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5.1 Definition of Stable∞-categories
Today we will be talking about the stable∞-categories. Most of what we are talking about is a mix of Maximillen’s
notes, Gallagher’s, and Lurie’s higher algebra (with an emphasis on the last source). We will concretely investigate
two specific examples of them:

1. The∞-category of Spectra.

2. Derived categories.

Note that while we could form a derived category for any abelian category, the general construction of a “stable”
derived category is very general.

Definition 5.1. An ∞-category C is pointed if there exists an object 0 that is both initial and final. This just
means that

HomC(0, X) ≃ ∗ ≃ HomC(X, 0)

for all objects X ∈ obj(C).

Remark 5.2. We remark that C is pointed if and only if there exists an initial object ∅, a final point ∗, and a
one-morphism ∗ → ∅. These conditions imply the ∅ agrees with ∗ already.

Definition 5.3. Let C be a pointed∞-category, a triangle is a square ∆1 ×∆1 → C of the form

X Y

0 Z

f

g

Here 0 is the initial and final object.

1. A triangle is a fiber (resp. cofiber) sequence if it is a pullback (resp. pushout). Note that Maximilien
Péroux calls this exact and coexact instead.

2. Let g : X → Y be a morphism, a kernel/fiber of g is a fiber sequence of the form

W X

0 Y

g

3. Let g : X → Y be a morphism, a cokernel/cofiber of g is a cofiber sequence of the form

X Y

0 W

g
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Now we are ready to definition a stable∞-category.

Definition 5.4. A pointed∞-category C is stable if it satisfies the following 2 conditions

1. For every morphism g : X → Y , its fibers and cofibers exist.

2. Every triangle has the property that - it is a fiber sequence if and only if it is a cofiber sequence.

We can regard this definition as a sort of generalization of triangulated categories. The motivation behind why we
want to look at stable ∞-categories because triangulated categories requires sort of a choice rather than an intrinsic
property that stable∞-categories offer.

5.2 Spectra

Definition 5.5. A spectrum E is a collection of pointed spaces (En)n≥0 with structure maps

ΣEn → En+1

There is also a morphism of spectra from E → E′ given by En → E′
n for all n that respects structure maps.

Definition 5.6. There is also a notion of Ω-spectrum where we require that the adjoints of the structure maps
are weak equivalences.

Example 5.7. Let X be a pointed space, the suspension spectrum Σ∞X given by Σ∞Xn = ΣnX , and the
morphisms of the structure maps are the identity. A specific example of the suspension spectrum is the sphere
spectrum S when we take X = S0.

There is a suitable notion of homotopy groups of a spectrum.

Definition 5.8. Let E be a spectrum, we define

πn(E) := colimk πn+k(Ek).

In the specific case where E is the sphere spectrum S, πn(S) is exactly the n-th stable homotopy group of spheres.

Example 5.9. Here is another example of spectrum. Let G be an abelian group, we can form the Eilenberg-
Maclane spectrum HG where HGn = K(G,n). There is a canonical weak equivalence given by

K(G,n) ≃ ΩK(G,n+ 1),

which gives the structure map in suspension. Taking the homotopy groups of HG gives the singular homology
is coefficient G.

There is a remarkable theorem that relates spectra to cohomology theories.

Theorem 5.10 (Brown Representability). There is a correspondence between Ω-spectra and cohomology the-
ories.
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Definition 5.11. A weak equivalence of spectra E and E′ is a morphsim f : E → E′ that induces isomorphism
on all of their homotopy groups. SH is the localization of (Spectra) by weak equivalence.

5.3 Loop Space and Suspension
We can define a suitable notion of suspension and loop functor in pointed∞-categories.

Definition 5.12. Let C be a pointed∞-category. Let MΣ (resp. MΩ) to be the full subcategory of squares that
look like the following

X 0

0′ X ′

such that the square is a pushout (resp. pullback). Here 0, 0′ are zero objects.

We have the following theorem that is not at all easy.

Theorem 5.13. Assume that fibers and cofibers all exist. Then, there exists a trivial Kan fibration MΣ → C
with section s : C →MΣ. Let e : MΣ → C return the object X ′ - the bottomr right corner of the square. From
here we define the suspension functor as

Σ = e ◦ s.

We can similarly define ΩX . From here, we get the squares:

ΩX 0 X 0

0 X 0 ΣX

Lemma 5.14 (Loop-Suspension Adjunction). Σ is left adjoint to Ω. Furthermore, when C is stable, the functors
Σ,Ω gives an equivalence.

