : P , then

P ≃ 1. Thus any two mere propositions are equivalent.

Definition 2.3.5. A type A is called contractible if there is an element e : A (called

the center of contraction) such that a = x for every x : A.

Remark 2.3.6. Define the predicate

isContr(A) ≡
∑
a:A

∏
x:A

(a = x).

Topologically, this type can be pronounced as path-connected space since, by defi-

nition, it can be translated into the phrase “A contains an element such that every

other element of A equals to that one”. Hence, it is easy to see that isContr(A) is a

mere proposition for any type A.

The contractible types behave well like contractible spaces as expected.

Lemma 2.3.7 ([Uni13], Lemma 3.11.3). Let A be a type. The following are equiva-

lent:

1. A is contractible.
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2. A is equivalent to 1.

3. A is a mere proposition with an element a : A.

Corollary 2.3.8. isContr(A) is contractible iff A is contractible.

The following lemmas are important in the proof of fact π1(S
1) = Z (see §3.1).

Lemma 2.3.9 ([Uni13], Lemma 3.11.6, 3.11.8, 3.11.9). Let P : A → U be a type

family.

1. If P (a) is contractible for all a : A, then
∏

(x:A) P (x) is contractible.

2. If P (x) is contractible for all x, then
∑

(x:A) P (x) ≃ A.

3. If A is contractible with the center a, then
∑

(x:A) P (x) ≃ P (a).

4. For every type A and an element a : A, the type
∑

(x:A)(a = x) is contractible.

2.4 Inductive Types

Type X can be generated by some functions with codomain X. What is more, these

functions can generate points of the new type, as well as paths and higher paths

(e.g., n-homotopies). New types generated this way are called inductive types.

We should note that inductive types are freely generated by a certain collection of

functions; that is, elements in the inductive types are only obtained by repeatedly

applying the functions in the collection. For example, 2 in Example 2.1.14 is generated

by 0 and 1 (viewed as identity functions).

2.4.1 The Natural Numbers

The most important example of inductive types is the type of natural numbers,

denoted by N. It is generated by a base element 0 : N and a successor function

succ : N → N. If we adapt the usual notion, then 1 ≡ succ(0), 2 ≡ succ(2),

3 ≡ succ(2), and so on.

The inductor for N is given by

indN :
∏

C:N→U

C(0) →

(∏
x:N

C(x) → C(succ(x))

)
→
∏
x:N

C(x).

14



So any function f :
∏

(x:N)C(x) can be represented by

f(0) ≡ indN(C, f(0), f(succ(n)), 0),

f(succ(n)) ≡ indN(C, f(0), f(succ(n)), succ(n)).

We will adapt the usual notations ≤,≥,=, etc., in N for the rest of the paper.

The well-definedness of these notations is referred to §1.9, [Uni13].

2.4.2 Higher Inductive Types

Higher inductive types are a general schema of defining new types inductively. Com-

pared to inductive types, the collection of generating functions of higher inductive

types can generate not only points of the new type, but also paths and higher paths

of it. We will refer to functions in the collection generating points in the new type

as point constructors, and to paths and higher paths as path constructors and

higher path constructors. One should be warned that applying functions on the

path and higher path constructors is usually propositional, but not definitional.

2.4.2.1 The Intervals

A basic example of higher inductive types is the interval I. I is generated by

• two points 0I , 1I : I, and

• a path seg : 0I = 1I .

The induction principle of I is the following: given a type family P : I → U with

two points b0 : P (0I), b1 : P (1I), and a path s : b0 =P
seg b1, there exists a function

f :
∏

(x:I) P (x) such that f(0I) ≡ b0, f(1I) ≡ b1, and apdf (seg) = s.

As we would expect, I behaves like the unit interval in classical topology.

Lemma 2.4.1 ([Uni13], Lemma 6.3.1). I is contractible.

Lemma 2.4.2 ([Uni13], Lemma 6.3.2). Let f, g : A → B be two functions such that

f(x) = g(x) for every x : A. Then f = g.

Corollary 2.4.3. Let X : U with x : X. The type
∑

(f :I→X)(f(0I) = x) is con-

tractible.

Proof. I is contractible, so a = 0I for all a : I. Hence, f(a) = f(0I) is inhabited by

apf (seg) for every function f : I → X. By Lemma 2.4.2, if f, g are two functions in∑
(f :I→X)(f(0I) = x), then f = g. Therefore,

∑
(f :I→X)(f(0I) = x) is contractible. A

center of contraction can be obtained by the constant function.
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2.4.2.2 Circles and Spheres

Another examples of higher inductive types that we will consider throughout the

paper are the sphere types, denoted Sn. When n = 1, it is called a circle type.

S1 is generated by

• a point base : S1 and

• a path loop : base =S1 base.

Note that loop is not equal to reflbase (see Lemma 6.4.1, [Uni13]). Write u =P
p v

to denote transportP (p, u) = v. Given a type family P : S1 → U such that it has an

element b : P (base) and a path ℓ : b =P
loop b, there exists a function f :

∏
(x:S1) P (x)

such that f(base) ≡ b and apdf (loop) = ℓ. This is the induction principle for S1.

For n-sphere Sn, the generators are

• a point base : Sn and

• an n-loop loopn : Ωn(Sn, base).

However, in general, it is hard to describe the induction principle using this definition

because it involves higher paths. Thence we prefer the suspension in the next section.

2.4.2.3 Suspensions

Definition 2.4.4. The suspension of a type A is a new type ΣA generated by

• two points N,S : ΣA and

• a function merid : A→ (N =ΣA S).

The induction principle for suspensions can be described in the same way as for

S1. Given type family P : ΣA → U with two points n : P (N), s : P (S) and a path

m(a) : n =P
merid(a) s for each a : A, there exists a function f :

∏
(x:ΣA) P (x) such that

f(N) ≡ n, f(S) ≡ s and, f(merid(a)) = m(a). The advantage of this notion is the

following:

Lemma 2.4.5 ([Uni13], Lemma 6.5.1). Σ2 ≃ S1.

Denote S0 ≡ 2. Lemma 2.4.5 shows ΣS0 ≃ S1. This pattern continues: ΣSn−1 ≡
Sn. If we make the convention S−1 ≡ 0, then Σ0 ≃ 2. To see this definition agrees

with previous definition in §2.4.2.2, one is referred to Lemma 6.5.3, [Uni13].

