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8.1 Why Do We Care?
There are a series of conjectures in mathematics that are intricately related to the study of algebraic K-theory!

1. For people in algebraic number theory, there is a conjecture called Kummer-Vandiver conjecture that is very
relevant to algebraic K-theory. Let Q(ζp) be a number field, where ζp is a primitive p-th root of unity. In other
words, Q(ζp) is the p-th cyclotomic field.

Conjecture 8.1. For all maximal real subfield F of Q(ζp), let h(F ) be the class number of F , then p does not
divide h(F ).

There is an incredible result by a combination of Kurihara and Voevodsky that showed that

Theorem 8.2. The Kummer-Vandier conjecture is true if and only if K4n(Z) = 0 for all n.

2. For people interested in geometry and topology, there is also a notion of s-cobordism theorem that relates to
algebraic K-theory.

Definition 8.3. Let W be a cobordism between M and N , we say this is an h-cobordism if the two
inclusion maps M →W and N →W are homotopy equivalences.

Note that an obvious h-cobordism is when M = N and W =M × [0, 1], so W is a cylinder. One fundamental
question is ask when an h-cobordism is a cylinder.

Theorem 8.4. Let X ↪→ W be an h-cobordism, then the obstruction of W to cylinder lies in
K1(Z[π1X]), this is sometimes also called the Whitehead group.

3. For people interested in algebraic geometry, there is also the Lichtenbaum-Quillen conjecture that relates alge-
braic K-theory and étale cohomology. We will not get into the details of this conjecture, but roughly speaking,
the conjecture asserts that the algebraic K-theory does not satisfy étale descent. However, for large i, we have
that

Ki(S,Z/n) ∼= H−i
ét (S, F ét/n).

Here n is invertible in S, and F ét is the sheafification of the functor F , where F assigns each X to K(X).

4. In fact for the algebraic geometers, there is a motivic spectral sequence (Thomason, 1985) of the form

H∗
ét(X,π

ét
∗K/p

v[β−1]) =⇒ π∗K/p
v(X)[β−1].

Here β is called the Bott element. The specific details of what is on this item are omitted from this, but the key
idea the audience should keep in mind is that there is a way to compute homotopy groups of K using a certain
étale cohomology.

8.2 What is Algebraic K Theory?
Here we give a very concise introduction to algebraic K-theory. For a more thorough treatment, we refer to Wiebel’s
K book!

In this section, we fix R to be an associate unital ring with 1R ̸= 0R.
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Definition 8.5. For n > 0, we define Kn(R) = πn(BGL(R)+). Here the plus sign “+” is Quillen’s plus
construction.. For n = 0, we define K0(R) as

Z[isomorphism classes of finite projective (left) R-modules]/ ∼

Here the equivalence relation is generated by [P ⊕Q] ∼ [P ] + [Q].

We also deine K(R) as K0R× BGL(R)+.

Here are some examples of algebraic K-theory.

Example 8.6. The first major non-trivial calculation in algebraic K-theory is the K-theory of finite fields. In
general, we have that

1. Let F be any field, then K0(F) = Z.

2. Let Fq be a finite field of order q, then

Kn(Fq) =

{
Z/(qi − 1), n = 2i− 1

0, else

The rough idea of the proof was to use “certain operators” ψq − 1 : BU → BU and look at the fibers.

Remark 8.7. The previous construction of algebraicK-theory is done using Quillen’s plus-construction. There
are two alternative constructions via (1) Quillen’s Q-construction and (2) Waldhausen’s S•-construction. It
turns out that the three constructions are equivalent!

For the sake of brevity, in this talk we will focus on Waldhausen’s S•-construction, which is one in the setting of∞-
category. We also write Catst∞ as the∞-categories of small stable∞-categories, whose morphisms are exact functors
(ie. preserve finite limits/colimits). In this section, we fix C as an object in Catst∞.

Since C is stable, it is by definition pointed, and we use ∗ to denote the zero object in C.

Definition 8.8. We define Waldhausen’s S•-construction as follows - S•C is a simplicial category of the form:

• S0C = ∗.

• S1C are diagrams of the form
∗ X ∈ C

∗
It turns out that S1C ≃ C.

• S2C are diagrams of the forward

∗ X0,0 X0,1

∗ X1,1

∗
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where the square here is co-Cartesian (ie. pushout). It turns out that S1C ≃ Fun(∆1, C).

• In general, SnC are diagrams are of the form

∗ X0,0 X0,1 ... X0,n−1

∗ X1,1 ... X1,n−1

∗
. . .

