5 Meeting October 10th, 2024

Topic: Stable ∞ -categories **Speaker:** Colton

5.1 Definition of Stable ∞ -categories

Today we will be talking about the stable ∞ -categories. Most of what we are talking about is a mix of Maximillen's notes, Gallagher's, and Lurie's higher algebra (with an emphasis on the last source). We will concretely investigate two specific examples of them:

- 1. The ∞ -category of Spectra.
- 2. Derived categories.

Note that while we could form a derived category for any abelian category, the general construction of a "stable" derived category is very general.

Definition 5.1. An ∞ -category C is pointed if there exists an object 0 that is both initial and final. This just means that

$$\operatorname{Hom}_{\mathcal{C}}(0,X) \simeq * \simeq \operatorname{Hom}_{\mathcal{C}}(X,0)$$

for all objects $X \in obj(\mathcal{C})$.

Remark 5.2. We remark that C is pointed if and only if there exists an initial object \emptyset , a final point *, and a one-morphism $* \to \emptyset$. These conditions imply the \emptyset agrees with * already.

Definition 5.3. Let \mathcal{C} be a pointed ∞ -category, a **triangle** is a square $\Delta^1 \times \Delta^1 \to \mathcal{C}$ of the form

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ \downarrow & & \downarrow^{g} \\ 0 & \longrightarrow & Z \end{array}$$

Here 0 is the initial and final object.

- 1. A triangle is a fiber (resp. cofiber) sequence if it is a pullback (resp. pushout). Note that Maximilien Péroux calls this exact and coexact instead.
- 2. Let $g: X \to Y$ be a morphism, a kernel/fiber of g is a fiber sequence of the form

3. Let $g: X \to Y$ be a morphism, a cokernel/cofiber of g is a cofiber sequence of the form

Now we are ready to definition a stable ∞ -category.

Definition 5.4. A pointed ∞ -category C is stable if it satisfies the following 2 conditions

- 1. For every morphism $g: X \to Y$, its fibers and cofibers exist.
- 2. Every triangle has the property that it is a fiber sequence if and only if it is a cofiber sequence.

We can regard this definition as a sort of generalization of triangulated categories. The motivation behind why we want to look at stable ∞ -categories because triangulated categories requires sort of a choice rather than an intrinsic property that stable ∞ -categories offer.

5.2 Spectra

Definition 5.5. A spectrum E is a collection of pointed spaces $(E_n)_{n>0}$ with structure maps

 $\Sigma E_n \to E_{n+1}$

There is also a morphism of spectra from $E \to E'$ given by $E_n \to E'_n$ for all n that respects structure maps.

Definition 5.6. There is also a notion of Ω -spectrum where we require that the adjoints of the structure maps are weak equivalences.

Example 5.7. Let X be a pointed space, the suspension spectrum $\Sigma^{\infty} X$ given by $\Sigma^{\infty} X_n = \Sigma^n X$, and the morphisms of the structure maps are the identity. A specific example of the suspension spectrum is the sphere spectrum \mathbb{S} when we take $X = S^0$.

There is a suitable notion of homotopy groups of a spectrum.

Definition 5.8. Let *E* be a spectrum, we define

$$\pi_n(E) \coloneqq \operatorname{colim}_k \pi_{n+k}(E_k).$$

In the specific case where E is the sphere spectrum \mathbb{S} , $\pi_n(\mathbb{S})$ is exactly the n-th stable homotopy group of spheres.

Example 5.9. Here is another example of spectrum. Let G be an abelian group, we can form the Eilenberg-Maclane spectrum HG where $HG_n = K(G, n)$. There is a canonical weak equivalence given by

$$K(G,n) \simeq \Omega K(G,n+1),$$

which gives the structure map in suspension. Taking the homotopy groups of HG gives the singular homology is coefficient G.

There is a remarkable theorem that relates spectra to cohomology theories.

Theorem 5.10 (Brown Representability). There is a correspondence between Ω -spectra and cohomology theories.

Definition 5.11. A weak equivalence of spectra E and E' is a morphsim $f : E \to E'$ that induces isomorphism on all of their homotopy groups. SH is the localization of (Spectra) by weak equivalence.

5.3 Loop Space and Suspension

We can define a suitable notion of suspension and loop functor in pointed ∞ -categories.

Definition 5.12. Let C be a pointed ∞ -category. Let M^{Σ} (resp. M^{Ω}) to be the full subcategory of squares that look like the following

such that the square is a pushout (resp. pullback). Here 0, 0' are zero objects.

We have the following theorem that is not at all easy.

Theorem 5.13. Assume that fibers and cofibers all exist. Then, there exists a trivial Kan fibration $M^{\Sigma} \to C$ with section $s : C \to M^{\Sigma}$. Let $e : M^{\Sigma} \to C$ return the object X' - the bottomr right corner of the square. From here we define the suspension functor as

$$\Sigma=e\circ s.$$

We can similarly define ΩX . From here, we get the squares:

Lemma 5.14 (Loop-Suspension Adjunction). Σ is left adjoint to Ω . Furthermore, when C is stable, the functors Σ , Ω gives an equivalence.

We have talked about spectra and stable ∞ -categories. Now we will try to relate the two.