Like in classical homotopy theory, we have an adjoint pair (Ω,Σ).
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Theorem 2.4.6 ([Uni13], Lemma 6.5.4). Let (A, a0) and (B, b0) be pointed types,

i.e. types with points specified. Then

Map∗(ΣA,B) ≃ Map∗(A,ΩB),

where Map∗(A,B) is the types of pointed functions (i.e. functions preserving the

basepoints) from (A, a0) to (B, b0),

Map∗(A,B) ≡
∑

f :A→B

(f(a0) = b0).

Corollary 2.4.7. For any type B, we have the following chain of equivalence:

Map∗(S
n, B) ≃ Map∗(S

n−1,ΩB) ≃ · · · ≃ Map∗(S
1,Ωn−1B) ≃ Map∗(2,Ω

nB) ≃ ΩnB.

2.4.2.4 Quotients

Definition 2.4.8. Let A be a set, R : A× A→ U be a family of mere propositions.

The set-quotient (or simply quotient) of A by R, denoted A/R, is the higher

inductive type generated by a function q : A→ A/R satisfying

• for every a, b : A with R(a, b), q(a) = q(b);

• for every x, y : A/R, r, s : x = y, we have r = s.

Usually, we demand R to have the equivalence relation. That is, the types∏
(a:A)R(a, a),

∏
(a,b:A)R(a, b) → R(b, a),

∏
(a,b,c:A)R(a, b) × R(b, c) → R(a, c) are in-

habited. The set-quotients behaves like quotient spaces in topology. For example,

one can check q is surjective ([Uni13], §6.10).

Example 2.4.9 (Integers). The type of integers Z can be defined as a set-quotient

Z ≡ N × N/ ∼,

where ∼ is the family of mere propositions ∼: N × N → U with ∼ (m,n) ≡ m − n.

One can check integers defined in this way hold the usual properties as expected.

2.4.2.5 Truncations

Definition 2.4.10. Let A : U . The 0-truncation of A, denoted ∥A∥0, is the higher

inductive type generated by a function ∥ − ∥0 : A→ ∥A∥0, such that p = q for every

x, y : ∥A∥0, p, q : x = y. So by definition, ∥A∥0 is a set for every type A.
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Lemma 2.4.11 ([Uni13], Lemma 6.9.2). For any set B and type A, we have the

equivalence

(∥A∥0 → B) ≃ (A→ B).

The definition of 0-truncation can be generalized to n-truncation in a way similar

to n-types (see §2.3). However, it is unwise to use this generalization since arguments

on higher paths increase as n does. Instead, we prefer the following construction.

Definition 2.4.12. Let A : U . For n ≥ −1, the n-truncation of A, denoted ∥A∥n,
is the higher inductive type generated by

• a function ∥ − ∥n : A→ ∥A∥n,

• a point (called hub) h(r) : ∥A∥n for each r : Sn+1 → ∥A∥n, and

• a path (called spoke) sr(x) : r(x) = h(r) for each r : Sn+1 → ∥A∥n and each

x : Sn+1.

Lemma 2.4.13 (Cumulativity, [Uni13], Theorem 7.3.15). Let A : U be a type. For

all n, k ≥ −1, k ≤ n, ∥ (∥A∥n) ∥k = ∥A∥k.

Truncations commute with the loop operator Ω.

Lemma 2.4.14 ([Uni13], Corollary 7.3.14). Let (A, a) be a pointed type, n ≥ −1,

k ≥ 0. Then

∥Ωk(A, a)∥n = Ωk∥(A, a)∥n+k.

The contractibility of n-truncation plays the role of n-connectedness in classical

homotopy theory. In particular,

Definition 2.4.15. The type A is n-connected if ∥A∥n is contractible.

Functions between n-connected types are defined via homotopy fibers.

Definition 2.4.16. Let f : X → Y with y0 : Y . The (homotopy) fiber of f at y0

is

fibf (y0) ≡

(∑
x:A

f(x) = y0

)
.

Example 2.4.17. Let f : A→ 1 be the constant map. Then fibf (∗) ≃ A.

Definition 2.4.18. f : A → B is n-connected if for all b : B, the type ∥fibf (b)∥n
is contractible. So “type A is n-connected” is equivalent to “the function A → 1 is

n-connected”.

Lemma 2.4.19 ([Uni13], Lemma 7.5.14). If f : A → B is n-connected, then it

induces an equivalence ∥A∥n ≃ ∥B∥n.
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Chapter 3

Basic Results in Homotopy Groups
of Spheres

As the name suggests, homotopy type theory has a natural connection with homotopy

theory. The approach toward homotopy theory via notions in the last chapter is called

synthetic. The algebraic structures on paths and higher paths are ensured by the ∞-

groupoid structure on types. Especially, we can define the monoids and groups by

Definition 3.0.1. A monoid is a set (see §2.1.3) G with

• a multiplication function m : G×G→ G, written (x, y) 7→ x · y, and

• a unit element e : G such that

1. for every x : G, x · e = x, e · x = x, and

2. for every x, y, z : G, x · (y · z) = (x · y) · z.

G is a group if G is a monoid with

• an inversion function i : G → G, written x 7→ x−1, such that for every x : G,

x · x−1 = e, x−1 · x = e.

Two examples of groups are (N,+, 0) and (N,×, 1). For any pointed type (A, a),

its loop spaces type has the desired form of being homotopy groups even though it

need not be a set. After 0-truncation, we can make (A, a) a well-defined group:

Definition 3.0.2. The n-th homotopy group of pointed type (A, a) is πn(A, a) ≡
∥Ωn(A, a)∥0. When n = 1, π1(A, a) ≡ ∥Ω(A, a)∥0 is called the fundamental group

of (A, a).
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The group structure on π1 is defined by the concatenation of paths as multiplica-

tion. Note πn(A, a) = π1(Ω
n−1(A, a)) for n ≥ 1. So πn has a group structure inherited

from π. Moreover, by Eckmann-Hilton theorem 2.2.2, πn(A, a) is abelian when n ≥ 2.

Our goal in this chapter is to study the algebraic properties of these homotopy

groups of spheres, as one of the central tasks of synthetic homotopy theory.

3.1 π1(S
1)

The study of the fundamental group of S1 is the first step.

Theorem 3.1.1 (Homotopy Groups of S1).

πn(S
1) =

{
Z , n = 1;

1 , n > 1.

n > 1 is easy. After we show Ω(S1) = Z, it is a set. So ∥Ωn(S1)∥0 = ∥Ωn−1(Ω(S1))∥0 =
∥Ωn−1(Z)∥0 is contractible, implying the result. It suffices to show Ω(S1) = Z. Recall

that in classical homotopy theory, our strategy is to lift any loop in the circle S1 to

its universal cover R. We can adapt this idea to a type-theoretic version as follows.

