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1 Meeting September 5th, 2024
Speaker: Kartik Tandon
The introductory talk is mainly on the motivation of “why∞-categories”?

1. Why homotopy and category?

2. Why in particular∞-categories?

To be more technical, while ∞-categories meant something broadly before, it now specifically refers to the “quasi-
categories” of (∞, 1)-categories developed by Boardman, Vought, Joyal, and Lurie. This is a bit far away for now, and
we will focus on more concrete notions for now.

Recall that in category theory, there is the notion of natural transformations.

Natural Transformations

Functor

Objects and Morphisms

On the other hand, there are also the notions of universal properties, which relate to limits and colimits. There is in
fact a notion of homotopy limits and colimits.

Example 1.1.
X ∗ X ∗ ≃ CX

∗ ∗ ∗ ≃ CX ΣX

colimits homotopy colimits

1.1 Homotopy and Homotopical Category
Here are some examples of homotopy categories:

1. hTop - This is the category obtained from Top by modding out the equivalence relation of homotopy equiva-
lences.

2. Ch[q−iso]−1 - This is the category obtained from Ch∗(Ab) by moddig out what are called “quasi-isomorphisms”.

The notions of ordinary limits and colimits do not typically exist in these categories! Even if they exist, they typically
do not agree with limits and colimits.

Example 1.2. Take the Triangulated categories:

• Cone is not functorial in this category. This can be partially remedied by the Octahedral Axiom.

• Colimits do not need to be functorial.

Attempts to fix these issues came into the idea of homotopical categories. This originally came from Gabriel-Zismen
in 1967.
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• They are of the form (C,W ) where W ⊆ Mor(C).

They are some issues with this specific framework:

• (i) Formal constructions are technical.

• (ii) Too general of a framework, includes too many things.

1.2 Quillen’s Development
This is where Quillen came in. In 1967, he introduced the idea of model categories, which are still prominently used
today.

Definition 1.3. Model categories are complete and cocomplete categories of the data

(C,W,Cof,Fib),

whereW,Cof,Fib ⊆ Mor(C). W is typically called weak equivalences, Cof cofibirations, and Fib fibrations.
They satisfy the following axioms such that

• (i) W has all isomorphisms and is closed under 2 out of 3 in the sense of

x y z

• (ii) (W ∩ Cof,Fib) and (Cof,W ∩ Fib) are both weak factorization systems.

Remark 1.4. W ∩ Cof is called acyclic cofibrations. W ∩ Fib is called acylic fibrations.

Definition 1.5. A weak factorization system (L, R) is a pair such that the lifting property holds. In other
words, for all f, g, the following diagram commutes

A X

B Y

f

i∈L α∈R
∃

g

Example 1.6. In the category of Top, you can take (W,Fib) where W are the weak equivalences and Fib are
the actual fibrations. They are two popular examples of fibrations:

Dn X X Y

Dn × I Y X × I Z

Serre fibrations Hurewicz fibrations

f f

Exercise 1.7. What are the cofibrations in the example above.
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Example 1.8. Now if we take the category of chain complexex over R-modules, we can take

1. W as quasi-isomorphisms.

2. Projective: cofibrations are level-wise monic with projective cokernels.

3. Injective: fibrations are level-wise epic with injective kernels.

In general, the strategy is to

• Perform a fibrant/cofibrant replacements with {projective resolutions}.

• Do normal category theory.

1.3 Infinity Categories
So far, we still have not gotten into ∞-categories yet. The analogy between model categories and ∞-categoeis are
thought of as follows:

1. Model categories are to picking a basis.

2. ∞-categories are coordinate-free.

3. “The space of choices is contractible”.

We can consider the∞-Category of Spectra,the reason why is outlined as follows

1. There are lots of model categories on Spectra Sp.

2. Lewis’s Theorem in 1971 asserted that there does not exist a convenient category of spectra (meaning it fails 5
nice properties we hope it to have).

3. We do have a twist map τ : A ∧B → B ∧A. But it might not be homotopic to the identity.

4. Even though the introduction is somewhat technical, the main punchline is that there are some things normal
category theory is lacking. In fact, Lewis’s Theorem does not hold on∞-categories (they do really satisfy the 5
nice properties).

Remark 1.9. Introduction to stable homotopy theory by Denis Nardin is a great reference -∞-categories from
the start.

Question 1.10. Model categories are not good enough for some things, but what about enriched categories?

There is also a notion of enriched categories, perhaps more rooted in physics. They appear in the forms of

1. Top, sSet (simplicial sets).

2. A∞-categories.

3. dg-categories, etc.

It turns out in fact that A∞-categories and dg-categories are notions of what’s called k-linear stable ∞-categories!
Unlike settings outside of enriched category, where you could have statements like “x⊗− is flat”, enriched categories
want to start by showing the entire category C is flat, but you would still run into issues.

1.4 Crash Course on Simplicial Sets
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Definition 1.11. We define ∆ as the category where

1. Objects are [n] = {0, ..., n}.

2. Morphisms are order-preserving.

From here, the category of simplicial sets are the contravariant functors out of ∆ into Set. In other words,
sSet = Set∆

op

. There is a geometric realization of a simplicial set given as a functor

| − | : sSet→ Top, [n] 7→ ∆n.

A more concrete interpretation of the definition above is as follows.

Definition 1.12. A simplicial set is a graded set over the natural number N, with maps

1. Face Maps: dm : Xm → Xm−1

2. Degeneracy Maps; sm : Xm → Xm+1

(If we want to be technical, they should have upper indices). satisfying the conditions

• didj = dj−1di for i < j.

• disj = sj−1di for i < j.

• If i = j or i = j + 1, disj = id.

• disj = sjdi−1 if i > j + 1.

• sisj = sj+1si if i ≤ j.

Definition 1.13 (Kan Complexes). The Kan complexes are special cases of simplicial sets that satisfies:

1. The horn lifting property. We give a pictorial definition Λk[n] as, for example when n = 2,

In this case, we note that

2. Hom(−, [n]) ∈ Set∆op

. One should think of Hom(−, [n]) as “standard n-simplex”. THis also turns out
is not a Kan complex.

3. Let η : CAT → sSet be the nerve functor of the form Hom([n],−). n(C) are Kan complexes,
fortunately!
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Definition 1.14. A (∞, 1)-category/quasicategory/weak Kan complex is a simplical set S• which has the lifting
property with respect to all inner horns. Here is a pictorial representation of what is going on:

1.5 Unique and Interesting Applications of∞-Categories!!!
Here are some interesting applications:

1. Spectra Sp gives the notion of stable∞-category enriched in Sp.

• Cones are all functorial now.

2. Limits and colimits are nice enough. The “ordinary” notion of (co)limits now coincide with the “homotopical”
notion of (co)limits.

3. There are some classical constructiosn that are now realizable as new colimit/limit interpretations. (ex. Thom
space corresponds to Thom spectra. The classical construction is very technical, but it is very simplified in this
new framework . More specifically,

M+X := colim(M+ → Pic(R)→ ModR).

4. Universal Properties in (∞)-category.

• Thom Spectra.

• K-theory - BGT (2013) showed that

Theorem 1.15. There is a functor K : CatSet
∞ → Sp such that K-theory is the universal additive

invariant. In other words,

A→ B → C =⇒ K(A)⊕K(C) ∼= K(B).

• Here is another interesting related theorem

Theorem 1.16 (Beilinson). There is a semi-orthogonal decomposition D(P1
R) = ⟨OX ,OX(−1)⟩.

As a corollary, it shows that
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Corollary 1.17. K(P1
R)
∼= K(R)⊕K(R).

• Descent - recall for the projective line in algebraic geometry, we can glue it as following pushout

SpecZ[x, x−1] SpecZ[u]

SpecZ[t] P1

The question is, if we look at their derived categories, we have the following:

D(P2) D(Z[u])

D(Z[t]) D(Z[x, x−1])

Is this a pullback?

The answer turns out to be NO for very complicated reasons. There is, however, a remedy in∞-category,
we have that

Theorem 1.18 (Barr-Beck-Lurie). D(−) is a CatSt
∞-valued sheaf in SchZar.
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2 Meeting September 12th, 2024
Speaker: Riley Shahar

2.1 Simplicial Sets

Definition 2.1. The simplex category ∆ is a small category where

• The objects are the finite ordinals [n] = {0 < ... < n} are the totally ordered notes on n+ 1 elements.

• The morphisms are order-preserving set functions.

∆ is presented by “co-face maps” of the form

di : [n]→ [n+ 1],

where di is the unique order preserving map from [n] → [n + 1] that misses i. Furthermore, si are the “co-
degeneracy maps” of the form

si : [n]→ [n− 1]

as the unique order preseriving surjective map that repeeats the index i twice. In particular, these maps generate
all the non-identity morphisms in ∆. They will also satisfy certain identities that we will write out for simplicial
sets later.

Definition 2.2. A simplicial set is a presheaf of sets on the category ∆. In other words, it is a contravariant
functor from ∆ to Set. The category of simplicial sets, denoted sSet, is the functor category Set∆

op

where the
objects are the functors and the morphisms are the natural transformations.

Let us unpack this definition. Let X be a simplicial set. This means that for each n, we have a set Xn, which we want
to think of as the collection of “n-simplicies”. Since a simplicial set is a functor, we also have maps

• di : Xn → Xn−1 are the face maps that corresponds to di earlier. The face map di should be thought of as
sending an n-simplex to its i-th face (the opposite face of the i-th vertex).

