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3 Meeting September 19th, 2024
The ∞-category of spaces

Speaker: Mats

Today we will be looking at the ∞-category of spaces. We also want to talk about functors between ∞-categories,
mapping spaces, how to identify constructions as examples of ∞-categories. Ultimately, it will hopefully give us a
tower of abstractions to climb.
Motivation: The ∞-category of spaces is an analogus construction to the category of sets in the world of 1-categories.

Let us recall some properties of the category Set:

1. They have free cocompletion of a singleton.

2. The morphism of any two objects in a locally small 1-category take value in Set.

3. There is a standard Yoneda embedding for functors from a locally small category C into Set.

3.1 Functors of ∞-Category
We first need to make sense a notion of functor between ∞-categories.

Definition 3.1. Let C,D be ∞-categories, a functor of ∞-categories is a morphism of simplicial sets (ie. it is
a natural transformation between the two functors compatible with the face maps di and the degeneracy maps
si).

Definition 3.2. Let K be a simplicial set and C an ∞-category. We define a new simplicial set Fun(K, C)
concretely as follows:

• Fun(K,C)n = HomsSet(K ×∆n, C).

• The face and degeneracy maps are induced by

di : ∆n−1 → ∆n and si : ∆n → ∆n+1.

Note that this is an internal hom adjunction in sSet.

Fun(K, C) is called the ∞-category of functors from K to C.

Theorem 3.3. Let K be a simplicial set and C an ∞-category, the simplicial set Fun(K, C) is an ∞-category.

Proof. We will use the lifting property of maps of simplicial sets. One wants to show that there is a solution to the
following lifting problem.

∆n
i Fun(K,C)

∆n
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The usual way one approach these kind of lifting problems is to apply adjunctions in a smart way. Using the internal
hom adjunction, this is equivalent indeed to

Λn
i ×K C

∆n ×K

We can augment this to a diagram of the form

Λn
i ×K C

∆n ×K ∆0

where we note the morphism C → ∆0 is necessarily unique.

We pause the proof to introduce a definition in the middle.

Definition 3.4. A map f : X → Y is called an inner fibration if it satisfies the right lifting property with
respect to all hom inclusions. In other words, we have a lift of the form

Λn
i X

∆n Y

f

Hence, we see that the proof amounts to showing that the map C → ∆0 is an inner fibration. The proof of this is in fact
not categorical at all but is rather an extremely combinatorial proof. The proof follows from the fact that Fun(−,K)
preserves inner fibrations if and only if the claim of maps having the left lifting property (LLP) wr.t. the inner fibrations
are closed under ×K. ■

Remark 3.5. It turns out that C is an ∞-category if and only if C → ∆0 is an inner fibration.
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3.2 Mapping Spaces
Motivation: When C is a 1-category and d, c ∈ Obj(C). We can consider the pull back of the form

morphisms in C

HomC(c, d) Fun([1], C)

⌋

Λ0 C × C

terminal 1-category

(0,1),return source and target

(c,d)

This guides the definition of simplicial set of morphisms for ∞-categories.

Let us now recall the following proposition.

Proposition 3.6. For any simplicial set C, the following are equivalent:

1. C is a Kan complex.

2. C is an ∞-groupoid.

We will obtain that the simplicial set of morphisms will be an (∞, 0)-category (ie. a ∞-groupoid).

Definition 3.7. Let C be an ∞-catgeory, and c, d ∈ Obj(C). We define the mapping space as the pullback

MapC(c, d) Fun(∆1, c)

⌋

∆0 Fun(∂∆1, c)
(c,d)

Note that ∂∆n has two properties:

1. Fun(∂∆1, c) are pair of objects.

2. Fun(∂∆1, c) = c× c.

Here ∆0 is a single point and ∆0 → Fun(∂∆n, c) goes to the pair (c, d).

MapC(c, d) ocnsists of morphisms from c to d that restrict to c and d at the boundary of ∆1.

Theorem 3.8. For C an ∞-category and c, d ∈ Ob(C), MapC(c, d) is a Kan complex, and hence an ∞-groupoid
by the proposition.
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Proof. One can show that
Fun(∆1, c) Fun(∂∆1, c)

is an inner fibration that is stable under pullback. From here, we can deduce that the map MapC(c, d) → ∆0 is a
“conservative” inner fibration. In particular, this implies that it satisfies the filling condition, and it implies that it is a
Kan complex. ■

3.3 The ∞-category of Spaces
Construction: Take some integer 0 ≤ i ≤ j where i, j ∈ N0. From here we define

Pi,j = {I ⊆ {i, ..., j} | min(I) = i and max(I) = j}.

Pi,j itself has a partial order given by inclusion.

Definition 3.9. From here we define the simplicial category C[∆n] given by

1. Objects are the numbers 0, 1, ..., n

2. The morphisms are simplicial Hom Sets of the form

HomC[∆k](i, j) = N(Pi,j)

Here, N(Pi,j) is the nerve of the poset Pi,j .

3. Compositions are given by the union.

Example 3.10. When n = 0, C[∆0] is the terminimal simplicial category that has one simple object 0 and
singleton simplicial mapping space.

When n = 1, C[∆1] has objects 0, 1 and all the simplicial mapping spaces are again trivial (empty or
singletons).

The interesting case occurs when n = 2. In this case, C[∆2] has three objects 0, 1, 2. The non-trivial simplicial
hom-set is N(P0,2). There are two elements in P0,2 here, {0, 2} ⊆ {0, 1, 2}.

It turns out this construction is in fact functorial in n. Hence, we can define a simplicial set of spaces Spc as the
following.

Definition 3.11. A simplicial set of spaces Spc is given by the simplicial set

• Spcn = homsCat(C[∆n],Kan) where Kan stand for the category of Kan complexes with simplicial
hom sets.

• Note that this can be equivalently written as HomsSet(∆
n,Spc).

Remark 3.12. The construction of Spc is an example of what is called a homotopy coherent nerve construc-
tion, which is a construction given to any simplicial category C.

Example 3.13. We note that the 0-simplicies of Spc are exactly the objects of Kan. The 1-simplicies are
the maps of Kan complexes. The 2-simplicies are in bijection with maps of Kan complexes f : X → Y ,
g : Y → Z, and h : X → Z together with a homotopy g ◦ f ≃ h.


