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Today we will be talking about limits, colimits, and adjunctions in the setting of∞-categories. Let us first establish
some terminologies for this lecture:

1. C will denote an∞-catgeory.

2. For a, b ∈ obj(C), we denote the mapping space MapC(a, b)

3. We use I ∈ sSet to denote an indexing diagram - this will be used later to index limits (For the purposes of this
talk, we say sSet is a small category).

4. CI = Fun(I → C) is the functor category from I to C.

4.1 Limits

Definition 4.1. A cone of a functor F consists of a pair (y, η), where η : cy → F is a natural transformation
from cy to F . Here cy descends as the map

cy : I → ∆0 →y C

and is the constant functor. From here we can define a map MapC(x, y)→MapCI (cx, F ) as the composition
of

MapC(x, y) MapCI (cx, cy) MapCI (cx, F )c η∗

Definition 4.2. The cone (y, η) is a limit cone if the map MapC(x, y) → MapCI (cx, F ) specified previously
is a homotopy equivalence. In this case, we call y the limit of F . We write this notationally as

y = lim
I

F = lim
i∈I

F (i).

Proposition 4.3. If we plug in N(I) and N(C) (nerves of 1-categories), then the previous definition are recov-
ers the ordinary 1-limits.

Example 4.4. Here are some common examples for limits:

1. In the specific case where I = ∅, then Fun(I, C) = pt. In this case, y is a limit if for all x

MapC(x, y) ≃ ⋆

In this case, we call y the terminal object.

2. Suppose I is a discrete set, ie. I is the disjoint union of some collection of points. Write the elements of
F (I) as F (i) for each i ∈ I . Then, we observe that

Fun(I, C) =
∏
I

C,

where the right hand side are taken as products in sSet. y ∈ C is a limit to this diagram if there is a
homotopy equivalence

MapC(x, y)→
∏
i∈I

MapC(x, F (i)).
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Proposition 4.5. One can check that

MapC(x,
∏
i∈I

F (i)) ≃
∏
i∈I

MapC(x, F (i)).

Hence y ∈ C is a limit to the discrete diagram is we have the equivalence

MapC(x, y) ≃ MapC(x,
∏
i∈I

F (i))

From here we can conclude that y ≃
∏

i∈I F (i).

The definition of limit in∞-categories, as expected, are also unique.

Proposition 4.6. If y, y′ are limits to the same F , then they are equivalent.

Remark 4.7 (Quick Divergence by Nir Gadish). We have that

• Maps(∆2, C) is the space of all composites in C. This is intuitively the idea of a homotopy:

•

h

• •

gf

g◦f

• Maps(∆1, C)×Maps(∆1, C) is the space of composable morphisms.

• There is a canonica homomotopy equivalence

Maps(∆2, C)→ Maps(∆1, C)×Maps(∆1, C)

• This is in fact a homotopy equivalence of Kan complexes, so we can get a section s back

Maps(∆2, C)← Maps(∆1, C)×Maps(∆1, C)

Theorem 4.8. The full subcategory spanned by limits in the functor category (this is sometiems called the sSet
of limits) is either empty or contractible (ie. trivial).

The last example of a limit we want to talk about is the pullback. This actually acts differently than how they are
typically in 1-categories.

Example 4.9. Suppose we have the diagram I being

0

0′ 1
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In this case Fun(I, C) are diagrams of the form

b

c d

h

k

Let b×d c denote the limit of this diagram. This is called the pullback.

Lemma 4.10. A map a ∈ obj(C) 7→ b×d c is equivalent to the data of

i : a→ b, j : a→ k

so that we have the homotopy equivalence h ◦ i ≃ k ◦ j (diagram commutes up to homotopy).

Theorem 4.11. Taking limits commute with mapping spaces, ie. there is a homotopy equivalence of the form

MapC(x, limi F (i)) ≃ lim
i

MapC(x, F (i)).

Proof. This is a corollary of a deeper theorem (that we will not prove) that there is an equivalence between

(y, η) ⇐⇒ (yc(y), yc(η)).

■

4.2 Colimits
The discussions for the colimits are a lot shorter.

Definition 4.12. For any∞-category C, there is a canonical notion of an opposite∞-category Cop. The colimit
of C is the limit in the Cop. There is a correspondence

{colimitsF : I → C} = {limF op : Iop → Cop}.

Dually to the notion of a terminal object, we can define an initial object as the colimit over the empty set. Pushouts
are dual to the pullbacks.

4.3 Adjunction
Let f : C → D, g : D → C be functors respectively. They have an adjunction if there is a pair of natural transforma-
tions (sometimes aptly called unit maps)

η : idC → gf, E : fg → idD
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such that the following diagrams hold up to homotopy

f f g g

fgf gfg

Fun(C,D) Fun(D, C)

id

η E

id

η E

Theorem 4.13. An adjunction gives rise to a homotopy equivalence of spaces

MapD(f(c), d) M⊣√
C
(gf(c), g(d))

MapC(c, g(d))

g

η∗

for all c ∈ C and d ∈ D.

Example 4.14. We have the following two examples of adjunctions.

Kan QCat

inc

(−)≃

spc Cat∞

inc

(−)≃

Example 4.15. Consider the category C to Fun(BG,C). The left adjoints are the homotopy orbits, and the
right adjoints are the homotopy fixed points.

Theorem 4.16 (Fundamental Theorem of Adjoint Functors). Left adjoints preserve colimits, and right adjoints
preserve limits.