• si : Xn → Xn+1 are the degeneracy maps that corresponds to si earlier. The degeneracy map si should be
thought of as sending an n-simplex to a degenerate n+ 1-simplex, with the i-th vertex repeated.

Here we give the following characterization of a simplicial set that one can use to detect whether a collection {Xn}
with morphisms form a simplicial set.

Proposition 2.3. Let X be a simplicial set, then the face and degeneracy maps satisfy the following identities.

• didj = dj−1di for i < j

• sisj = sj+1si for i ≤ j

• If i = j or i = j + 1, disj = id.

• disj = sj−1di if i < j.

• disj = sjdi−1 if i > j + 1.

Conversely, suppose {Xn}n=0,1,2,... is a sequence of sets equipped with functions di : Xn → Xn−1 and
si : Xn → Xn+1 satisfying the five identities above (for all i and all n), then this is a simplicial set.
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To make sure we are comfortable with the geometric picture of a simplicial set in our head. We investigate the
following example in detail.

Example 2.4. Pictorially, what is a 2-simplex σ ∈ X2? Well, for n = 2, there are three face maps
d0, d1, d2 : X2 → X1. Write g = d0(σ), h = d1(σ), f = d2(σ), these can be regarded as the faces of σ.

g, h, f are 1-simplicies in X1, which furthermore have face maps going to their two ends in X0. Now, we
observe for example that the first identity of simplicial set in the previous proposition implies that d0(h) =
d0(d1(σ)) = d0(d0(σ)) = d0(g), so g and h should have the same target (since d0 corresponds to the opposite
edge). Similarly, d0(f) = d0(d2(σ)) = d1(d0(σ)) = d1(g) means that the target of f is the source of g.
Finally, we can also get that f and h have the same source. Thus, the 2-simplex σ may be drawn as

d0(f) = d1(g)

d1(f) = d1(h) σ d0(g) = d0(h)

gf

h

There are also cases where the 2-simplex could be degenerate, ex. two of its vertices v, w are the same. In this
case, tehe morphism between them is denoted 1v and draw it as

v

d1(f) σ v

1v
f

f

Definition 2.5. LetX be a simplicial set. A simplex x ∈ Xn is degenerate if it is in the image of a degeneracy
map si.

Here we give a simple example of a simplicial set first.

Definition 2.6. Consider the functor ∆(−, [n]) : ∆ → Set (HOM functor into [n]). This is a contravariant
functor and hence a simplicial set. This is called the standard n-simplex and is denoted ∆n.

Proposition 2.7. Let X be a simplicial set. By the Yoneda Lemma, there is a natural isomorphism

Hom(∆n, X) ∼= Xn.

Thus, the standard n-simplicies can be thought of as representable presheaves. The density theorem in category
theory implies the following result.

Proposition 2.8. Let X be a simplicial set, then X is the colimit of standard simplicies indexed by its category
of elements, ie.

colimx∈Xn
∆n ∼= X.

LetE be a cocomplete and locally small category and F : ∆→ E be any functor. We in fact have a left Kan extension
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of the form

sSet E

∆

Lany F

F

that commutes up to natural isomorphism. If we want this to genuinely commute, F needs to be co-continuous. Here
the map y : ∆ → sSet sends S to the functor Delta(−, S). The left Kan extension is left-adjoint to the functor
R : E → sSet acting by x 7→ n 7→ E(Fn, x).

Example 2.9. There is also a canonical covariant functor from ∆ → Top by sending an ordinal [n] to the
standard simplex ∆n. The construction above gives a left Kan extension of this functor to sSet → Top. We
denote this functor as

| • | : sSet→ Top.

This is called the geometric realization of a simplicial set.

From the discussion above, we also know that | • | admits a left adjoint, which we will call Sing :

Sing : Top→ sSet.

This is the singular complex on a topological space given by Sing(X)n = Top(|∆n|, X).

A canonical example of a simplicial set arises in what is called the “nerve of a category”.

Definition 2.10 (The Nerve of a Category). Let F : ∆→ Cat send [n] in the abstract simplex to the ordinary
category [n], the nerve functor N is the right adjoint functor given by the left Kan extension of F to the
category of simplicialy sets (in particular, as n-simplicies, FC has functors Fn → C

There is a concrete interpretation of the nerve as follows. Let C be any small category, the nerve of C, denoted
NC is a simplicial set

NC0 = Obj C, NC1 =
⊔

x0,x1

C(x0, x1),

and in general NCk composes of composable k-tuples (φ1, ..., φk). This means that, each φi is a morphism in
C, and the source of φ1 is the target of φ2, etc...

The face and degeneracy maps are defined as follows. The degeneracy map si : NCn → NCn+1 takes a
sequence of n composable maps

c0 → c1 → ...→ cn

and it inserts an identity at ci maps in the i-th spot, ie. si of the sequence above becomes

c0 → c1 → ...→ ci →id ci → ci+1 → ...→ cn.

The face map ∂i : NCn → NCn−1 takes a sequence of n composable maps

c0 → c1 → ...→ ci →fi ci+1 →fi+1 ...→ cn

and just composes the i-th and i + 1-th arrow for 0 < i < n (leaving out the first and last arrow). In other
words, it becomes

c0 → c1 → ...→ ci →fi+1◦fi ci+2 → ...→ cn.

Finally, before we move on the the definition of∞-categories, we discuss a few more technical construction.
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Definition 2.11. There is also a notion of boundary map on a standard simplex. Specifically, we let ∂∆n to
denote the simplicial n-sphere, which is a simplicial set consisting of the boundary of the standard n-simplex,
ie.

∂∆n =
⋃
i

di(∆
n).

An n-sphere in a simplicial set X is a map ∂∆n → X .

Definition 2.12. The simplicial horn Λn
k is the simplicial set consisting of all faces of the standard n-simplex

except for the i-th face, ie.
Λn
k =

⋃
i ̸=k

di(∆
n).

A horn in a simplicial set X is a map Λn
k → X . A horn is inner if 0 < k < n. A horn is outer if k = 0 or

k = n.

Example 2.13. Here is an example for Λ2
1.

1

0 2

Given a horn, there is a notion of filling the horn that should correspond to our geometric intuitions.

Definition 2.14 (Filling a Horn). Let X be a simplicial set and Λn
k → X be a horn. A filler of this horn is a

lift to a standard n-simplex. In other words, it is a commutative diagram of the form

∆n X

Λn
k

2.2 ∞-Category
Notation: For this section, here are some notations we will refer to in our construction:

• An object is a 0-simplex.

• A morphism is a 1-simplex.

• An n-cell (if n = 2, this is a natural transformation, etc.) is an n-simplex.

• The source of a morphism f is d1(f) = x, the target is d0(f) = y.

• The identity at an object x is the morphism s0(x).

• A composable pair is an inner 2-horm Λ2
1 → X . Why? Well drawing the Λ2

1, we clearly see that it is just

x→f y →g z.
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• Given a 2-simplex σ of the form

d0(f) = d1(g)

d1(f) = d1(h) σ d0(g) = d0(h)

gf

h

We say that h is a composite of f and g. We write this as h ≃ g ◦ f . Note that a composite is a filler of a
composable pair. (ex. for Λ2

1, we can fill it to a 2-simplex by a 2-cell and a 1-cell).

Now we are ready to finally define an∞-category!!!

Definition 2.15 (Definition of an∞-category). An∞-category (also known as a quasicategory or a weak Kan
complex) is a simplicial set in which all inner horns have (not necessarily unique) fillers.

Remark 2.16. As a remark, for an ∞-category C, every composable pair has a composite. The category of
quasicategories is the full subcategory of sSet spanned by quasicategories.

Definition 2.17. Two maps f : x→ y and g : x→ y are homotopic if there is a 2-cell σ of the form

y

x y

1y=s0(y)
f

g

Here s0 is the previous degeneracy map. In this case, we write f ≃ g.

Note that≃ itself is an equivalence relation on morphisms in a quasicategory. The following proposition seems unique
but needs to be checked.

Proposition 2.18 (Composites in a quasicategory are unique up to equivalence). Let f : x→ y, g : y → z and
h, h′ : x→ z be morphisms such that

h ≃σ g ◦ f and h′ ≃σ′ g ◦ f.

Here ≃σ means h fills the composable pair into a 2-simplex σ. Then, h and h′ are equivalent.

Proof. The proof is surprisngly geometric. We first note that it suffices for us to try to fill the horn given by h and h′.
Now we consider the diagram

z

σ y

x σ′ z

g

g

h

f

h′

Showing that h ≃ h′ amounts down to showing that we can fill the horn on the upper right side. In this case, s1(g) is
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the desired 2-simplex, and we have that

z

σ y s1(g)

x σ′ z

1sg

g

h

f

h′

■

2.3 Nerve of a Category and Homotopy Category
We saw previously that there is a nerve

N : Cat→ sSet

The nerve of a category is an example of an infinite category!

Proposition 2.19. 1. The nerve functor is a fully faithful functor.
2. The essential image of N is simplicial sets where every inner horn has a unique filler (ie. the∞-categories
with unique filler to every inner horn).

It turns out that the nerve functor has a left-adjoint, which is called the one-truncation or the homotopy category
(denoted τ1 or h) respectively. Concretely, it is given as follows.

Definition 2.20. The homotopy category h(C) of an∞-category C is a 1-category such that

1. objects: the 0-cells from C.

2. morphisms: homotopy equivalence classes of morphisms in C.