Step I: We define the “universal cover” of type S1 through the map code : S1 → U
with

• code(base) ≡ Z, and

• apcode(loop) = ua(succ), where ua is defined in §2.2.3.

It is simple to see transporting with code takes loop to the successor function.

That is,

Lemma 3.1.2. transportcode(loop, x) = x + 1, and transportcode(loop−1, x) =

x− 1.

Proof. By Lemma 2.2.5,

transportcode(loop, x) = transportid(code(loop), x)

= transportid(ua(succ), x)

= x+ 1.

The other equality follows in the same way.
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To describe the lifting, we introduce the notion

encode :
∏
x:S1

(base = x) → code(x)

with encode(p) ≡ transportcode(p, 0) for 0 : N and a path p. So “encode” lifts a

path to the universal cover.

Step II: By Lemma 8.1.12 in [Uni13], the type
∑

(x:S1) code(x) is contractible. Also by

Lemma 2.3.9 (4),
∑

(x:S1)(base = x) is contractible. So Lemma 2.3.7 implies

that
∑

(x:S1) code(x) ≃
∑

(x:S1)(base = x). Apply Theorem 2.2.10 to “encode”

fiberwise, we show that Ω(S1, base) = Z.

Thus, from the fact Ω(S1, base) = Z we conclude our proof for Theorem 3.1.1.

3.2 πk<n(S
n)

The suspension operation increases connectedness as expected.

Lemma 3.2.1 ([Uni13], Theorem 8.2.1). If A is n-connected, then ΣA is (n + 1)-

connected.

As a corollary, Sn is (n − 1)-connected for all n : N. This can be proved by

induction, together with Theorem 3.1.1 and Lemma 3.2.1. Therefore, we have the

following consequences:

Theorem 3.2.2 ([Uni13], Lemma 8.3.2). If A is n-connected, and a : A, then

πk(A, a) = 1 for all k ≤ n.

Combined with the fact that Sn is (n− 1)-connected, we deduce

Corollary 3.2.3. For all natural numbers k < n, πk(S
n) = 1.

3.3 Long Exact Sequences

Like in classical homotopy theory, we can define the long exact sequences of homotopy

groups in homotopy type theory.

Definition 3.3.1. Let A and B be sets and f : A→ B be a function. The image of

f , denoted im f , is the subset of B:

im f ≡ {b : B | f(a) = b for some a : A}.
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If A,B are pointed with basepoints a0, b0, and f is pointed function, then the kernel

of f , denoted ker f , is the subset of A:

ker f ≡ {x : A | f(x) = b0}.

Note that any group is a pointed set with its unit element as a basepoint. So it is

reasonable to call the pointed function between groups homomorphism.

Definition 3.3.2. An exact sequence of groups is a sequence of groups and homo-

morphisms

· · · → An+1
dn−→ An

dn−1−−−→ An−1 → · · ·

such that for every n, im dn = ker dn−1 as subsets.

As an example analogue to classical homotopy theory, the fiber sequence associ-

ated with f : X → Y induces a long exact sequence in homotopy groups. Before we

continue, we introduce the notion of fiber sequences.

Definition 3.3.3. The fiber sequence of pointed map f : X → Y is the infinite

sequence of pointed types and pointed maps

· · · fn+1−−→ Xn+1
fn−→ Xn

fn−1−−→ · · · f1−→ X1
f0−→ X0,

where each term is defined recursively by

X0 ≡ Y, X1 ≡ X, f0 ≡ f,

and

Xn+1 ≡ fibfn−1(an−1), fn ≡ pr1 : Xn+1 → Xn,

where an denoted the basepoint of Xn.

It is not hard to see fn−1 ◦ fn = 0 because each fi is the projection onto the first

factor. If we use the loop space operator Ω, and define Ωf : ΩX → ΩY on pointed

types (X, x0), (Y, y0) to be

(Ωf)(p) ≃ f−1
0 · f(p) · f0,

where f0 : f(x0) = y0, subject to refly0 = f−1
0 · f(reflx0 · f0) = (Ωf)(reflx0), then we

are able to show

22



Lemma 3.3.4 ([Uni13], Lemma 8.4.4). In Definition 3.3.3, the fiber sequence can be

written as

· · · Ω2f−−→ Ω2Y
−Ωf2−−−→ ΩF

−Ωf1−−−→ ΩX
−Ωf−−→ ΩY

f2−→ F
f1−→ X

f−→ Y,

where F ≡ fibf (y0), and negative signs mean composition with path inversion (−)−1.

Theorem 3.3.5 ([Uni13], Theorem 8.4.6). Let F → X
f−→ Y with y0 : Y , F ≡ fibf (y0)

be a slice of fiber sequence. It induces a long exact sequence of homotopy groups:

· · · → πk(F ) → πk(X) → πk(Y ) → · · ·

→ π1(F ) → π1(X) → π1(Y ) → π0(F ) → π0(X) → π0(Y ).

One should be warned that the last three terms are not groups, and the groups

are abelian only when k ≥ 2. An application of the long exact sequence is the Hopf

fibration.

Theorem 3.3.6 (Hopf fibration, [Uni13], Theorem 8.5.1). fibf (base) = S1 for f :

S3 → S2 with base : S2.

By Theorem 3.3.5, it induces a long exact sequence

· · · → πk(S
1) → πk(S

3) → πk(S
2) → · · ·

→ π1(S
1) → π1(S

3) → π1(S
2)

→ π0(S
1) → π0(S

3) → π0(S
2).

(1)

Since, by Corollary 3.2.3 and Theorem 3.1.1, πk(S
3) is trivial for k < 3, πk(S

2) is

trivial for k < 2, πk(S
1) is trivial for all k except for k = 1. We can simplify the long

exact sequence (1) to

· · · → 1→ πk(S
3) → πk(S

2) → · · ·

→ 1→ π3(S
3) → π3(S

2)

→ 1→ 1→ π2(S
2)

→ Z → 1→ 1→ 1.

(2)

Hence, we conclude

Corollary 3.3.7. πk(S
3) = πk(S

2) for all k ≥ 3, and π2(S
2) = Z.
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3.4 The Freudenthal Suspension Theorem

Theorem 3.4.1 (The Freudenthal suspension theorem, [Uni13], Theorem 8.6.4). Let

X be an n-connected and pointed type, n ≥ 0. Then the map σ : X → ΩΣX is

2n-connected.