...

Xn−1, n

∗

(Pictorially, they look like upper triangular matrices), such that each square is co-Cartesian/pushout.

Here are some important facts about this S• construction:

1. All SnC are stable, ie. SnC ∈ Catst∞.

2. We can construct the algebraic K-theory spectrum KC such that

KCn := |(S(n)
• C)≃|

Here S(n)
• C := (S• ◦ ... ◦ S•)(C) where we iterate the operator n times, and (S

(n)
• C)≃ is the sub-groupoid

completion. Furthermore, the structure map is induced by

Σ(−)≃ → |(S•C)≃|

by restriction to 1-skeleton. Thus, we have Ω∞KC ≃ Ω|(S•C)≃|.

3. This construction K outlines a functor K : Catst∞ → Sp that is Lax Symmetric Monoidal.

4. K(C) = K(Sp C). Here Sp C is the∞-category of spectrum objects in C, which is an∞-functorX : Z×Z→ C
such that for all i ̸= j, X(i, j) = 0 ∈ C.

Remark 8.9. Like K : Catst∞ → Sp, there is a similar construction K : Catst∞ → Sp that produces a “non-
connective” spectrum, meaning that the spectrum can have non-trivial negative homotopy groups. We omit the
details of its construction in this talk here.

Remark 8.10. There is a Dwyer-Kan (DK) simplicial localization as follows - let C be a model category,
then there is a way to map

C → N(FibReplacement(DK(C, wC))).

It turns out that the algebraic K theory spectrum produced in this Waldhausen construction may be decomposed
in terms of its Dwyer-Kan simplicial localization and can lead to many interesting studies. This was the
principal approach done by Blumberg and Mandell in [BM11].
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8.3 Universal Property of Algebraic K-Theory

Let Catperf∞ ⊆ Catst∞ be a full subcategory spanned by the idempotent complete small stable∞-categories. In this
case, since the∞-categories are idempotent, we also have an adjunction

Idem : Catst∞ ⇌ Catperf∞ : Forget

To explain the terminology:

1. Recall that when C is a classical 1-category:

Definition 8.11. Let X,Y ∈ C, Y is called a retract of X if there is a diagram of the form

X

Y Y

rι

id

Here ι is a monomorphism and r is an epimorphism. In this case, we say that ι ◦ r is idempotent. This
corresponds to our usual notion of idempotence because (ι ◦ r)2 = ι ◦ r.

2. In the∞-category sense - now let C ∈ Catst∞:

Definition 8.12. LetX,Y ∈ C, we say Y is a retract ofX if Y is a retract ofX in hC (the one-truncation).
This is the same as saying there exists a 2-simplex ∆2 → C corresponding to the diagram:

X

Y Y

rι

id

We also define Idem+ as the collection of simplicial sets such that for any finite J ̸= ∅ that is totally
ordered,

HomSet(∆
J , Idem+) = {(J0,∼) : J0 ⊆ J, and “ ∼ ”satisfies for i ≤ j ≤ k ∈ J , i, k ∈ J0, i ∼ k

implies j ∈ J0 and i ∼ j ∼ k}.

From here we let Idem ⊆ Idem+ denote the simplicial sets such that J0 = J in pairs (J0,∼).

3. Finally, we can define what we mean by “idempotent complete”.

Definition 8.13. Let C ∈ Catst∞, we say C is idempotent complete if for all F ∈ Fun(Idem, C), F is
effective. By effective, we mean that F can be extended to Fun(Idem+, C).

4. The Idem functor sends C to its idempotent completion.

After explaining the terminologies, we need three more definitions.

Definition 8.14. Let f : C → D ∈ Catst∞ be a functor. We say that f is a Morita equivalence if Idem f :
Idem C → IdemD is an equivalence.
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Definition 8.15. Consider the composition of functors in Catst∞

C D Ef g

We say that this is an exact sequence if:

1. f is fully-faithful.

2. D/C ≃ E . Here by the quotient D/C, we mean the pushout in the diagram

C D

0 D/C

f

3. g ◦ f = 0.

This exact sequence splits if there is a section s : E → D, s′ : D → C (here a section should be thought of as a
right adjoint going back such that composition is equivalent to identity via the adjunction morphism).

Definition 8.16. A functor F : Catst∞ → Sp (into the stable ∞-category of spectra) is called an additive
invariant if:

1. F inverts Morita equivalence.

2. F preserves filtered colimits.

3. F maps split exact sequence to split cofiber sequence.

F is called an localizing invariant if the first two conditions above holds, and (3’) F takes exact sequence to
cofiber sequence.