This is also called a 1-truncation of C and denoted τ1(C).

Because the nerve functor is fully faithful, the counit of the adjunction between the nerve functor and 1-truncation
functor yields the following isomorphism:

Theorem 2.21. There is a canonical isomorphism of 1-categories

h(N(C)) ∼= C.

Here, C is a 1-category.

Definition 2.22 (Isomorphisms in ∞-categories). A map f : x → y in an ∞-category is an isomorphism if
there is a map g : y → x such that we have equivalences 1x ≃ g ◦ f and 1y ≃ f ◦ g.

Clearly from the construction of homotopy categories, we also have the following.

Proposition 2.23. f is an isomorphism if and only if [f ] is an isomorphism in h(C).
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2.4 ∞-groupoid

Definition 2.24. An∞-groupoid is an∞-category in which all morphisms are isomorphisms.

Remark 2.25. All cells above dimension 1 are automatically reversible, by equivalence of homotopy. That is
why we only need the groupoid definition to specify inversion of 1-cells.

Definition 2.26. A Kan complex is a simplicial set in which every horn (not just inner) has a filler.

The following is a very deep theorem.

Theorem 2.27. The following are equivalent:

1. C is an∞-groupoid.

2. C is a Kan complex.

Corollary 2.28. The singular simplicial complex Sing(X) of a topological space X is an∞-groupoid.

Proof. It suffices for us to check that it is a Kan complex. So we want to solve to following extension problem for
every horn.

∆n Sing(X)

Λn
k

It suffices for us to take this to the geometric realization land (because | • | is adjoint to Sing), we are looking at

|∆n| X

|∆n
1 |

.

This is solvable in the world of topology, because a horn is an obvious geometric retract of a geometric n-simplex. ■

2.5 Cardinalities in∞-Category Theory
Let us first discuss this in the world of 1-categories.

Question 2.29. What is the category Set?

It is certainly not a set. The foundations for interpreting this is given by what is called the NBG (Von Neumann -
Bernays- Godel) set theory.

Definition 2.30. The idea is that - a class is a formula with free variables where the quantifiers range only over
sets, with 2 extra axioms.

It turns out this has two very nice properties:
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1. Conservative extension of the ZF system.

2. Finitely axiomatizable.

Saunder MacLane thought this was enough to do 1-category theory and claimed everything in his book could be done
using this set-up as long as you add the word “small” in front of your category. However, when you want to study
larger categories, it becomes theoretically more challenging. An example of this question is looking at

y : Top→ T̂op

where T̂op is the presheaf category on Top.

This is where the idea of MK (or MT) set theory, which roughly speaking.

Definition 2.31. MK (or MT) set theory is NBG set theory with quantifiers ranging over classes.

Remark 2.32. It is impossible to prove the consistency of this theory from ZF, because this theory implies the
consistency of ZF.

This is fine with 1-categories. This does not, however, work well with ∞-categories. This is where the idea of
Grothendieck universe comes in.

Definition 2.33. A Grothendieck universe is a set U closed under:

• Membership, meaning x ∈ y ∈ U =⇒ x ∈ U .

• Pairing ({x, y} ∈ U)

• Unions indexed by U .

• Power sets.

A U -set is a set that is in U . We can put an∞-category of spaces in the realm of a Grothendieck universe which is an
appropriate arena to work under.

However, it turns out that a Grothendieck universe is equivalent to what is called an inaccessible cardinal.

Definition 2.34. An inaccessible cardinal is a cardinal (set) that cannot be reached by unions and power-sets.

Example 2.35. The cardinality |N| is inaccessible relative to the cardinality of finite sets (You might ask - why
can’t I just take an infinite union of finite sets, but to do that, you see to use |N|, whch is not allowed). The
cardinality of |∅| is vacuously inaccessible, because, well, it has no sets.

Now, a even more generalization is what is so called the Tarski-Grothendieck set theory, which is built on the notion
of “every x is contained in a universe”. Now a logician will make a statement that everyone else will find confusing:

• It is enough to have a countable number of universes U0 ∈ U1 ∈ U2.... This is enough to do all of category
theory.

• BUT, to prove this, you need to construct a cardinal |N|, which requires you to use more than a countable number
of universes.
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But, there is an argument to be made that, perhaps type theory is more suitable for category theory than this.

In the proposal of Tarski-Grothendieck set theory, Lurie thought everything he claimed in the book could be done
using MK. TG set theory was just a more convenient proof. In this sense, the process of finding out what are the
minimal set of axioms required to prove something is called Reverse Mathematics.

Example 2.36. McLacty in 2011 proved that FOA (fintie order arithmetic) is enough to prove all of EGA and
SGA by Grothendieck.

Theorem 2.37 (Levy Reflection Theorem). If ZFC ⊨ ϕ(x1, ..., xn), then ZFC ⊨ (∃V, V | = ϕ(x1, ..., xn)).

This theorem, essentially, implies that if we only prove a theorem with a finite number of axioms, we can find a smaller
universe that can also prove this theorem.

Example 2.38. Angus Macintyre in the 2000s sketched a proof that the Peano Axioms imply Fermat’s Last
Theorems. No formal proof was every written down.
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3 Meeting September 19th, 2024
The∞-category of spaces

Speaker: Mats Hansen

Today we will be looking at the ∞-category of spaces. We also want to talk about functors between ∞-categories,
mapping spaces, how to identify constructions as examples of ∞-categories. Ultimately, it will hopefully give us a
tower of abstractions to climb.

Motivation: The∞-category of spaces is an analogus construction to the category of sets in the world of 1-categories.

Let us recall some properties of the category Set:

1. They have free cocompletion of a singleton.

2. The morphism of any two objects in a locally small 1-category take value in Set.

3. There is a standard Yoneda embedding for functors from a locally small category C into Set.

3.1 Functors of∞-Category
We first need to make sense a notion of functor between∞-categories.

Definition 3.1. Let C,D be∞-categories, a functor of∞-categories is a morphism of simplicial sets (ie. it is
a natural transformation between the two functors compatible with the face maps di and the degeneracy maps
si).

Definition 3.2. Let K be a simplicial set and C an ∞-category. We define a new simplicial set Fun(K, C)
concretely as follows:

• Fun(K,C)n = HomsSet(K ×∆n, C).

• The face and degeneracy maps are induced by

di : ∆n−1 → ∆n and si : ∆n → ∆n+1.

Note that this is an internal hom adjunction in sSet.

Fun(K, C) is called the∞-category of functors from K to C.

Theorem 3.3. Let K be a simplicial set and C an∞-category, the simplicial set Fun(K, C) is an∞-category.

Proof. We will use the lifting property of maps of simplicial sets. One wants to show that there is a solution to the
following lifting problem.

Λn
i Fun(K,C)

∆n
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The usual way one approach these kind of lifting problems is to apply adjunctions in a smart way. Using the internal
hom adjunction, this is equivalent indeed to solving

Λn
i ×K C

∆n ×K

We can augment this to a diagram of the form

Λn
i ×K C

∆n ×K ∆0

where we note the morphism C → ∆0 is necessarily unique.

We pause the proof to introduce a definition in the middle.

Definition 3.4. A map f : X → Y is called an inner fibration if it satisfies the right lifting property with
respect to all hom inclusions. In other words, we have a lift of the form

Λn
i X

∆n Y

f

Hence, we see that the proof amounts to showing that the mapC → ∆0 is an inner fibration. The proof of this is in fact
not categorical at all but is rather an extremely combinatorial proof. The proof follows from the fact that Fun(−,K)
preserves inner fibrations if and only if the claim of maps having the left lifting property (LLP) wr.t. the inner fibrations
are closed under ×K. ■

Remark 3.5. It turns out that C is an∞-category if and only if C → ∆0 is an inner fibration.
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3.2 Mapping Spaces
Motivation: When C is a 1-category and d, c ∈ Obj(C). We can consider the pull back of the form

morphisms in C

HomC(c, d) Fun([1], C)

⌋

Λ0 C × C

terminal 1-category

(0,1),return source and target

(c,d)

This guides the definition of simplicial set of morphisms for∞-categories.

Let us now recall the following proposition.

Proposition 3.6. For any simplicial set C, the following are equivalent:

1. C is a Kan complex.

2. C is an∞-groupoid.

We will obtain that the simplicial set of morphisms will be an (∞, 0)-category (ie. a∞-groupoid).

Definition 3.7. Let C be an∞-catgeory, and c, d ∈ Obj(C). We define the mapping space as the pullback

MapC(c, d) Fun(∆1, c)

⌋

∆0 Fun(∂∆1, c)
(c,d)

Note that ∂∆n has two properties:

1. Fun(∂∆1, c) are pair of objects.

2. Fun(∂∆1, c) = c× c.

Here ∆0 is a single point and ∆0 → Fun(∂∆n, c) goes to the pair (c, d).

MapC(c, d) ocnsists of morphisms from c to d that restrict to c and d at the boundary of ∆1.

Theorem 3.8. For C an∞-category and c, d ∈ Ob(C), MapC(c, d) is a Kan complex, and hence an∞-groupoid
by the proposition.
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Proof. One can show that
Fun(∆1, c) Fun(∂∆1, c)

is an inner fibration that is stable under pullback. From here, we can deduce that the map MapC(c, d) → ∆0 is a
“conservative” inner fibration. In particular, this implies that it satisfies the filling condition, and it implies that it is a
Kan complex. ■

3.3 The∞-category of Spaces
Construction: Take some integer 0 ≤ i ≤ j where i, j ∈ N0. From here we define

Pi,j = {I ⊆ {i, ..., j} | min(I) = i and max(I) = j}.