The proof relies on the contractibility of a certain type family in the form similar

to “code” defined in §3.1. Applying Lemma 2.4.19, we obtain an equivalence:

Corollary 3.4.2. Let X be defined as in Theorem 3.4.1. Then ∥X∥2n = ∥ΩΣX∥2n.

The importance of this theorem lies in proving the stability of the homotopy group

of spheres:

Theorem 3.4.3. Let k ≤ 2n− 2, then πk+1(S
n+1) = πk(S

n).

Proof. By corollary 3.4.2 and the fact that Sn is (n− 1)-connected, ∥ΩΣ(Sn)∥2n−2 =

∥Sn∥2n−2. From Lemma 2.4.13, ∥ΩΣ(Sn)∥k = ∥Sn∥k for all k ≤ 2n− 2. We can now

compute

πk+1(S
n+1) = ∥Ωk+1(Sn+1)∥0 = ∥Ωk

(
Ω(Sn+1)

)
∥0

= ∥Ωk (ΩΣ(Sn)) ∥0
= Ωk (∥ΩΣ(Sn)∥k) (by Lemma 2.4.14)

= Ωk (∥Sn∥k)

= ∥Ωk(Sn)∥0 = πk(S
n).

As the first corollary, we are able to show by applying Theorem 3.4.3 to Corollary

3.3.7,

Theorem 3.4.4. πn(S
n) = π2(S

2) = Z for all n ≥ 1.

Thus, again by Corollary 3.3.7, we compute

Corollary 3.4.5. π3(S
2) = Z.
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Chapter 4

Spectral Sequences in Homotopy
Type Theory

The computational methods in Chapter 3 are crucial in homotopy theory, but they

are insufficient in many situations, for example, π4(S
3). Guillaume [Bru16] showed in

his doctoral thesis that π4(S
3) = Z/2 by applying the Gysin sequence to the fibration

of CP2 defined by Hopf construction and then finding the Hopf invariant of the Hopf

map S3 → S2. In general, it is very hard to decide on a homotopy group of spheres.

More handy tools are needed, and spectral sequences are one of them.

Spectral sequences are a generalization of long exact sequences, and become a

powerful tool in the computation of homotopy groups. Relating cohomologies and

homologies, they provide a much clearer schema of calculation that we can get a

hand on. This chapter will give a basic construction of the Serre spectral sequences

for cohomology. The main references for this chapter are Floris van Doorn in his

doctoral thesis [vD18] and Mike Shulman in his post [Shu13].

The first task is to set up the cohomology theories. However, unlike in classical

homotopy theory, where cohomology theories can be acquired via singular cohomolo-

gies, we cannot construct similar objects in HoTT. This is because taking the singular

cochains requires the triangulation of the underlying topological space, which is not

invariant under homotopy equivalence. Instead, we adopt the idea of Brown repre-

sentability to define the (reduced) cohomology theories directly.
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4.1 Cohomology

Definition 4.1.1. Define the predicate is-n-type : U → U for n ≥ −2 by recursion

as follows:

is-n-type(X) ≡

{
isContr(X) , n = −2

is-n′-type(X) , n = n′ + 1

If is-n-type(X) is inhabited, then We say X is an n-type, or X is n-truncated.

Lemma 4.1.2 ([Uni13], Corollary 7.1.5). If X ≃ Y and X is an n-type, then so is

Y .

Lemma 4.1.3 ([Uni13], Theorem 7.1.7). If X is n-truncated, then it is (n + 1)-

truncated for each n ≥ −2.

The core of defining a cohomology theory is the Eilenberg-MacLane spaces

K(G, n), where G is a group and n : N. The concrete construction of this higher

inductive type can be found in §3 and §5 in [LF14]. We only focus on the following

facts.

Fact 4.1.4 ([LF14], §5). Let K(G, n) be a Eilenberg-MacLane space, where G is a

group and n : N. Then

1. K(G, n) ≡ ∥ΣK(G, n)∥n+1 for n ≥ 1 and G abelian;

2. K(G, n) is the unique n-truncated pointed typeX with πn(X) = G and πk(X) =

0 for k ̸= n;

3. K(G, n) = ΩK(G, n+ 1);

4. K(Z, 1) = S1.

Definition 4.1.5. The n-th (unreduced) cohomology of a type X with coef-

ficients in an abelian group G is the type

Hn(X;G) ≡ ∥X → K(G, n)∥0.

If X is pointed, then n-th reduced cohomology of a type X with coefficients

in an abelian group G is the type

H̃n(X;G) ≡ ∥X →∗ K(G, n)∥0,

where →∗ denotes the pointed function.
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Remark 4.1.6. A map X → K(G, n) can be seen as a pointed map X+1→ K(G, n),

where X + 1 is the coproduct of X and the unit type 1, pointed by inr(∗) for ∗ : 1.

Therefore, Hn(X;G) ≃ H̃n(X +1;G). Elements of the latter one can be regarded as

elements of the former one by forgetting the basepoint.

Theorem 4.1.7 (Cohomology of the Unit Type). H̃k(1;Z) = 1 for all k ≥ 0.

Proof. We have

H̃k(1;Z) ≡ ∥1→∗ K(Z, k)∥0.

From Corollary 2.4.3, the right hand side is contractible.

Theorem 4.1.8 (Cohomology of Spheres). Let n ≥ 1. We have H̃k(Sn;Z) = Z for

k ≡ n, and trivial otherwise.

Proof. From Corollary 2.4.7, we deduce that

πn(X) ≡ ∥Ωn(X)∥0 ≃ ∥Sn →∗ X∥0.

So by definition, we have

H̃k(Sn;Z) ≡ ∥Sn →∗ K(Z, k)∥0 = πn(K(Z, k)).

From Fact 4.1.4, this equals Z only if n = k, and 0 otherwise.

Corollary 4.1.9. Let n ≥ 1. We have

Hk(Sn;Z) =

{
Z , k = 0, n;

1 , otherwise.

Specially, Hk(Sn;Z) = Z only when k = 0, and trivial otherwise.

The group and the ring structures ofHn(X;G) come from the respective structures

on K(G, n). The readers are referred to Definition 5.1.5 and 5.1.6 in [Bru16]. We

always assume the group and the ring structures on cohomology are established from

now on. For simplicity, we write Hn(X) for Hn(X;G) when G ≡ Z, and similarly for

reduced cohomology. The cohomology theory can be generalized to a functor with

the target being the spectra, see §5.3 in [vD18]. However, we will only focus on the

special case when the spectrum is the Eilenberg-MacLane spectrum.

