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A natural question to ask for the title is.

Question 6.1. What is a presentable∞-categories? Why do we need a presentable∞-category?

Most of the talk today will be devoted to defining this category. The intuition is that a presentable category should
satisfy the notion of:

1. The simplest kind of categories are small categories, but most categories are not small.

2. The idea of a presentable category is - although it is not small, it should be “generated” by some small subcate-
gories.

There are some interests in why we need presentable∞-categories too! For instance,

• Presentable∞-categories are more tractable and hence easier to study.

• Another motivation came from the universal characterization of K-theory (by BGT). The construction utilized
some additive/localizing invariants in Catex∞ → D where we required D to go into some presentable∞-category

Catex∞ → D ↪→ presentable∞-category

• There is a recent development called continuous K-theory which is a functor

K : {dualizable presentable∞-categories} → Sp

which extends the standard functor we have

K : Catsmall → Sp .

• Adjoint functor theorem.

• There is a correspondence between presentable∞-categories and combinatorial model categories.

6.1 Cocompletion and Ind-completion
To discuss the construction, we will first talk about cocompletion and ind-completion. For an ordinary category C, it
need not be cocomplete (meaning that it admits all small colimits). There is, however, a very natural way to produce
a cocompletion of C (it can be thought of as an analog of free group).

Theorem 6.2. The free cocompletion of C is the presheaf category of C, ie.

P(C) = Fun(Cop, Set).

The fully-faithful embedding of C in P(C) is given by the Yoneda embedding, ie

i : C ↪→ P(C), c 7→ [−, c]

We call the essential image of C as the representables in P(C).

In other words, let FunL(P(C), D) be all the functors that preserve colimits, then there is an equivalence of
category given by restriction

FunL(P(C),D) ≃ Fun(C,D).
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Proof. Let H ∈ P(C), we essentially want to show that

H = colimit of some representables .

There is a very explicit construction of this colimit. We take the category C/H where

• The objects of C/H are objects x ∈ H(c) for all c.

• The morphisms from x ∈ H(c)→ x′ ∈ H(c′) is a morphism

f : c→ c′ such that H(f) · x′ = x.

• In other words, C/H is the full-subcategory of C spanned by the representables of P(C)/H (slice category).

One can check that
H = colimC/H F

Here each functor F : C/H → P(C) sends x ∈ H(c) 7→ i(c) (recall i is the Yoneda embedding). ■

This is the discussion for 1-category, but the construction generalizes to∞-categories!

Theorem 6.3. Let C be an∞-category, then the free cocompletion of C is exactly

P(C) = Fun(Cop,Spc).

Proof Sketch. The idea is to find an ∞-category analog of a slice category and apply similar arguments. The slice
category is given by the homotopy pullback

C/H ∗

Fun(∆1, C) Fun(∆0, C)∆

In this case, we will have again that H = colimC/H i(c). ■

On the other hand, Ind completion is given by the concept of filtered colimits.

Definition 6.4 (Filtered Categories). A 1-category C is a filtered category if

• For any finite list of objects {ci}ni=1, there exists d ∈ obj(c) with morphisms ci → d for all i = 1 to n.

• For any finite collection of morphisms hi : c → c′ for i = 1 to n, there exists a morphism f : c′ → d
such that

f ◦ hi = f ◦ hj for all i, j.

Definition 6.5. A filtered colimit is a colimit whose index diagram is a filtered category.

The presheaf category is the free cocompletion, we want a suitable analog for cocompletion that only contains all
filtered colimits.

Definition 6.6. For an ordinary category C, we define Ind(C) to be the full subcategory of P(C) consisting of
H such that C/H is a filtered category (or equivalently that H is a filtered colimit of C).

Of course, from here, we have the following.
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Proposition 6.7. Ind(C) is the free filtered cocompletion (also called an Ind completion) of C. In other words,
we have an equivalence

Fun(Ind(C),D) ≃ Fun(C,D),

where the LHS is the filtered-colimit preserving functors.