Definition 5.15. If $c \in obj(\mathcal{C})$ is some final object, we can define \mathcal{C}_* the ∞ -category of pointed objects to be the full subcategory with morphisms of the form $c \to d$.

Definition 5.16 (Stabilization). We define $Sp(\mathcal{C})$ as the limit of the sequence

 $\mathcal{C}_* \xleftarrow{\Omega} \mathcal{C}_* \xleftarrow{\Omega} \mathcal{C}_* \xleftarrow{\Omega} \dots$

In the specific case when $\mathcal{C} = \operatorname{Spc}$, we call $\operatorname{Sp}(\operatorname{Spc})$ the stable ∞ -category of spectra.

Proposition 5.17. If C has finite limits, then Sp(C) is stable.

5.4 Derived Category

The construction $Sp(\bullet)$ gives a lot of ways to construct stable ∞ -categories. We will look at another major example in the world of derived categories. The general results that motivate this construction is as follows:

Theorem 5.18. Let C be a stable ∞ -category, then its homotopy category hC has the structure of a triangulated category.

Let us clarify some terminologies first.

Definition 5.19 (Additive Category). An **additive** category C is a category equipped with the following additional data...

• For $A, B \in \mathcal{C}$, $Mor_{\mathcal{C}}(A, B)$ is given the structure of an abelian group.

satisfying ...

1. Composition distributes over addition, ie.

$$(f+g) \circ h = (f \circ h) + (g \circ h)$$
 and $f \circ (g+h) = (f \circ g) + (f \circ h)$

- 2. C has a zero object, meaning that it is both the initial and final object.
- 3. C has finite products.

An additive category is called abelian if...

4. kernels and cokernels exist. In the sense that if we have a morphism $\varphi : A \to B$, the cokernel of this morphism $\operatorname{coker}(\varphi)$,

Similarly for kernel, ie. they are pushouts or pullbacks.

- 5. Every monomorphism is the kernel of its cokernel. In the sense that for a monomorphism $\varphi : A \to B$, consider the map $A \to B \to \operatorname{coker}(\varphi)$, then the kernel of this morphism $B \to \operatorname{coker}(\varphi)$ is (A, φ) .
- 6. Every epimorphism is the cokernel of its kernel.

Definition 5.20. An additive category C is **triangulated** if we have

1. A morphism $T: X \in obj(\mathcal{C}) \to X$ given by $X \mapsto X[1]$.

2. A collection of distinguished triangles of the form

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$$

such that they satisfy some axioms which we omit for this talk.

A sad fact about triangulated categories is that they are generally very hard to work with.

Remark 5.21. For the stable ∞ -category C, it has the structure of a triangulated category if we take T to be the suspension functor.

There is a general procedure to produce a derived category of abelian category, which will be examples of triangulated categories.

Definition 5.22. Let A be an abelian category. We say that A "has enough projectives" (or injectives) if every object admits a projective (or injective) resolution.

Remark 5.23. Let A be an abelian category with enough projectives (or injectives). We can produce a category $D^{\pm}(A)$ as a stable ∞ -category such that its homotopy category $hD^{\pm}(A)$ is the usual derived category.

Definition 5.24. Let K be a commutative ring with unity, a dg-category C (roughly speaking) consists of

- 1. $Obj(\mathcal{C})$ object class
- 2. For all objects X and Y, $Hom_{\mathcal{C}}(X, Y)$ are the chain complexes of K-modules with a notion of tensor product and composition.

We can do this over any ring, but in the specific case where $K = \mathbb{Z}$ is the ring of integers, we have the following construction.

Definition 5.25 (dg Nerve). Let C be a dg category and $n \ge 0$, we can (roughly speaking) define $N_{dg}(C)_n$ to be set of pairs of the form

$$({X_i}_{i=0}^n, {f_I})$$

such that

- 1. X_i is an object in C for all i.
- 2. For all $I = \{i_{-} < i_{n} < ... < i_{1} < i_{+}\} \subseteq [n], f_{I} \in \text{Hom}(X_{i_{-}}, X_{i_{+}})_{m}$ satisfying

$$df_I = \sum_{i=0}^m (-1)^j (...)$$

where ... is some combinatorial arrangement.

Example 5.26. In the dg Nevre construction, the 0-simplex are the objects, and 1-simplex are degree 0 morphisms $f: X \to Y$ with df = 0, and so on.

Lemma 5.27. We have the following:

1. $N_{dq}(\mathcal{C})$ is an ∞ -category.

2. Let A be an additive category, the category Ch(A) of chain complexes on A is a dg-category.

Definition 5.28. Let A be an additive category. We define $Ch^{-}(A)$ as the category of chain complexes where $M_n = 0$ for $n \ll 0$. We similarly define $Ch^{+}(A)$ as the category of chain complexes where $M_n = 0$ for $n \gg 0$.

Definition 5.29 (∞ -Derived Categories). Let A be an abelian category with enough injectives (resp. projectives), we can define $D^+(A)$ (resp. $D^-(A)$) as the dg-nerve of $\operatorname{Ch}^+(A_{inj})$ (resp. $\operatorname{Ch}^-(A_{proj})$).

It turns out that both categories are stable ∞ -categories, which follows from the following general fact in Lurie.

Proposition 5.30. Let A be an additive category, then $N_{dg}(Ch(A))$ is stable.