As a last reminder, the cohomology in Definition 4.1.5 satisfies the Eilenberg-

Steenrod axiom for cohomology. This was proved by Evan Cavallo in his Master’s

thesis. See [Cav15].
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4.2 Spectra

The coefficients of cohomology in abelian groups can be generalized to be in spectra.

Definition 4.2.1. A prespectrum (Y, s) is a pair consisting of a pointed type family

Y : Z → U∗ and a family of pointed structure maps s :
∏

(n:Z) Yn →∗ ΩYn+1. If

s(n) (sometimes written as sn) is a pointed equivalence for all n : Z, we call the

prespectrum (Y, s) an spectrum. We denote the (pre)spectrum simply by Y if the

structure maps are clear from the context.

Equivalently, by Theorem 2.4.6, we can define the pointed structure maps as

s :
∏

(n:Z) ΣYn →∗ Yn+1.

Definition 4.2.2. A map between (pre)spectra (Y, s) → (Y ′, s′) is a pair con-

sisting of f :
∏

(n:Z) Yn →∗ Y
′
n and p :

∏
(n:Z)Ωs

′(n) ◦ f(n) →∗ Ωf(n+ 1) ◦ s(n).

From now on, we will assume any (pre)spectrum we take is always a spectrum.

Example 4.2.3. The most commonly used spectrum is the Eilenberg-MacLane

spectrum. Let A be an abelian group. The Eilenberg-MacLane spectrum HA is

defined by (HA)n ≡ K(A, n) with pointed structure maps s :
∏

(n:Z)(HA)n →∗

Ω(HA)n+1 for n ≥ 0. In particular, we let (HA)0 ≡ K(A, 0) ≡ A pointed at the unit

0 : A. For n < 0, we define (HA)n ≡ 1.

Example 4.2.4 (Function Spectra). Let (X, s), (Y, r) be two spectra. The function

spectrum of (X, s) and (Y, r), denoted by F (X, Y ), is the type Map∗(X, Y ), with

F (X, Y )n ≡ (Xn → Yn). The structure maps are chosen to be compatible with the

structure maps sn and rn.

Example 4.2.5 (Dependent Spectra). Let X be a pointed type and Y be a function

on X sending each x : X to a spectrum Y x. We define the spectrum
∏

(x:X)(x→∗ Y x)

by
(∏

(x:X)(x→∗ Y x)
)
n
≡
∏

(x:X)(x→∗ (Y x)n). If Y does not depend onX, we write

X →∗ Y . These spectra are well-defined, since we have

Ω
∏
x:X

(x→∗ Y x) ≃
∗∏
x:X

(x→∗ Ω(Y x)) .

If X is not pointed, we can similarly define the dependent spectrum
∏

(x:X)(x→ Y x)

by
(∏

(x:X)(x→ Y x)
)
n
≡
∏

(x:X) x → (Y x)n. If Y does not depend on X, we write

X → Y . Again, by similar reason we can show that these spectra are well-defined.
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Let Y be a spectrum. The n-th homotopy group of Y is defined to be

πn(Y ) ≡ π2(Y2−n).

Definition 4.2.6. Let X : U∗ be a pointed type and Y be a dependent spectrum.

Then the n-th generalized reduced cohomology of X with coefficients in Y

is the type

H̃n(X;λx.Y x) ≡ π−n

(∏
x:X

(x→∗ Y x)

)
≃

∥∥∥∥∥∏
x:X

(x→∗ (Y x)n)

∥∥∥∥∥
0

.

If Y does not depend on X, then

H̃n(X;Y ) ≡ π−n(X →∗ Y ) ≃ ∥X →∗ Yn∥0.

If X is not pointed, the n-th generalized (unreduced) cohomology of X with

coefficients in Y is the type

Hn(X;λx.Y x) ≡ π−n

(∏
x:X

(x→ Y x)

)
≃

∥∥∥∥∥∏
x:X

(x→ (Y x)n)

∥∥∥∥∥
0

.

Similarly, when Y does not depend on X,

Hn(X;Y ) ≃ ∥X → Yn∥0

In particular, taking Y ≡ HZ, we obtain the usual cohomology in Definition 4.1.5.

Remark 4.2.7. The generalized reduced and unreduced cohomology can be connected

similar to Remark 4.1.6. Namely,

Hn(X;λx.Y x) ≃ H̃n(X + 1;λx.Y+x),

where Y+ is Y with domain replaced by X + 1. In particular, Y+(inl(x)) ≡ Y x and

Y+(inr(∗)) ≡ 1, where ∗ : 1.

Another motivation for spectra is defining homology. While defining cohomology

can be relatively straightforward, defining homology, on the other hand, needs to

take extra effort since we do not have an accessible version of homological Brown

representability. However, by the language of spectra, we can easily define homology

groups of the type X with coefficients in the (pre)spectrum Y as the stable homotopy

groups of X ∧ Y , the smash product of X and Y (see [CS20]). We will not discuss

them in this paper.
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4.3 Exact Couples

A spectral sequence can be thought of as a book in that each page is a two-dimensional

array of abelian groups. On each page, there are collections of (co)chain complexes

and maps between them. The maps forming (co)chain complexes are called the dif-

ferentials. The (co)homology of the (co)chain complexes formed by the differentials

determine the groups on the next pages.

Formally, each page of a spectral sequence is known as a bigraded abelian group.

We will follow Floris’ method [vD18] to give a nonstandard definition that is equiva-

lent to the standard one.

Definition 4.3.1. Let G be an abelian group with unit 0. A G-graded abelian

group M is a family of abelian groups {Mx} indexed over G. Let M,M ′ be two G-

graded abelian groups. The type of (graded abelian group) homomorphism from

M toM ′ is a triple (e, p, q), where e : G ≃ G is an equivalence of types called a degree,

p :
∑

(g:G) (e(g) = g + e(0)), and q :
∑

(x,y:G)

∏
(p:e(x)=y)(Mx → My

′). We denote the

type of homomorphisms from M to M ′ as M → M ′, and write degϕ ≡ pr1(e, p, q)

for ϕ ≡ (e, p, q) : M → M ′. Call degϕ(0) the degree of ϕ. For x : I, where I is an

arbitrary subset of G, we write

ϕx ≡ ϕreflx :Mx →M ′
degϕ(x)

,

and

ϕ[x] ≡ ϕpx :Mdeg−1
ϕ (x) →M ′

x.