This is the construction for 1-categories, but the catch is that the same construction does not quite work for ∞-
categories. Let us however analyze some properties of filtered categories to see if they can motivate a definition.

Proposition 6.8. A 1-category is filtered if and only if for all finite simplicial sets I , for a map I → N(C), there
exists an extension I∆ → N(C). Here I∆ refers to the cocone (this is just saying every map has a cocone).

Definition 6.9. We say that an∞-category C is filtered if for all finite simplicial set I , a map I → C extends
to I∆ → C.

6.2 Compactness
Once we have the notion of filtered colimit, there is a notion of a compact object.

Definition 6.10. An object d ∈ C, where C is an ordinary category, is called compact if the functor

[d,−] : C → Sets

preserves filtered colimits. Let Cω be the full subcategory spanned by compact objects.

Here are some examples of compact objects.

Category Compact Objects

Set Finite Sets
Vectk Finite dimensional vector space
ModR Finitely presented modules
Grps Finitely presented groups
Top Fintie Sets with discrete topology

Open(X) compact open sets in X
sSet Finite simplicial sets

Table 1: Some examples of categories and their compact objects.

Note that the compact objects are Top are not exactly all the compact spaces...

Proposition 6.11. We make two observations for every category C (with the exception of Top) in Table 1:

1. C is generated by compact objects (being colimits of compact objects).

2. The subcategory of compact objects in C is small.

Definition 6.12. A cardinal κ is called regular if for a collection {Ai}i∈I where I has cardinal < κ and each
Ai has cardinal < κ, the union

⋃
i∈I Ai has cardinal < κ.



Presentable∞-category Page 34 of 44

Example 6.13. 0, ω, and the continuum are examples of a regular cardinal. Here ω refers to the cardinality of
the natural numbers.

Definition 6.14. For any regular cardinal κ, we can define a κ-filtered category whose collection of objects and
morphisms in the definition are no longer finite, but of cardinality < κ (they are called κ-small). We can also
define κ-compact sets similarly, and Indκ(C) similarly. These notions extend similarly to∞-categories.

6.3 Presentable∞-category
We are finally able to define a presentable∞-category.

Definition 6.15. An∞-category C is called presentable if there exists a regular cardinal κ, a small∞-category
C ′, such that C ′ admits κ-small colimits, and

C = Indκ(C
′)

Definition 6.16. A functor f : C → D is a localization if it has a fully faithful right adjoint. A functor
f : C → D is accessible if there exists regular cardinal κ, C,D admits κ-filtered colimits, and f preserves
them.

Theorem 6.17. The following are equivalent:

1. C is presentable.

2. C is equivalent to Indκ(C
κ), where Cκ is the full subcategory of κ-compact objects, and Cκ is essentially

small (note no κ!), and admits κ-small colimits.

3. C is equivalent to Indκ(C
′) such that C ′ is small and C (no ′) admits colimits.

4. There exists a small∞-category C ′ and an “accessible localization” in the sense there is a localization
P(C ′)→ C whose fully faithful right adjoint is accessible.

5. C is locally small, cocomplete, and there exists a regular cardinal κ, a set S consisting of κ-compact
objects, such that S generates C under small colimits.

Remark 6.18. The condition that C is equivalent to Indκ(C
′) in (3) such that C ′ is small is called being

“accessible”.

Example 6.19. For a small category C that is cocomplete. C is presentable if and only if C is idempotent
complete.

We will end the meeting with a discussion on the adjoint functor theorem.

Theorem 6.20. Presentable∞-categories are complete and cocomplete.
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Theorem 6.21 (Adjoint Functor Theorem). Let F : C → D be a functor between presentable∞-categories.

1. F is a left adjoint if and only if F preserves colimits.

2. F is a right adjoint if and only if F preserves limits and is accessible.

Remark 6.22 (Remark by Nir Gadish). If every object is the colimit of compact objects, then we can compute
the hom-set [x, y] as

[x, y] = [colimI c, colimJ d]

= lim
I
[c, colimJ d]

= lim
I

colimJ [c, d]

Thus, every morphism can also be hit by morphisms in the compact subcategory.