Pi,j itself has a partial order given by inclusion.

Definition 3.9. From here we define the simplicial category C[∆n] given by

1. Objects are the numbers 0, 1, ..., n

2. The morphisms are simplicial Hom Sets of the form

HomC[∆k](i, j) = N(Pi,j)

Here, N(Pi,j) is the nerve of the poset Pi,j .

3. Compositions are given by the union.

Example 3.10. When n = 0, C[∆0] is the terminimal simplicial category that has one simple object 0 and
singleton simplicial mapping space.

When n = 1, C[∆1] has objects 0, 1 and all the simplicial mapping spaces are again trivial (empty or
singletons).

The interesting case occurs when n = 2. In this case, C[∆2] has three objects 0, 1, 2. The non-trivial simplicial
hom-set is N(P0,2). There are two elements in P0,2 here, {0, 2} ⊆ {0, 1, 2}.

It turns out this construction is in fact functorial in n. Hence, we can define a simplicial set of spaces Spc as the
following.

Definition 3.11. A simplicial set of spaces Spc is given by the simplicial set

• Spcn = homsCat(C[∆
n],Kan) where Kan stand for the category of Kan complexes with simplicial

hom sets.

• Note that this can be equivalently written as HomsSet(∆
n,Spc).

Remark 3.12. The construction of Spc is an example of what is called a homotopy coherent nerve construc-
tion, which is a construction given to any simplicial category C.

Example 3.13. We note that the 0-simplicies of Spc are exactly the objects of Kan. The 1-simplicies are
the maps of Kan complexes. The 2-simplicies are in bijection with maps of Kan complexes f : X → Y ,
g : Y → Z, and h : X → Z together with a homotopy g ◦ f ≃ h.
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4 Meeting September 26th, 2024
Speaker: Elle Pishevar

Today we will be talking about limits, colimits, and adjunctions in the setting of∞-categories. Let us first establish
some terminologies for this lecture:

1. C will denote an∞-catgeory.

2. For a, b ∈ obj(C), we denote the mapping space MapC(a, b)

3. We use I ∈ sSet to denote an indexing diagram - this will be used later to index limits (For the purposes of this
talk, we say sSet is a small category).

4. CI = Fun(I → C) is the functor category from I to C.

4.1 Limits

Definition 4.1. A cone of a functor F consists of a pair (y, η), where η : cy → F is a natural transformation
from cy to F . Here cy descends as the map

cy : I → ∆0 →y C

and is the constant functor. From here we can define a map MapC(x, y)→MapCI (cx, F ) as the composition
of

MapC(x, y) MapCI (cx, cy) MapCI (cx, F )
c η∗

Definition 4.2. The cone (y, η) is a limit cone if the map MapC(x, y) → MapCI (cx, F ) specified previously
is a homotopy equivalence. In this case, we call y the limit of F . We write this notationally as

y = lim
I
F = lim

i∈I
F (i).

Proposition 4.3. If we plug in N(I) and N(C) (nerves of 1-categories), then the previous definition are recov-
ers the ordinary 1-limits.

Example 4.4. Here are some common examples for limits:

1. In the specific case where I = ∅, then Fun(I, C) = pt. In this case, y is a limit if for all x

MapC(x, y) ≃ ⋆

In this case, we call y the terminal object.

2. Suppose I is a discrete set, ie. I is the disjoint union of some collection of points. Write the elements of
F (I) as F (i) for each i ∈ I . Then, we observe that

Fun(I, C) =
∏
I

C,

where the right hand side are taken as products in sSet. y ∈ C is a limit to this diagram if there is a
homotopy equivalence

MapC(x, y)→
∏
i∈I

MapC(x, F (i)).
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Proposition 4.5. One can check that

MapC(x,
∏
i∈I

F (i)) ≃
∏
i∈I

MapC(x, F (i)).

Hence y ∈ C is a limit to the discrete diagram is we have the equivalence

MapC(x, y) ≃ MapC(x,
∏
i∈I

F (i))

From here we can conclude that y ≃
∏

i∈I F (i).

The definition of limit in∞-categories, as expected, are also unique.

Proposition 4.6. If y, y′ are limits to the same F , then they are equivalent.

Remark 4.7 (Quick Divergence by Nir Gadish). We have that

• Maps(∆2, C) is the space of all composites in C. This is intuitively the idea of a homotopy:

•

h

• •

gf

g◦f

• Maps(∆1, C)×Maps(∆1, C) is the space of composable morphisms.

• There is a canonica homomotopy equivalence

Maps(∆2, C)→ Maps(∆1, C)×Maps(∆1, C)

• This is in fact a homotopy equivalence of Kan complexes, so we can get a section s back

Maps(∆2, C)← Maps(∆1, C)×Maps(∆1, C)

Theorem 4.8. The full subcategory spanned by limits in the functor category (this is sometiems called the sSet
of limits) is either empty or contractible (ie. trivial).

The last example of a limit we want to talk about is the pullback. This actually acts differently than how they are
typically in 1-categories.

Example 4.9. Suppose we have the diagram I being

0

0′ 1
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In this case Fun(I, C) are diagrams of the form

b

c d

h

k

Let b×d c denote the limit of this diagram. This is called the pullback.

Lemma 4.10. A map a ∈ obj(C) 7→ b×d c is equivalent to the data of

i : a→ b, j : a→ k

so that we have the homotopy equivalence h ◦ i ≃ k ◦ j (diagram commutes up to homotopy).

Theorem 4.11. Taking limits commute with mapping spaces, ie. there is a homotopy equivalence of the form

MapC(x, limi F (i)) ≃ lim
i

MapC(x, F (i)).

Proof. This is a corollary of a deeper theorem (that we will not prove) that there is an equivalence between

(y, η) ⇐⇒ (yc(y), yc(η)).

■

4.2 Colimits
The discussions for the colimits are a lot shorter.

Definition 4.12. For any∞-category C, there is a canonical notion of an opposite∞-category Cop. The colimit
of C is the limit in the Cop. There is a correspondence

{colimitsF : I → C} = {limF op : Iop → Cop}.

Dually to the notion of a terminal object, we can define an initial object as the colimit over the empty set. Pushouts
are dual to the pullbacks.

4.3 Adjunction
Let f : C → D, g : D → C be functors respectively. They have an adjunction if there is a pair of natural transforma-
tions (sometimes aptly called unit maps)

η : idC → gf, E : fg → idD
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such that the following diagrams hold up to homotopy

f f g g

fgf gfg

Fun(C,D) Fun(D, C)

id

η E

id

η E

Theorem 4.13. An adjunction gives rise to a homotopy equivalence of spaces

MapD(f(c), d) M⊣√
C
(gf(c), g(d))

MapC(c, g(d))

g

η∗

for all c ∈ C and d ∈ D.

Example 4.14. We have the following two examples of adjunctions.

Kan QCat

inc

(−)≃

spc Cat∞

inc

(−)≃

Example 4.15. Consider the category C to Fun(BG,C). The left adjoints are the homotopy orbits, and the
right adjoints are the homotopy fixed points.

Theorem 4.16 (Fundamental Theorem of Adjoint Functors). Left adjoints preserve colimits, and right adjoints
preserve limits.
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5 Meeting October 10th, 2024
Topic: Stable∞-categories
Speaker: Colton Griffin

5.1 Definition of Stable∞-categories
Today we will be talking about the stable∞-categories. Most of what we are talking about is a mix of Maximillen’s
notes, Gallagher’s, and Lurie’s higher algebra (with an emphasis on the last source). We will concretely investigate
two specific examples of them:

1. The∞-category of Spectra.

2. Derived categories.

Note that while we could form a derived category for any abelian category, the general construction of a “stable”
derived category is very general.

Definition 5.1. An ∞-category C is pointed if there exists an object 0 that is both initial and final. This just
means that

HomC(0, X) ≃ ∗ ≃ HomC(X, 0)

for all objects X ∈ obj(C).

Remark 5.2. We remark that C is pointed if and only if there exists an initial object ∅, a final point ∗, and a
one-morphism ∗ → ∅. These conditions imply the ∅ agrees with ∗ already.

Definition 5.3. Let C be a pointed∞-category, a triangle is a square ∆1 ×∆1 → C of the form

X Y

0 Z

f

g

Here 0 is the initial and final object.

1. A triangle is a fiber (resp. cofiber) sequence if it is a pullback (resp. pushout). Note that Maximilien
Péroux calls this exact and coexact instead.

2. Let g : X → Y be a morphism, a kernel/fiber of g is a fiber sequence of the form

W X

0 Y

g

3. Let g : X → Y be a morphism, a cokernel/cofiber of g is a cofiber sequence of the form

X Y

0 W

g
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Now we are ready to definition a stable∞-category.

Definition 5.4. A pointed∞-category C is stable if it satisfies the following 2 conditions

1. For every morphism g : X → Y , its fibers and cofibers exist.

2. Every triangle has the property that - it is a fiber sequence if and only if it is a cofiber sequence.

We can regard this definition as a sort of generalization of triangulated categories. The motivation behind why we
want to look at stable ∞-categories because triangulated categories requires sort of a choice rather than an intrinsic
property that stable∞-categories offer.

5.2 Spectra

Definition 5.5. A spectrum E is a collection of pointed spaces (En)n≥0 with structure maps

ΣEn → En+1

There is also a morphism of spectra from E → E′ given by En → E′
n for all n that respects structure maps.