The maps ϕx and ϕ[x] are used to describe the maps at each index. The advantage

of this definition can be seen in the composition of two graded homomorphisms ϕ :

M → M ′ and ψ : M ′ → M ′′. Traditionally, if we want to make the pointwise

composite λ(g : G).λ(m : Mg).ψg+h(ϕg(m)), we need to transport along the equality

(g + h) + k = g + (h + k) to get a graded homomorphism of degree h + k. In our

setting, we can avoid any transport by directly taking the composite of two degrees

degψ ◦ degϕ. Note that we have degψ◦ϕ = degψ ◦ degϕ following from the property

of projection maps. However, we must point out that sometimes the transport is

inevitable, such as considering the homology (see Remark 5.1.2, [vD18]). But we can

be relieved since it will not occur in this paper.

Definition 4.3.2. A spectral sequence consists of the following data:

1. A sequence Er of abelian groups graded over Z × Z for r ≥ 2. Er is called the

r-page of the spectral sequence;
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2. differentials, which are graded homomorphisms dr : Er → Er such that dr ◦
dr = 0. At (p, q) : Z × Z, dp,qr : Ep,q

r → Ep+r,q−r+1
r ;

3. isomorphisms αp,qr : Hp,q(Er) ≃ Ep,q
r+1, whereH

p,q(Er) = ker(dp,qr )/im (dp−r,q+r−1
r )

is the cohomology of the cochain complex determined by dr.

The degree of the differential dr is defined to be (r, 1− r).

We start counting the pages at 2 because the first page of the Serre spectral

sequence that we will introduce in §4.4 will not be homotopy invariant.

Like in classical homotopy theory, the term (Er, dr) in the spectral sequence will

determines Er+1, but not dr+1. One way to iterate this construction is through the

(derived) exact couples.

Definition 4.3.3. An exact couple is a pair (D,E) of Z×Z-graded abelian groups

with graded homomorphisms i, j, k that is exact in all three vertices:

D D

E

i

jk

That is, for all p : degj(x) = y and q : degk(y) = z, ker(kq) = im (jp). Similar for the

other two pairs of maps. Write ı ≡ degi, ȷ ≡ degj, and κ ≡ degk for the degrees.

Lemma 4.3.4 (Lemma 5.2.2, [vD18]). Let (D,E, i, j, k) be an exact couple. Then we

can define a new exact couple, called derived exact couple (D′, E ′, i′, j′, k′), from

(D,E, i, j, k):

D′ D′

E ′

i′

j′k′

where E ′ is the homology of d ≡ j ◦ k : E → E. The degrees of the derived maps

satisfy degi′ ≡ ı, degj′ ≡ ȷ ◦ ı−1, and degk′ ≡ κ.

Repeating the process in Lemma 4.3.4, we obtain a sequence of exact couples

(Dr, Er, ir, jr, kr). They constitute into a spectral sequence (Er, dr), where dr ≡ jr◦kr.
Note that we have degir ≡ ı, degjr ≡ ȷ ◦ ı−r, degkr ≡ κ, and degdr = degjr ◦ degkr ≡
ȷ ◦ ı−r ◦ κ.

It is easy to see that if Ep,q
2 in the spectral sequence (Er, dr) is trivial, then E

p,q
r

is trivial for all r ≥ 2. This is a special case when the spectral sequence converges.

Formally, for a fixed pair (p, q) : Z × Z, a spectral sequence (Er, dr) converges if
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Ep,q
r will be constant for r large enough. In this case, we write Ep,q

∞ for the stable (or

eventual) value of Ep,q
r . The first number n such that Ep,q

n = Ep,q
∞ is called the stable

term of (Er, dr).

The spectral sequence obtained from exact couples with extra conditions can be

convergent. To see how, we need the following notation.

Definition 4.3.5. An exact couple is bounded if for every x : Z × Z, there is a

bound Bx : N such that for all s ≥ Bx, we have Eı−s(x) and Dıs(x) = 1. We call x a

stable index whenever iı
−s(x) is surjective for all s ≥ 0.

Lemma 4.3.6 ([vD18], Lemma 5.2.5). For a bounded exact couple (D,E, i, j, k), we

have for all sufficiently large r that Dx
r+1 = Dx

r and Ex
r+1 = Ex

r , where x : Z × Z is a

stable index.

We end this section by introducing a notation used in classical homotopy theory.

Definition 4.3.7. Let D be an abelian group, and {En} be a finite sequence of

abelian group. We say D is built from {En} if there is a sequence of abelian groups

{Dn} and a short exact sequence for each k ≥ 1:

Ek → Dk → Dk+1,

with D0 ≡ D and Dm+1 ≡ 1 for some m : N. The sequence {Dn} is called a

cofiltration of D.

Definition 4.3.8. Let Dn be a graded abelian group and Cp,q be a bigraded abelian

group. We write

Ep,q
2 = Cp,q ⇒ Dp+q

if there is a spectral sequence E such that

• Ep,q
2 = Cp,q;

• E converges to E∞;

• Dn is built from Ep,q
∞ for p+ q = n.
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4.4 Serre Spectral Sequences for Cohomology

A famous example of spectral sequences is the Serre spectral sequences for co-

homology. It is a special case of the Atiyah-Hirzebruch spectral sequence. We will

mention the latter and prove the Serre spectral sequences with it. For detail, We refer

the readers to §5.4 in [vD18].

Definition 4.4.1. Let Y be a spectrum and k : Z, k ≥ −2. We say Y is k-truncated

if Yn is (k + n)-truncated for all n : Z.

For instance, the Eilenberg-MacLane spectrum HA for A an abelian group is

always k-truncated for k ≥ −2. We are now ready to state the Atiyah-Hirzebruch

spectral sequence.

Theorem 4.4.2 (Atiyah-Hirzebruch Spectral Sequence for Reduced Cohomology).

Let X : U∗ be a pointed type and Y be a function sending each point x : X to spectra

Y x. Suppose each spectrum Y x is k-truncated, then we get a spectral sequence with

Ep,q
2 = H̃p(X;λx.π−q(Y x)) ⇒ H̃p+q(X;λx.Y x).

Proof. See Theorem 5.4.10, [vD18].

The unreduced version of the Atiyah-Hirzebruch Spectral Sequence can be ob-

tained by applying the preceding theorem to the function Y+ in Remark 4.2.7.

Corollary 4.4.3 (Atiyah-Hirzebruch Spectral Sequence for Cohomology). Same set-

tings as in Theorem 4.4.2. We get a spectral sequence with

Ep,q
2 = Hp(X;λx.π−q(Y x)) ⇒ Hp+q(X;λx.Y x).

Theorem 4.4.4 (Generalized Serre Spectral Sequence for Cohomology). Let B : U
be a type and F : B → U be a type family. Suppose Y is a k-truncated spectrum.