We have talked about spectra and stable∞-categories. Now we will try to relate the two.

Definition 5.15. If c ∈ obj(C) is some final object, we can define C∗ the∞-category of pointed objects to be
the full subcategory with morphisms of the form c→ d.

Definition 5.16 (Stabilization). We define Sp(C) as the limit of the sequence

C∗ C∗ C∗ ...Ω Ω

In the specific case when C = Spc, we call Sp(Spc) the stable∞-category of spectra.

Proposition 5.17. If C has finite limits, then Sp(C) is stable.
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5.4 Derived Category
The construction Sp(•) gives a lot of ways to construct stable∞-categories. We will look at another major example
in the world of derived categories. The general results that motivate this construction is as follows:

Theorem 5.18. Let C be a stable∞-category, then its homotopy category hC has the structure of a triangulated
category.

Let us clarify some terminologies first.

Definition 5.19 (Additive Category). An additive category C is a category equipped with the following addi-
tional data...

• For A,B ∈ C, MorC(A,B) is given the structure of an abelian group.

satisfying...

1. Composition distributes over addition, ie.

(f + g) ◦ h = (f ◦ h) + (g ◦ h) and f ◦ (g + h) = (f ◦ g) + (f ◦ h)

2. C has a zero object, meaning that it is both the initial and final object.

3. C has finite products.

An additive category is called abelian if...

4. kernels and cokernels exist. In the sense that if we have a morphism φ : A → B, the cokernel of this
morphism coker(φ),

A B

0 coker(φ)

K

φ

∃!

Similarly for kernel, ie. they are pushouts or pullbacks.

K

ker(φ) 0

A B

∃!

φ

5. Every monomorphism is the kernel of its cokernel. In the sense that for a monomorphism φ : A → B,
consider the map A→ B → coker(φ), then the kernel of this morphism B → coker(φ) is (A,φ).

6. Every epimorphism is the cokernel of its kernel.

Definition 5.20. An additive category C is triangulated if we have

1. A morphism T : X ∈ obj(C)→ X given by X 7→ X[1].
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2. A collection of distinguished triangles of the form

X Y Z X[1]
f g h

such that they satisfy some axioms which we omit for this talk.

A sad fact about triangulated categories is that they are generally very hard to work with.

Remark 5.21. For the stable∞-category C, it has the structure of a triangulated category if we take T to be
the suspension functor.

There is a general procedure to produce a derived category of abelian category, which will be examples of triangulated
categories.

Definition 5.22. Let A be an abelian category. We say that A “has enough projectives” (or injectives) if every
object admits a projective (or injective) resolution.

Remark 5.23. Let A be an abelian category with enough projectives (or injectives). We can produce a category
D±(A) as a stable∞-category such that its homotopy category hD±(A) is the usual derived category.

Definition 5.24. Let K be a commutative ring with unity, a dg-category C (roughly speaking) consists of

1. Obj(C) - object class

2. For all objects X and Y , HomC(X,Y ) are the chain complexes of K-modules with a notion of tensor
product and composition.

We can do this over any ring, but in the specific case where K = Z is the ring of integers, we have the following
construction.

Definition 5.25 (dg Nerve). Let C be a dg category and n ≥ 0, we can (roughly speaking) define Ndg(C)n to
be set of pairs of the form

({Xi}ni=0, {fI})

such that

1. Xi is an object in C for all i.

2. For all I = {i− < in < ... < i1 < i+} ⊆ [n], fI ∈ Hom(Xi− , Xi+)m satisfying

dfI =

m∑
i=0

(−1)j(...)

where ... is some combinatorial arrangement.

Example 5.26. In the dg Nevre construction, the 0-simplex are the objects, and 1-simplex are degree 0 mor-
phisms f : X → Y with df = 0, and so on.
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Lemma 5.27. We have the following:

1. Ndg(C) is an∞-category.

2. Let A be an additive category, the category Ch(A) of chain complexes on A is a dg-category.

Definition 5.28. Let A be an additive category. We define Ch−(A) as the category of chain complexes where
Mn = 0 for n << 0. We similarly define Ch+(A) as the category of chain complexes where Mn = 0 for
n >> 0.

Definition 5.29 (∞-Derived Categories). Let A be an abelian category with enough injectives (resp. projec-
tives), we can define D+(A) (resp. D−(A)) as the dg-nerve of Ch+(Ainj) (resp. Ch−(Aproj)).

It turns out that both categories are stable∞-categories, which follows from the following general fact in Lurie.

Proposition 5.30. Let A be an additive category, then Ndg(Ch(A)) is stable.