Definition 5.6. There is also a notion of Ω-spectrum where we require that the adjoints of the structure maps
are weak equivalences.

Example 5.7. Let X be a pointed space, the suspension spectrum Σ∞X given by Σ∞Xn = ΣnX , and the
morphisms of the structure maps are the identity. A specific example of the suspension spectrum is the sphere
spectrum S when we take X = S0.

There is a suitable notion of homotopy groups of a spectrum.

Definition 5.8. Let E be a spectrum, we define

πn(E) := colimk πn+k(Ek).

In the specific case where E is the sphere spectrum S, πn(S) is exactly the n-th stable homotopy group of spheres.

Example 5.9. Here is another example of spectrum. Let G be an abelian group, we can form the Eilenberg-
Maclane spectrum HG where HGn = K(G,n). There is a canonical weak equivalence given by

K(G,n) ≃ ΩK(G,n+ 1),

which gives the structure map in suspension. Taking the homotopy groups of HG gives the singular homology
is coefficient G.

There is a remarkable theorem that relates spectra to cohomology theories.

Theorem 5.10 (Brown Representability). There is a correspondence between Ω-spectra and cohomology the-
ories.
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Definition 5.11. A weak equivalence of spectraE andE′ is a morphsim f : E → E′ that induces isomorphism
on all of their homotopy groups. SH is the localization of (Spectra) by weak equivalence.

5.3 Loop Space and Suspension
We can define a suitable notion of suspension and loop functor in pointed∞-categories.

Definition 5.12. Let C be a pointed∞-category. Let MΣ (resp. MΩ) to be the full subcategory of squares that
look like the following

X 0

0′ X ′

such that the square is a pushout (resp. pullback). Here 0, 0′ are zero objects.

We have the following theorem that is not at all easy.

Theorem 5.13. Assume that fibers and cofibers all exist. Then, there exists a trivial Kan fibration MΣ → C
with section s : C →MΣ. Let e :MΣ → C return the object X ′ - the bottomr right corner of the square. From
here we define the suspension functor as

Σ = e ◦ s.

We can similarly define ΩX . From here, we get the squares:

ΩX 0 X 0

0 X 0 ΣX

Lemma 5.14 (Loop-Suspension Adjunction). Σ is left adjoint to Ω. Furthermore, when C is stable, the functors
Σ,Ω gives an equivalence.

We have talked about spectra and stable∞-categories. Now we will try to relate the two.

Definition 5.15. If c ∈ obj(C) is some final object, we can define C∗ the∞-category of pointed objects to be
the full subcategory with morphisms of the form c→ d.

Definition 5.16 (Stabilization). We define Sp(C) as the limit of the sequence

C∗ C∗ C∗ ...Ω Ω

In the specific case when C = Spc, we call Sp(Spc) the stable∞-category of spectra.

Proposition 5.17. If C has finite limits, then Sp(C) is stable.
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5.4 Derived Category
The construction Sp(•) gives a lot of ways to construct stable∞-categories. We will look at another major example
in the world of derived categories. The general results that motivate this construction is as follows:

Theorem 5.18. Let C be a stable∞-category, then its homotopy category hC has the structure of a triangulated
category.

Let us clarify some terminologies first.

Definition 5.19 (Additive Category). An additive category C is a category equipped with the following addi-
tional data...

• For A,B ∈ C, MorC(A,B) is given the structure of an abelian group.

satisfying...

1. Composition distributes over addition, ie.

(f + g) ◦ h = (f ◦ h) + (g ◦ h) and f ◦ (g + h) = (f ◦ g) + (f ◦ h)

2. C has a zero object, meaning that it is both the initial and final object.

3. C has finite products.

An additive category is called abelian if...

4. kernels and cokernels exist. In the sense that if we have a morphism φ : A → B, the cokernel of this
morphism coker(φ),

A B

0 coker(φ)

K

φ

∃!

Similarly for kernel, ie. they are pushouts or pullbacks.

K

ker(φ) 0

A B

∃!

φ

5. Every monomorphism is the kernel of its cokernel. In the sense that for a monomorphism φ : A → B,
consider the map A→ B → coker(φ), then the kernel of this morphism B → coker(φ) is (A,φ).

6. Every epimorphism is the cokernel of its kernel.

Definition 5.20. An additive category C is triangulated if we have

1. A morphism T : X ∈ obj(C)→ X given by X 7→ X[1].
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2. A collection of distinguished triangles of the form

X Y Z X[1]
f g h

such that they satisfy some axioms which we omit for this talk.

A sad fact about triangulated categories is that they are generally very hard to work with.

Remark 5.21. For the stable∞-category C, it has the structure of a triangulated category if we take T to be
the suspension functor.

There is a general procedure to produce a derived category of abelian category, which will be examples of triangulated
categories.

Definition 5.22. Let A be an abelian category. We say that A “has enough projectives” (or injectives) if every
object admits a projective (or injective) resolution.

Remark 5.23. LetA be an abelian category with enough projectives (or injectives). We can produce a category
D±(A) as a stable∞-category such that its homotopy category hD±(A) is the usual derived category.

Definition 5.24. Let K be a commutative ring with unity, a dg-category C (roughly speaking) consists of

1. Obj(C) - object class

2. For all objects X and Y , HomC(X,Y ) are the chain complexes of K-modules with a notion of tensor
product and composition.

We can do this over any ring, but in the specific case where K = Z is the ring of integers, we have the following
construction.

Definition 5.25 (dg Nerve). Let C be a dg category and n ≥ 0, we can (roughly speaking) define Ndg(C)n to
be set of pairs of the form

({Xi}ni=0, {fI})

such that

1. Xi is an object in C for all i.

2. For all I = {i− < in < ... < i1 < i+} ⊆ [n], fI ∈ Hom(Xi− , Xi+)m satisfying

dfI =

m∑
i=0

(−1)j(...)

where ... is some combinatorial arrangement.

Example 5.26. In the dg Nevre construction, the 0-simplex are the objects, and 1-simplex are degree 0 mor-
phisms f : X → Y with df = 0, and so on.
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Lemma 5.27. We have the following:

1. Ndg(C) is an∞-category.

2. Let A be an additive category, the category Ch(A) of chain complexes on A is a dg-category.

Definition 5.28. Let A be an additive category. We define Ch−(A) as the category of chain complexes where
Mn = 0 for n << 0. We similarly define Ch+(A) as the category of chain complexes where Mn = 0 for
n >> 0.

Definition 5.29 (∞-Derived Categories). Let A be an abelian category with enough injectives (resp. projec-
tives), we can define D+(A) (resp. D−(A)) as the dg-nerve of Ch+(Ainj) (resp. Ch−(Aproj)).

It turns out that both categories are stable∞-categories, which follows from the following general fact in Lurie.

Proposition 5.30. Let A be an additive category, then Ndg(Ch(A)) is stable.
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6 Meeting October 17th, 2024
Title: Presentability of∞-categories
Speaker: Fangji Liu

A natural question to ask for the title is.

Question 6.1. What is a presentable∞-categories? Why do we need a presentable∞-category?

Most of the talk today will be devoted to defining this category. The intuition is that a presentable category should
satisfy the notion of:

1. The simplest kind of categories are small categories, but most categories are not small.

2. The idea of a presentable category is - although it is not small, it should be “generated” by some small subcate-
gories.

There are some interests in why we need presentable∞-categories too! For instance,

• Presentable∞-categories are more tractable and hence easier to study.

• Another motivation came from the universal characterization of K-theory (by BGT). The construction utilized
some additive/localizing invariants in Catex∞ → D where we requiredD to go into some presentable∞-category

Catex∞ → D ↪→ presentable∞-category

• There is a recent development called continuous K-theory which is a functor

K : {dualizable presentable∞-categories} → Sp

which extends the standard functor we have

K : Catsmall → Sp .

• Adjoint functor theorem.

• There is a correspondence between presentable∞-categories and combinatorial model categories.

6.1 Cocompletion and Ind-completion
To discuss the construction, we will first talk about cocompletion and ind-completion. For an ordinary category C, it
need not be cocomplete (meaning that it admits all small colimits). There is, however, a very natural way to produce
a cocompletion of C (it can be thought of as an analog of free group).

Theorem 6.2. The free cocompletion of C is the presheaf category of C, ie.

P(C) = Fun(Cop, Set).

The fully-faithful embedding of C in P(C) is given by the Yoneda embedding, ie

i : C ↪→ P(C), c 7→ [−, c]

We call the essential image of C as the representables in P(C).

In other words, let FunL(P(C), D) be all the functors that preserve colimits, then there is an equivalence of
category given by restriction

FunL(P(C),D) ≃ Fun(C,D).
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Proof. Let H ∈ P(C), we essentially want to show that

H = colimit of some representables .

There is a very explicit construction of this colimit. We take the category C/H where

• The objects of C/H are objects x ∈ H(c) for all c.

• The morphisms from x ∈ H(c)→ x′ ∈ H(c′) is a morphism

f : c→ c′ such that H(f) · x′ = x.

• In other words, C/H is the full-subcategory of C spanned by the representables of P(C)/H (slice category).

One can check that
H = colimC/H F

Here each functor F : C/H → P(C) sends x ∈ H(c) 7→ i(c) (recall i is the Yoneda embedding). ■

This is the discussion for 1-category, but the construction generalizes to∞-categories!

Theorem 6.3. Let C be an∞-category, then the free cocompletion of C is exactly

P(C) = Fun(Cop,Spc).