Then

Ep,q
2 = Hp(B;λb.Hq(Fb;Y )) ⇒ Hp+q

(∏
b:B

(b× Fb);Y

)
.

Proof. Apply the Atiyah-Hirzebruch spectral sequence for cohomology to the type B

and the function λb.Fb → Y , whose codomains are k-truncated by assumption. We

obtain a spectral sequence with E2-page, by definition, being

Ep,q
2 = Hp(B;λb.π−q(Fb→ Y )) = Hp(B;λb.Hq(Fb;Y )),
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which converges to

Hp+q(B;λb.Fb→ Y ) = π−(p+q)

(∏
b:B

b→ Fb→ Y

)

= π−(p+q)

(∏
b:B

(b× Fb) → Y

)

= Hp+q

(∏
b:B

(b× Fb);Y

)
.

Take Y ≡ HZ. If we let B be a simply-connected space, i.e. ∥B∥1 is contractible,
then λb.Hq(Fb;Y ) ≡ Hq(Fb0;Y ) for some b0 : B since F : B → U is constant

by Corollary 2.4.3. Let F ≡ fibf (b0) be the fiber of f at b0, where f : X → B

with f(x) = b0 for some pointed type (X, x). Geometrically, f can be regarded as

a bundle with total space X, base space B, and fiber F . It is not hard to see that

X ≃
∏

(b:B)(b×Fb). We now get the classical Serre spectral sequence for cohomology

as follows:

Theorem 4.4.5 (Serre Spectral Sequence for Cohomology). Let X,B : U∗ be pointed

types with b0 : B and x : X, and F ≡ fibf (b0) be the fiber of f at b0, where f : X → B

with f(x) = b0. Suppose B is simply-connected. Then we have a spectral sequence

with

Ep,q
2 = Hp(B;Hq(F )) ⇒ Hp+q(X).

4.5 Applications of Serre Spectral Sequences

4.5.1 Cohomology of K(Z, 2)

The first application of Serre spectral sequence 4.4.5 is the computation ofH∗(K(Z, 2))

and H∗(K(Z, 3)). Consider the path fibration over a pointed type (X, x),

ΩX → PX → X,

where PX ≡ Map∗(I,X) is the path space of X, and (I, 0I) is the pointed identity

type. By Corollary 2.4.3, PX is contractible. We can substitute PX by 1 in the path

fibration. Now apply Theorem 4.4.5 to the path fibration, we get

Ep,q
2 = Hp(X;Hq(ΩX)) ⇒ Hp+q(1).
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By Corollary 4.1.9, Hp+q(1) = Z when p + q = 0, and is trivial otherwise. Now

let X ≡ K(Z, 2). Then ΩX ≡ ΩK(Z, 2) = K(Z, 1) = S1. By Corollary 4.1.9,

Hq(ΩX) = Hq(S1) = Z when q = 0 or 1, and is trivial otherwise. The E2-page of the

corresponding spectral sequence is

Figure 4.5.1: E2-page of K(Z, 2).

0 1 2 3 4

0

1

H0(X)

H0(X)

H1(X)

H1(X)

H2(X)

H2(X)

H3(X)

H3(X)

H4(X)

H4(X)

The functions coming out of H3(X), H4(X), and so on are omitted in the figure.

The differentials in the subsequent pages are obviously trivial. So E3 = E4 = · · · =
E∞. Since the E∞-page have only one Z at the entry (0, 0), namely

Figure 4.5.2: E∞-page of K(Z, 2).

0 1 2 3 4

0

1

Z

1

1

1

1

1

1

1

1

1

Note that there is no function with source or target being H0(X) or H1X in

the E2-page. So both E0,0
2 and E1,0

2 survive, while other terms are killed by the

differentials d2. Thence, E0,0
∞ = Z = H0(X) and E1,0

∞ = 1 = H1(X). Going back to

Figure 4.5.1, H2(X) is killed by H0(X) → H2(X), implying H2(X) = H0(X) = Z.

Similarly, H1(X) = H3(X) = 1. This yields

Hk(X) =

{
Z , when k is even;

1 , when k is odd.
(∗)

This is the desired result of the cohomology of K(Z, 2).

4.5.2 Cohomology of ΩSn

Another calculation that can be useful to prove πk(S
n−1) = πk+1(S

n) is the cohomol-

ogy of ΩSn for n > 1.
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Theorem 4.5.1. Let n > 1. Then

Hk(ΩSn) =

{
Z , k = 0 or (n− 1) | k;
1 , otherwise.

Proof. Applying the Serre spectral sequence to the path fibration

ΩSn → 1→ Sn,

we obtain

Ep,q
2 = Hp(Sn;Hq(ΩSn)) ⇒ Hp+q(1).

By Corollary 4.1.9, Hp+q(1) = Z when p + q = 0, and is trivial otherwise. The

E∞-page is basically similar to the one shown in Figure 4.5.1. For E2-page, the term

Hp(Sn;Hq(ΩSn)) can only be nontrivial when p = 0 or n by Theorem 4.1.8. In that

case, Hp(Sn;Hq(ΩSn)) = Hq(ΩSn). So the E2-page looks like

Figure 4.5.3: E2-page of ΩSn.

0

1

2

3

0 n

H0(ΩSn) H0(ΩSn)

H1(ΩSn) H1(ΩSn)

H2(ΩSn) H2(ΩSn)

H3(ΩSn) H3(ΩSn)

The entries (p, q) for 0 < p < n are all trivial groups. There is no nontrivial

differential existing on the E2-page since the target of d2 must be trivial. Thus, every

term survives to the next page. On the E3-page, things are similar: no nontrivial

differential exists, and every term survives to the next page. Repeat this process, we

find that nontrivial differentials exist on the En-page, and E2 = E3 = · · · = En. Now

we have
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Figure 4.5.4: En-page of ΩSn.

0 n

0

...

n− 1

n

...

2n− 1

H0(ΩSn) H0(ΩSn)

...
...

Hn−1(ΩSn) Hn−1(ΩSn)

Hn(ΩSn) Hn(ΩSn)

...
...

H2n−1(ΩSn)

From the results on E∞-page, H0(ΩSn) = Z, and Hk(ΩSn) = 1 for 1 < k < n−1.

H0(ΩSn) at (n, 0)-entry of En-page will die on E∞-page, so it must be killed by the

differential d0,nn : Hn−1(ΩSn) → H0(ΩSn), implying Hn−1(ΩSn) = H0(ΩSn) = Z.