Theorem 8.17. The algebraic K-theory construction K taking a small stable∞-category to an algebraic K-
theory spectra is an additive invariant. If we take the non-connective construction of the spectrum, the functor
K is a localizing invariant.

Remark 8.18. Topological Hochschild homology is an additive invariant.

Notation: Let us write PSh+Sp(Cat
st
∞) be the category of presheaves

F : ((Catst∞)W )op → Sp

such that Condition (3) (not (3’)) in Definition 8.16 is satisfied. Also let PShSp((Cat
st
∞)W ) be the category of

presheaves to be the same as the plus version, but without requiring condition (3). Here (Catst∞)W is the full sub-
category given by compact objects.

There is a forgetful functor
Forget : PSh+Sp(Cat

st
∞)→ PShSp((Cat

st
∞)W )

where we just forget about Condition (3). It turns out this admits an adjointL+ : PShSp((Cat
st
∞)W )→ PSh+Sp(Cat

st
∞)
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Definition 8.19. Let L+ be the adjoint as above, we can define a map M+ as follows.

M+ : Catst∞ PShSp((Cat
st
∞)W ) PSh+Sp(Cat

st
∞)

C 7→M+(C)

Yoneda L+

This map is called the additive non-commutative motive.

Remark 8.20. There is a similar map Mloc we can define for localizing non-commutative motive.

Finally, we are ready to state the main theorem.

Theorem 8.21 (Blumberg-Gepner-Tabuada, 2013, [BGT13]). For all C ∈ Catperf∞ , there exists two natural
equivalences:

1. Map(M+(Sp
W ),M+(C)) ≃ K(C).

2. Map(Mloc(Sp
W ),Mloc(C)) ≃ K(C).

Here SpW is the full subcategory given by compact objects. This is actually called the∞-category of finite
spectra. Equivalently, this means that

Ψ : PSh+Sp(Cat
st
∞)→ Sp

is co-representable. There is a similar story that happens with localizing invariants.

From here, we obtain three corollaries.

Corollary 8.22. For all n ∈ Z,

KnC ≃ Hom(M+(Sp
W ),Σ−nM+C)

Corollary 8.23. For any additive invariant F ,

Map(K,F ) = F (SpW )

This means that K is the universal additive invariant!

Similarly, we also have that

Corollary 8.24. For any localizing invariant F ,

Map(K, F ) = F (SpW )

This means that K is the universal localizing invariant!

Now we give an outline for the proof of Theorem 8.21 for the additive case.
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Proof Sketch of Theorem 8.21. We only sketch the proof of the additive case. Indeed, for allA ∈ Catst∞, B ∈ Catperf∞
with B compact in Catperf∞ , then one can show that M+(A) ≃ KA. Here KA is defined as follows:

• KA ∈ PShSp((Cat
st
∞)W )

• KA(C) = K(Funex(C, IdemA)). Here, Funex denote the exact functors.

• Note that KA(Sp
W ) = K(A).

• One can also show that the functor KA is local. In other words, for all split exact sequence B → C → D in
(Catperf∞ )W , there is an equivalence

Map(ψ(D),KA) ≃ Map(ψ(C)/ψ(A),KA) (†).

where ψ : Catperf∞ → PShSp((Cat
perf
∞ )W ) is the Yoneda embedding.

Thus, we have that

Map(M+(B),M+(A)) ≃ Map(M+(B),KA) Recall M+(A) ≃ KA

= Map(L+ ◦ ψ(B),KA)

= Map(ψ(B),KA).

Here, the maps in the last line should be thought of as happening in PShSp((Cat
st
∞)W ). We obtained the last equality

using the adjunction between L+ and Forget. Thus, we have that

Map(M+(B),M+(A)) ≃ Map(ψ(B),KA)).

From here, since B is in (Catperf∞ ) and is compact, ψ(B) is representable.

It turns out there is a theorem called the spectral Yoneda lemma. In this case, when we apply the spectral Yoneda
lemma to ψ(B), we have that Map(ψ(B),KA)) ≃ KA(B). Plugging B = SpW then obtains the proof of the additive
case. ■

Remark 8.25. While we did not define THH (topological Hochschild Homology), we do in fact that that

π0 Map(K,THH) = π0(THH(SpW )) ≃ π0(THH(S)) = Z.

The element 1 in Z corresponds to a unique map K → THH which is called the Dennis trace.