Proof Sketch. The idea is to find an ∞-category analog of a slice category and apply similar arguments. The slice
category is given by the homotopy pullback

C/H ∗

Fun(∆1, C) Fun(∆0, C)∆

In this case, we will have again that H = colimC/H i(c). ■

On the other hand, Ind completion is given by the concept of filtered colimits.

Definition 6.4 (Filtered Categories). A 1-category C is a filtered category if

• For any finite list of objects {ci}ni=1, there exists d ∈ obj(c) with morphisms ci → d for all i = 1 to n.

• For any finite collection of morphisms hi : c → c′ for i = 1 to n, there exists a morphism f : c′ → d
such that

f ◦ hi = f ◦ hj for all i, j.

Definition 6.5. A filtered colimit is a colimit whose index diagram is a filtered category.

The presheaf category is the free cocompletion, we want a suitable analog for cocompletion that only contains all
filtered colimits.

Definition 6.6. For an ordinary category C, we define Ind(C) to be the full subcategory of P(C) consisting of
H such that C/H is a filtered category (or equivalently that H is a filtered colimit of C).

Of course, from here, we have the following.
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Proposition 6.7. Ind(C) is the free filtered cocompletion (also called an Ind completion) of C. In other words,
we have an equivalence

Fun(Ind(C),D) ≃ Fun(C,D),

where the LHS is the filtered-colimit preserving functors.

This is the construction for 1-categories, but the catch is that the same construction does not quite work for ∞-
categories. Let us however analyze some properties of filtered categories to see if they can motivate a definition.

Proposition 6.8. A 1-category is filtered if and only if for all finite simplicial sets I , for a map I → N(C), there
exists an extension I∆ → N(C). Here I∆ refers to the cocone (this is just saying every map has a cocone).

Definition 6.9. We say that an∞-category C is filtered if for all finite simplicial set I , a map I → C extends
to I∆ → C.

6.2 Compactness
Once we have the notion of filtered colimit, there is a notion of a compact object.

Definition 6.10. An object d ∈ C, where C is an ordinary category, is called compact if the functor

[d,−] : C → Sets

preserves filtered colimits. Let Cω be the full subcategory spanned by compact objects.

Here are some examples of compact objects.

Category Compact Objects

Set Finite Sets
Vectk Finite dimensional vector space
ModR Finitely presented modules
Grps Finitely presented groups
Top Fintie Sets with discrete topology

Open(X) compact open sets in X
sSet Finite simplicial sets

Table 1: Some examples of categories and their compact objects.

Note that the compact objects are Top are not exactly all the compact spaces...

Proposition 6.11. We make two observations for every category C (with the exception of Top) in Table 1:

1. C is generated by compact objects (being colimits of compact objects).

2. The subcategory of compact objects in C is small.

Definition 6.12. A cardinal κ is called regular if for a collection {Ai}i∈I where I has cardinal < κ and each
Ai has cardinal < κ, the union

⋃
i∈I Ai has cardinal < κ.
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Example 6.13. 0, ω, and the continuum are examples of a regular cardinal. Here ω refers to the cardinality of
the natural numbers.

Definition 6.14. For any regular cardinal κ, we can define a κ-filtered category whose collection of objects and
morphisms in the definition are no longer finite, but of cardinality < κ (they are called κ-small). We can also
define κ-compact sets similarly, and Indκ(C) similarly. These notions extend similarly to∞-categories.

6.3 Presentable∞-category
We are finally able to define a presentable∞-category.

Definition 6.15. An∞-category C is called presentable if there exists a regular cardinal κ, a small∞-category
C ′, such that C ′ admits κ-small colimits, and

C = Indκ(C
′)

Definition 6.16. A functor f : C → D is a localization if it has a fully faithful right adjoint. A functor
f : C → D is accessible if there exists regular cardinal κ, C,D admits κ-filtered colimits, and f preserves
them.

Theorem 6.17. The following are equivalent:

1. C is presentable.

2. C is equivalent to Indκ(C
κ), whereCκ is the full subcategory of κ-compact objects, andCκ is essentially

small (note no κ!), and admits κ-small colimits.

3. C is equivalent to Indκ(C
′) such that C ′ is small and C (no ′) admits colimits.

4. There exists a small∞-category C ′ and an “accessible localization” in the sense there is a localization
P(C ′)→ C whose fully faithful right adjoint is accessible.

5. C is locally small, cocomplete, and there exists a regular cardinal κ, a set S consisting of κ-compact
objects, such that S generates C under small colimits.

Remark 6.18. The condition that C is equivalent to Indκ(C
′) in (3) such that C ′ is small is called being

“accessible”.

Example 6.19. For a small category C that is cocomplete. C is presentable if and only if C is idempotent
complete.

We will end the meeting with a discussion on the adjoint functor theorem.

Theorem 6.20. Presentable∞-categories are complete and cocomplete.
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Theorem 6.21 (Adjoint Functor Theorem). Let F : C → D be a functor between presentable∞-categories.

1. F is a left adjoint if and only if F preserves colimits.

2. F is a right adjoint if and only if F preserves limits and is accessible.

Remark 6.22 (Remark by Nir Gadish). If every object is the colimit of compact objects, then we can compute
the hom-set [x, y] as

[x, y] = [colimI c, colimJ d]

= lim
I
[c, colimJ d]

= lim
I

colimJ [c, d]

Thus, every morphism can also be hit by morphisms in the compact subcategory.
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7 Meeting October 24th, 2024
Title: Homotopy theory of∞-categories
Speaker: Saul Hilsenrath

Today we will be talking about the homotopy theory of∞-categories.

7.1 Setup
Let us recall a few constructions from earlier talks.

• We have the nerve functor N : Cat→ sSet that is full and faithful.

• We also have the 1-truncation functor τ : sSet → Cat that extends the inclusion of the simplex category
∆→ Cat.

• From the previous talk, we now know that ∆→ Cat can be extended by taking colimits.

• The one-truncation τ is left-adjoint to the nerve functor N .

We also recall a categorical lemma.

Lemma 7.1. Suppose F is left adjoint to a functor U , and U is full and faithful. Then there is a natural
isomorphism given by the co-unit

F ◦ U ≃ id

As a corollary of this categorical lemma, we have that

Corollary 7.2. We have a natural isomorphism of the form τ ◦N ≃ 1Cat.

As the first instance of using this construction, we have the following lemma.

Lemma 7.3. τ preserves binary products.

Proof Sketch. Recall that the nerve N([n]) = ∆n, so

τ(∆m ×∆n) ∼= τ(N([m])×N([n]))
∼= τ(N([m]× [n])) Nerve is right-adjoint and hence preserves products
∼= [m]× [n] By the preceding Corollary
∼= τ(∆m)× τ(∆n).

The proof then concludes by extending this using colimits. ■

7.2 Concrete Homotopy Theory (on Simplicial Sets)
Everything we discuss in this section applies to all of sSet. Recall in topology, a homotopy is of the formH : I×X →
Y . We want an analog of the interval. In this section, we first establish some items of terminology (note these are not
canonical):

1. For a presheaf X over A, let Xa be the image of a ∈ Obj(A) by X . We call Xa the fiber over a.

2. For a well-ordered, non-empty, finite poset category E, we use ∆E to denote the nerve of E, N(E).
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Definition 7.4. We use J to denote the nerve of the category 0 ⇐⇒ 1 (this is a category with two objects 0
and 1, one isomorphism between 0 and 1, and no additional morphisms besides the identities). In this case, we
define ∂J := ∂∆1. Note that we can write

∂J = ∆{0} ∪∆{1}.

Here the union is taken fiber-wise, and ∆{0},∆{1} are both isomorphic to ∆0.

Remark 7.5. ∆0 is the terminal object in sSet. As a result, the product ∆0 ×X is isomorphic to X .

Lemma 7.6. For j = 0, 1, let ij : X → ∂J ×X be the embedding of X as ∆{j} ×X . Then

(∂J ×X, i0, i1) is the coproduct X +X.

Proof. The idea is just that
∂J ×X = (∆{0} ×X) ⊔ (∆{1} ×X).

■

Definition 7.7. In the category of simplicial sets,

1. A J-homotopy is a morphism J ×X → Y .

2. We say that f, g : X → Y are J-homotopic, written as f ∼J g, if there exists a lift to the problem

∂J ×X Y

J ×X

[f,g]

∃h

Note that equivalently, this is saying that

X +X Y

J ×X

[f,g]

∃h

3. We say that f : X → Y is a J-homotopy equivalence if there exists g : Y → X such that

g ◦ f ∼J 1X , f ◦ g ∼J 1Y .

We state the following lemma whose verification is left to the reader.

Lemma 7.8. ∼J is reflexive and symmetric. It is generally not transitive, though.

Proposition 7.9. Let f, g : X → Y . If f ∼J g, then τ(f) is naturally isomorphic to τ(g) (here τ(f), τ(g) are
functors in Cat).
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Proof. Recall that τ preserves coproducts and we showed that it preserves binary products. Thus, we have the follow-
ing diagram

τ(X) + τ(X) τ(Y )

τ(J)× τ(X)

[τ(f),τ(g)]

τ(h)

Here h is given by the ∼J definition. In particular, by how J is defined, τ(J) ∼= (0 ⇐⇒ 1). Thus, τ(J) is going to
look like a category of the form (a0 ⇐⇒ a1).