Similarly, we show Hk+n−1(ΩSn) = Hk(ΩSn) for all k ≥ 0. Therefore, we prove the

desired result.

4.6 Comments on πn+1(S
n)

The cohomology of K(Z, 2) and ΩSn are two important ingredients in the proof of

the following theorem.

Theorem 4.6.1. π4(S
3) = π5(S

4) = · · · = πn+1(S
n) = Z/2Z.

This theorem can be divided into two parts:

Lemma 4.6.2. πk+1(S
n) = πk(S

n−1) for n ≥ 3 and k ≤ 2n− 4.

Lemma 4.6.3. π4(S
3) = Z/2Z.

The sketch of proof of Lemma 4.6.3 goes as follows: consider the fibrationK(Z, 2) →
1 → K(Z, 3). Note by Theorem 4.1.8 Z = H3(S3) = ∥S3 → K(Z, 3)∥0. We can

choose f : ∥S3 → K(Z, 3)∥0, which is again a function from S3 to K(Z, 3). Pull back
1 the fibration via f to get a new fibration

K(Z, 2) → X → S3,

1See §4, [AKL15]
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where X is an unknown space. Apply Theorem 3.3.5 to the new fibration, we get

· · · → 1→ πk(X) → πk(S
3) → · · ·

→ 1→ π3(X) → π3(S
3)

→ π2(K(Z, 2)) → π2(X) → 1

Since π3(S
3) = π2(K(Z, 2)) = Z, π3(X) = 1. We obtain

πk(X) =

{
πk(S

3) , k > 3;

1 , k ≤ 3.

It suffices to calculate π4(X). While we have fewer tools in homotopy, we are fa-

miliar with cohomology. The first step is to turn the homotopy into homology. J.

Daniel Christensen and Luis Scoccola [CS20] have developed the Hurewicz theorem

in homotopy type theorem:

Theorem 4.6.4 (Christensen & Scoccola, 2020). For n ≥ 1, X a pointed, (n − 1)-

connected type. and A an abelian group, there is a natural isomorphism

πn(X)ab ⊗ A ≃ H̃n(X;A),

where πn(X)ab is the abelianization of πn(X).

By Hurewicz theorem, π4(X) = H4(X), where Hk(X) is the “homology” of X.

Now applying the Serre spectral sequence to the fibration K(Z, 2) → X → S3, we

can easily find out the cohomology of X. Finally, by a homotopy type theoretical

“universal coefficient theorem”, we can relate the cohomology of X to the homology

of X and then get the desired result. To generalize, we use the “universal coefficient

theorem” again to get the homology of ΩSn from the calculation of Hn(ΩSn). Then

follow the proof of Theorem 6.2 in [Max18] to get Lemma 4.6.2. Theorem 4.6.1 follows

immediately from Lemma 4.6.2 and 4.6.3.

There are two severe problems with this approach:

• Definition of homology.

Same as cohomology, we cannot use the complexes to define the homology since

it is not homotopy invariant. Luckily, like the generalized cohomology theory,

we can define homology in the language of spectra. Given a pointed type X

and a (pre)spectrum (Y, s), we can form a new (pre)spectrum X ∧Y , called the

smash product of X and Y . It is given by (X ∧Y )n ≡ X ∧Yn, with structure

maps

sn : Σ(X ∧ Y )n ≡ X ∧ ΣYn
id∧sn−−−→ X ∧ Yn+1 ≡ (X ∧ Y )n+1.
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The homology of X with coefficients in Y is then defined to be H(X;Y ) ≡
πsn(X ∧ Y ), where πsn(Y ) is the n-th stable homotopy groups of Y . Christensen

and Scoccola have provided a concrete construction of this object. See [CS20].

The definitions and properties of smash products can be found in §4.3, [vD18].
Another reference is §4, [Bru16].

• Universal coefficient theorem (UCT).

In classical cohomology theory, we have the universal coefficient theorem mea-

suring the isomorphism between cohomology and homology with the error term

described by Ext group. However, there is no analog in homotopy type theory

for now. The homotopy type theoretical UCT has not even been formularized.

The difficulty lies in the definition and algebraic property of homology. Never-

theless, there is still a brunch of hints on this issue. One is the way in stable

homotopy theory. Suggested by Peter May’s EKMM [EKMM97], we can define

the n-th Ext group of spectra M,N to be

ExtnS(M,N) ≡ π−n (FS(M,N)) ,

where FS(M,N) is the function spectrum (see Example 4.2.4) with coefficients

in S, and S is the sphere spectrum with Sn = Sn and obvious structure maps.

UCT can then be stated as follows:

Theorem 4.6.5 (Universal Coefficient Theorem).

Ep,q
2 = Extp,qS∗ (M∗, N∗) ⇒ Extp+qS (M,N),

where (−)∗ denotes the dual of (−), i.e. Map∗(−, S).

This version of UCT can be proved by the generalized Atiyah-Hirzebruch spec-

tral sequence, see Chapter IV.3, [EKMM97]. Substituting M,N by Eilenberg-

MacLane spectra, we ought to obtain the UCT in the usual form.

Constructing the homology and proving the UCT in HoTT will be tricky, and

getting usable results might take extra work in reformulating or weakening some

notions. Yet, with these established, we can give the proof to Theorem 4.6.1 and

calculate more homotopy groups in HoTT. Moreover, it is likely a HoTT version of

stable homotopy theory can be formalized in the framework.
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Chapter 5

Conclusion

In this dissertation, we reviewed the basics of HoTT, and used this constructive lan-

guage to study the homotopy theory, notably the homotopy groups of spheres. We

have shown the formalization of cohomology theory in HoTT, and constructed the

Atiyah-Hirzebruch and the Serre spectral sequences via the language of spectra. As

in classical homotopy theory, we would expect more spectral sequences formalized,

like Adams spectral sequences. The formal language of stable homotopy theory can

be established with these tools in hand. A computer-checkable theory of modern

homotopy theory can then be put on the agenda. However, there are many obstacles

along the way. First is the universal coefficient in HoTT, as discussed in §4.6. Since
the usual constructions in cell structures of topological spaces are no longer available,

it is likely that we need to start from the algebraic structures on spectra. So a sym-

metric monoidal functor may be needed in the type of spectra. This is where different

models like orthogonal spectra, symmetric spectra, or S-modules got involved. An

alternative is to connect the HoTT with ∞-category theory. All of these approaches

take much effort. But with time and faith, it is believed that a modern homotopy the-

ory can be built from HoTT. Afterward, with the development of computer science,

we may expect a “proof assistant” to calculations in homotopy theory.
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