3 Meeting September 19th, 2024

The ∞-category of spaces

Speaker: Mats

Today we will be looking at the ∞ -category of spaces. We also want to talk about functors between ∞ -categories, mapping spaces, how to identify constructions as examples of ∞ -categories. Ultimately, it will hopefully give us a tower of abstractions to climb.

Motivation: The ∞ -category of spaces is an analogus construction to the category of sets in the world of 1-categories.

Let us recall some properties of the category Set:

- 1. They have free cocompletion of a singleton.
- 2. The morphism of any two objects in a locally small 1-category take value in Set.
- 3. There is a standard Yoneda embedding for functors from a locally small category $\mathcal C$ into Set.

3.1 Functors of ∞ -Category

We first need to make sense a notion of functor between ∞ -categories.

Definition 3.1. Let C, D be ∞-categories, a functor of ∞-categories is a morphism of simplicial sets (ie. it is a natural transformation between the two functors compatible with the face maps d_i and the degeneracy maps s_i).

Definition 3.2. Let K be a simplicial set and C an ∞ -category. We define a new simplicial set Fun (K, \mathcal{C}) concretely as follows:

- Fun $(K, C)_n = \text{Hom}_{sSet}(K \times \Delta^n, C).$
- The face and degeneracy maps are induced by

$$
d^i:\Delta^{n-1}\to \Delta^n \text{ and } s^i:\Delta^n\to \Delta^{n+1}.
$$

Note that this is an internal hom adjunction in sSet.

Fun(K, C) is called the ∞ -category of functors from K to C.

Theorem 3.3. Let K be a simplicial set and C an ∞ -category, the simplicial set Fun (K, C) is an ∞ -category.

Proof. We will use the lifting property of maps of simplicial sets. One wants to show that there is a solution to the following lifting problem.

The usual way one approach these kind of lifting problems is to apply adjunctions in a smart way. Using the internal hom adjunction, this is equivalent indeed to

We can augment this to a diagram of the form

where we note the morphism $C \to \Delta^0$ is necessarily unique.

We pause the proof to introduce a definition in the middle.

Definition 3.4. A map $f: X \to Y$ is called an **inner fibration** if it satisfies the right lifting property with respect to all hom inclusions. In other words, we have a lift of the form

Hence, we see that the proof amounts to showing that the map $C\to\Delta^0$ is an inner fibration. The proof of this is in fact not categorical at all but is rather an extremely combinatorial proof. The proof follows from the fact that Fun(−, K) preserves inner fibrations if and only if the claim of maps having the left lifting property (LLP) wr.t. the inner fibrations are closed under $_{\times} K$.

Remark 3.5. It turns out that C is an ∞ -category if and only if $C \to \Delta^0$ is an inner fibration.

3.2 Mapping Spaces

Motivation: When C is a 1-category and $d, c \in Obj(\mathcal{C})$. We can consider the pull back of the form

morphisms in C

terminal 1-category

This guides the definition of simplicial set of morphisms for ∞ -categories.

Let us now recall the following proposition.

Proposition 3.6. For any simplicial set C , the following are equivalent:

- 1. C is a Kan complex.
- 2. $\mathcal C$ is an ∞ -groupoid.

We will obtain that the simplicial set of morphisms will be an $(\infty, 0)$ -category (ie. a ∞ -groupoid).

Definition 3.7. Let C be an ∞ -catgeory, and $c, d \in Obj(\mathcal{C})$. We define the **mapping space** as the pullback

Note that $\partial \Delta^n$ has two properties:

- 1. Fun($\partial \Delta^1$, c) are pair of objects.
- 2. Fun $(\partial \Delta^1, c) = c \times c$.

Here Δ^0 is a single point and $\Delta^0 \to \text{Fun}(\partial \Delta^n, c)$ goes to the pair (c, d) .

 $\mathrm{Map}_{\mathcal{C}}(c, d)$ ocnsists of morphisms from c to d that restrict to c and d at the boundary of Δ^1 .

Theorem 3.8. For C an ∞ -category and $c, d \in Ob(C)$, $\text{Map}_{\mathcal{C}}(c, d)$ is a Kan complex, and hence an ∞ -groupoid by the proposition.

Proof. One can show that

 $\text{Fun}(\Delta^1, c) \longrightarrow \text{Fun}(\partial \Delta^1, c)$

is an inner fibration that is stable under pullback. From here, we can deduce that the map $\text{Map}_{\mathcal{C}}(c, d) \to \Delta^0$ is a "conservative" inner fibration. In particular, this implies that it satisfies the filling condition, and it implies that it is a \blacksquare Kan complex.

3.3 The ∞ -category of Spaces

Construction: Take some integer $0 \le i \le j$ where $i, j \in \mathbb{N}_0$. From here we define

 $P_{i,j} = \{I \subseteq \{i, ..., j\} \mid \min(I) = i \text{ and } \max(I) = j\}.$

 $P_{i,j}$ itself has a partial order given by inclusion.

Definition 3.9. From here we define the simplicial category $C[\Delta^n]$ given by

- 1. Objects are the numbers $0, 1, ..., n$
- 2. The morphisms are simplicial Hom Sets of the form

$$
\operatorname{Hom}_{C[\Delta^k]}(i,j) = N(P_{i,j})
$$

Here, $N(P_{i,j})$ is the nerve of the poset $P_{i,j}$.

3. Compositions are given by the union.

Example 3.10. When $n = 0$, $C[\Delta^0]$ is the terminimal simplicial category that has one simple object 0 and singleton simplicial mapping space.

When $n = 1$, $C[\Delta^1]$ has objects 0, 1 and all the simplicial mapping spaces are again trivial (empty or singletons).

The interesting case occurs when $n = 2$. In this case, $C[\Delta^2]$ has three objects 0, 1, 2. The non-trivial simplicial hom-set is $N(P_{0,2})$. There are two elements in $P_{0,2}$ here, $\{0,2\} \subseteq \{0,1,2\}$.

It turns out this construction is in fact functorial in n . Hence, we can define a **simplicial set of spaces** Spc as the following.

Definition 3.11. A simplicial set of spaces Spc is given by the simplicial set

- $\text{Spc}_n = \text{hom}_{sCat}(C[\Delta^n], \text{Kan})$ where Kan stand for the category of Kan complexes with simplicial hom sets.
- Note that this can be equivalently written as $\text{Hom}_{sSet}(\Delta^n, \text{Spc})$.

Remark 3.12. The construction of Spc is an example of what is called a homotopy coherent nerve construction, which is a construction given to any simplicial category C .

Example 3.13. We note that the 0-simplicies of Spc are exactly the objects of Kan. The 1-simplicies are the maps of Kan complexes. The 2-simplicies are in bijection with maps of Kan complexes $f : X \to Y$, $g: Y \to Z$, and $h: X \to Z$ together with a homotopy $g \circ f \simeq h$.