Let f : a0 → a1 be the only morphism from a0 to a1 in that category. We can consider

η = (τ(h)(f × 1x))x∈Obj(τ(X))

which will give the desired natural isomorphism. ■

Corollary 7.10. As a corollary, if f : X → Y is a J-homotopy equivalence, then τ(f) is an equivalence of
categories.

Proof. From the previous proposition, if g : Y → X is a J-homotopy inverse, then

τ(g)τ(f) ∼ 1τ(X) and τ(f)τ(g) ∼ 1τ(Y ).

■

Here we introduce another notation: We have that i (resp. p) has the left (resp. right) lifting property with respect
to p (resp. i) if for every commutative square of the form

A X

B Y

i p

there is a lift in the diagonal of the square, as seen above. We denote this situations as i LLP p or p RLP i.

Definition 7.11. Given a collection I of morphisms, we write r(I), ℓ(I) for

r(I) = {p | p RLP i, ∀i ∈ I}

ℓ(I) = {i | i LLP p, ∀p ∈ I}.

Definition 7.12. We use Cof (cofibrations) to denote the collection of monomorphisms in sSet. We use tFib
(called trivial fibrations) to denote r(Cof).

Proposition 7.13. Let f : X → Y be a trivial fibration. Then f is a J-homotopy equivalence.

Proof. We use π : J × X → X to denote the projection. Let ∅ denote the empty presheaf (i.e., the presheaf whose
fibers are all empty). Then we have a lift of the form

∅ X

Y Y

f∃s

=
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and a lift of the form

∂J ×X X

J ×X Y

[s◦f,1X ]

f∃h

f◦π

(In both cases, we have lifts because the left sides are monomorphisms.) In particular, the first diagram tells us that
f ◦ s = 1Y , and the second diagram tells us that s ◦ f ∼J 1X . ■

We establish yet another notation: For simplicial sets A,X , we write XA := Fun(A,X) = HomsSet(h(−) ×
A,X). Here h(−) is given by the Yoneda embedding ∆ ↪→ sSet.

Thus, a map f : A→ B induces a morphism Xf : XB → XA. In particular, the n-th component of Xf is the natural
transformation

(Xf )n = HomsSet(∆
n × f,X),

given by pre-composition by 1∆n × f .

Here we state a proposition that we won’t prove for the sake of time.

Proposition 7.14. Let f : A→ B be a J-homotopy equivalence. Then Xf is also a J-homotopy equivalence.
In particular, this implies that τ(Xf ) is an equivalence of categories.

7.3 Abstract Homotopy Theory (on∞-Categories)

Definition 7.15. Let A,B be simplicial sets. We say that f : A→ B is a categorical weak equivalence if for
all∞-categories X , τ(Xf ) is an equivalence of categories. We use W to denote the class of categorical weak
equivalences.

Example 7.16.

1. J-homotopy equivalences are categorical weak equivalences.

2. As a special case, trivial fibrations are categorical weak equivalences.

Lemma 7.17. W has the 2-out-of-3 property. In other words, if h = g ◦ f , and two out of f, g, h are in W ,
then the third morphism is in W .

Proof Sketch. The class of equivalences of categories in Cat has the 2-out-of-3 property. Now use the functoriality of
τ ◦X(−). ■

Definition 7.18. The class of trivial cofibrations tCof is given by Cof ∩W . Further, we write the class of
categorical fibrations as

Fib = r(tCof).
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Lemma 7.19. Let I1 = {∂∆n ↪→ ∆n | n ≥ 0} (note that this is a set). Then

Cof = ℓ(r(I1)).

Definition 7.20. Let κ be any cardinal. A simplicial set has size < κ if |Mor(∆/A)| < κ.

Lemma 7.21. There exists a cardinal κ such that if I2 is the set of trivial cofibrations between simplicial sets
of size < κ, then

tCof = ℓ(r(I2)).

Remark 7.22. By definition, the class of trivial fibrations is r(Cof), so we have that

tFib = r(Cof) = r(ℓ(r(I1))) = r(I1).

By the same argument
Fib = r(I2).

Finally, tFib = r(Cof) ⊂ r(tCof) = Fib. Thus, the trivial fibrations form a sub-class of the categorical
fibrations.

Definition 7.23. Let C be a 1-category. A weak factorization system (WFS) is a pair (A,B) such that

1. A,B ⊂ Mor(C).

2. A,B are closed under retracts. Here, if we have a commutative diagram

• • •

• • •

id

f g f

id

we say that “f is a retract of g”.

3. A ⊂ ℓ(B).

4. For any f ∈ Mor(C), there exist i ∈ A, p ∈ B such that f = p ◦ i.

Remark 7.24. In the very concrete world of compactly generated weakly Hausdorff spaces, the mapping
cylinder would give a weak factorization system.

Lemma 7.25 (Small Object Argument). Let C be a 1-category and I ⊂ Mor(C) be a set (note the importance
of this being a set) such that for all i ∈ I , c = dom(i) is small, in the sense that there exists a cardinal κ such
that

HomC(c,−) preserves colimits of κ-filtered well-ordered sets.

Then, (ℓ(r(I)), r(I)) is a weak factorization system.
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Lemma 7.26. If A is a small category, then all objects of the presheaf category SetA
op

are small. Here by
small, we mean the definition of small in the small object argument.

In particular, this lemma implies that we don’t have to worry about the smallness criterion of the small object argument.
In particular, we obtain as a corollary

Proposition 7.27. (Cof, tFib) and (tCof,Fib) are weak factorization systems.

We know that tCof = Cof ∩W . We would like a similar result for fibrations.

Lemma 7.28. tFib = Fib∩W .

Proof. We know from an earlier remark that tFib ⊂ Fib, and we know that every trivial fibration is a categorical weak
equivalence. Thus, tFib ⊂ Fib∩W . For the other direction, let f ∈ Fib∩W . Since (Cof, tFib) is a WFS, there exist
i ∈ Cof, p ∈ tFib such that

f = p ◦ i.

Now, f, p ∈W , so the 2-out-of-3 property gives us that i ∈W . Now, this implies that i ∈ tCof .

Thus, f has the RLP with respect to i. A standard category theory argument shows that f is a retract of p, but since
WFS is closed under retracts, we have that f ∈ tFib. ■

With all the setup we have built earlier, we may give a model category structure.

Definition 7.29. A model category is a 1-category C with W,Fib,Cof ⊂ Mor(C) such that

• C has all finite limits and colimits.

• W has the 2-out-of-3 property.

• (Cof,Fib∩W ) and (Cof ∩W,Fib) are weak factorization systems.

Theorem 7.30. sSets with W,Fib,Cof defined previously is a model category. This model category is called
the Joyal model category and denoted sSetJ .

7.4 Fibrant Objects
Notation: We use iFib to denote the class of inner fibrations (defined in Mats’ talk). We also recall from the same
talk that X is an∞-category if and only if (!X : X → ∆0) ∈ iFib.

Lemma 7.31. Fib ⊂ iFib.

Proof Idea. One can show that the morphisms in ℓ(iFib) (a.k.a., the inner anodyne morphisms) are all trivial cofibra-
tions. ■

For f ∈W , we know that for all∞-categoriesX , τ(Xf ) is an equivalence of categories, so it is essentially surjective.
For f ∈ tCof , we have a stronger result.
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Lemma 7.32. If f ∈ tCof , then τ(Xf ) is surjective on objects for all∞-categories X .

Definition 7.33. In a model category C, an object c is fibrant if the unique morphism !c : c→ 1 to the terminal
object is a fibration.

Theorem 7.34. The fibrant objects in sSetJ are exactly the∞-categories.

Proof. Suppose X is a fibrant object in sSetJ . Then !x ∈ Fib ⊂ iFib, which we know from Mats’ talk implies that X
is an∞-category.

Conversely, suppose X is an ∞-category, and let f : A → B be a trivial cofibration. Then we know that τ(Xf )
is surjective on objects. In particular, recall that on ∞-categories, τ is the homotopy category construction, so the
surjectivity condition is the exact same thing as saying that HomsSet(f,X) (pre-composition by f ) is surjective. In
particular, all triangles of the following form have a lift B → X .

A X

B

f
∃

This implies that when we add the terminal object ∆0 (which does not affect the rest of the diagram), we have a lift.

A X

B ∆0

f

In particular, this implies that !X RLP f . Hence, we have that !X ∈ r(tCof) = Fib. Thus, X is a fibrant object! ■

7.5 Combinatorial Model Categories and Localization
Given a model 1-category, we can define an associated homotopy category by “localizing the weak equivalences”, but
how can we do that for∞-categories? This is the goal of this section. We first establish some setup.

Definition 7.35.

1. A 1-category C is presentable if its nerve is presentable.

2. A model category C is cofibrantly generated if it is constructed using the small object argument, i.e.,
there are sets I, J ⊂ Mor(C) (I contains generating cofibrations, J contains generating trivial cofibra-
tions) such that Cof = ℓ(r(I)) and Fib = r(J).

3. A combinatorial model category is a cofibrantly generated model category whose underlying category
is also presentable.

Example 7.36.

1. The category Set is presentable.

2. For any small category A, the presheaf category SetA
op

is presentable. In particular, this means that sSet
is presentable.



Combinatorial Model Categories and Localization Page 44 of 69

3. The Joyal model category sSetJ is a combinatorial model category.

Definition 7.37. Let C be an∞-category and i : τ(C)′ → τ(C) be a subcategory of its one-truncation. We
can define a simplicial subset C ′ as the pullback:

C ′ C

N(τ(C)′) N(τ(C))

Here, C ′ is an∞-category, and it is called the subcategory of C spanned by τ(C)′. If τ(C)′ is full, then C ′

is the full subcategory of C spanned by τ(C)′.

Now we are prepared to define the notion of localization.

Definition 7.38. Let W ⊂ A be simplicial sets. For each∞-category X , FunW (A,X) ⊂ Fun(A,X) is the
full subcategory of functors A→ X taking W to invertible morphisms.

A localization of A by W is the data (L(A), γ : A→ L(A)) such that

1. L(A) is an∞-category.

2. γ : A→ L(A) takes W to invertible isomorphisms.

3. For every∞-category X , Xγ induces an equivalence of∞-categories Fun(L(A), X)→ FunW (A,X).

When C is a model category, we let L(C) denote the localization of N(C) by the subcategory generated by the
weak equivalences W .

Theorem 7.39. Let C be a combinatorial model category. Then L(C) is presentable.

Corollary 7.40. The∞-category of small∞-categories∞-Cat = L(sSetJ) is presentable.

Remark 7.41. Why is ∞-Cat “the same as” L(sSetJ)? This is actually the definition of ∞-Cat in Cisinki’s
book, but we justify the intuition below.

In ordinary categories, it is a standard theorem in model category theory that given a model category C, its
associated homotopy category Ho(C) is categorically equivalent to Ccf/ ∼, the category whose objects are
the objects in C that are both fibrant and cofibrant and whose morphisms are suitable “homotopy classes of
maps” in C. (These turn out to just be J-homotopy classes in the case of sSetJ .)

We proved in the previous section that the∞-categories are all fibrant objects. What about cofibrant objects?
Well, we observe that the simplicial set with empty fibers is the initial object and the unique map from the initial
object to any other simplicial set is thus a monomorphism. This means that every object in sSetJ is cofibrant!
Thus, in light of this standard theorem in model category theory, Ho(sSetJ) is going to be the category whose
objects are (small)∞-categories and whose morphisms are J-homotopy classes of maps between∞-categories.
When we take the one-truncation of L(sSetJ), we are going to get Ho(sSetJ) exactly!
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8 Meeting October 31st, 2024
Title: Universal Characterization of Algebraic K-Theory
Speaker: Albert Yang

8.1 Why Do We Care?
There are a series of conjectures in mathematics that are intricately related to the study of algebraic K-theory!

1. For people in algebraic number theory, there is a conjecture called Kummer-Vandiver conjecture that is very
relevant to algebraic K-theory. Let Q(ζp) be a number field, where ζp is a primitive p-th root of unity. In other
words, Q(ζp) is the p-th cyclotomic field.

Conjecture 8.1. For all maximal real subfield F of Q(ζp), let h(F ) be the class number of F , then p does not
divide h(F ).

There is an incredible result by a combination of Kurihara and Voevodsky that showed that

Theorem 8.2. The Kummer-Vandier conjecture is true if and only if K4n(Z) = 0 for all n.

2. For people interested in geometry and topology, there is also a notion of s-cobordism theorem that relates to
algebraic K-theory.

Definition 8.3. Let W be a cobordism between M and N , we say this is an h-cobordism if the two
inclusion maps M →W and N →W are homotopy equivalences.

Note that an obvious h-cobordism is when M = N and W =M × [0, 1], so W is a cylinder. One fundamental
question is ask when an h-cobordism is a cylinder.

Theorem 8.4. Let X ↪→ W be an h-cobordism, then the obstruction of W to cylinder lies in
K1(Z[π1X]), this is sometimes also called the Whitehead group.

3. For people interested in algebraic geometry, there is also the Lichtenbaum-Quillen conjecture that relates alge-
braic K-theory and étale cohomology. We will not get into the details of this conjecture, but roughly speaking,
the conjecture asserts that the algebraic K-theory does not satisfy étale descent. However, for large i, we have
that

Ki(S,Z/n) ∼= H−i
ét (S, F ét/n).

Here n is invertible in S, and F ét is the sheafification of the functor F , where F assigns each X to K(X).

4. In fact for the algebraic geometers, there is a motivic spectral sequence (Thomason, 1985) of the form

H∗
ét(X,π

ét
∗K/p

v[β−1]) =⇒ π∗K/p
v(X)[β−1].

Here β is called the Bott element. The specific details of what is on this item are omitted from this, but the key
idea the audience should keep in mind is that there is a way to compute homotopy groups of K using a certain
étale cohomology.

8.2 What is Algebraic K Theory?
Here we give a very concise introduction to algebraic K-theory. For a more thorough treatment, we refer to Wiebel’s
K book!

In this section, we fix R to be an associate unital ring with 1R ̸= 0R.
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Definition 8.5. For n > 0, we define Kn(R) = πn(BGL(R)+). Here the plus sign “+” is Quillen’s plus
construction.. For n = 0, we define K0(R) as

Z[isomorphism classes of finite projective (left) R-modules]/ ∼

Here the equivalence relation is generated by [P ⊕Q] ∼ [P ] + [Q].

We also deine K(R) as K0R× BGL(R)+.

Here are some examples of algebraic K-theory.

Example 8.6. The first major non-trivial calculation in algebraic K-theory is the K-theory of finite fields. In
general, we have that

1. Let F be any field, then K0(F) = Z.

2. Let Fq be a finite field of order q, then

Kn(Fq) =

{
Z/(qi − 1), n = 2i− 1

0, else

The rough idea of the proof was to use “certain operators” ψq − 1 : BU → BU and look at the fibers.

Remark 8.7. The previous construction of algebraicK-theory is done using Quillen’s plus-construction. There
are two alternative constructions via (1) Quillen’s Q-construction and (2) Waldhausen’s S•-construction. It
turns out that the three constructions are equivalent!

For the sake of brevity, in this talk we will focus on Waldhausen’s S•-construction, which is one in the setting of∞-
category. We also write Catst∞ as the∞-categories of small stable∞-categories, whose morphisms are exact functors
(ie. preserve finite limits/colimits). In this section, we fix C as an object in Catst∞.

Since C is stable, it is by definition pointed, and we use ∗ to denote the zero object in C.

Definition 8.8. We define Waldhausen’s S•-construction as follows - S•C is a simplicial category of the form:

• S0C = ∗.

• S1C are diagrams of the form
∗ X ∈ C

∗
It turns out that S1C ≃ C.

• S2C are diagrams of the forward

∗ X0,0 X0,1

∗ X1,1

∗
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where the square here is co-Cartesian (ie. pushout). It turns out that S1C ≃ Fun(∆1, C).

• In general, SnC are diagrams are of the form

∗ X0,0 X0,1 ... X0,n−1

∗ X1,1 ... X1,n−1

∗
. . .

...

Xn−1, n

∗

(Pictorially, they look like upper triangular matrices), such that each square is co-Cartesian/pushout.

Here are some important facts about this S• construction:

1. All SnC are stable, ie. SnC ∈ Catst∞.

2. We can construct the algebraic K-theory spectrum KC such that

KCn := |(S(n)
• C)≃|

Here S(n)
• C := (S• ◦ ... ◦ S•)(C) where we iterate the operator n times, and (S

(n)
• C)≃ is the sub-groupoid

completion. Furthermore, the structure map is induced by

Σ(−)≃ → |(S•C)≃|

by restriction to 1-skeleton. Thus, we have Ω∞KC ≃ Ω|(S•C)≃|.

3. This construction K outlines a functor K : Catst∞ → Sp that is Lax Symmetric Monoidal.

4. K(C) = K(Sp C). Here Sp C is the∞-category of spectrum objects in C, which is an∞-functorX : Z×Z→ C
such that for all i ̸= j, X(i, j) = 0 ∈ C.

Remark 8.9. Like K : Catst∞ → Sp, there is a similar construction K : Catst∞ → Sp that produces a “non-
connective” spectrum, meaning that the spectrum can have non-trivial negative homotopy groups. We omit the
details of its construction in this talk here.

Remark 8.10. There is a Dwyer-Kan (DK) simplicial localization as follows - let C be a model category,
then there is a way to map

C → N(FibReplacement(DK(C, wC))).

It turns out that the algebraic K theory spectrum produced in this Waldhausen construction may be decomposed
in terms of its Dwyer-Kan simplicial localization and can lead to many interesting studies. This was the
principal approach done by Blumberg and Mandell in [BM11].
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8.3 Universal Property of Algebraic K-Theory

Let Catperf∞ ⊆ Catst∞ be a full subcategory spanned by the idempotent complete small stable∞-categories. In this
case, since the∞-categories are idempotent, we also have an adjunction

Idem : Catst∞ ⇌ Catperf∞ : Forget

To explain the terminology:

1. Recall that when C is a classical 1-category:

Definition 8.11. Let X,Y ∈ C, Y is called a retract of X if there is a diagram of the form

X

Y Y

rι

id

Here ι is a monomorphism and r is an epimorphism. In this case, we say that ι ◦ r is idempotent. This
corresponds to our usual notion of idempotence because (ι ◦ r)2 = ι ◦ r.

2. In the∞-category sense - now let C ∈ Catst∞:

Definition 8.12. LetX,Y ∈ C, we say Y is a retract ofX if Y is a retract ofX in hC (the one-truncation).
This is the same as saying there exists a 2-simplex ∆2 → C corresponding to the diagram:

X

Y Y

rι

id

We also define Idem+ as the collection of simplicial sets such that for any finite J ̸= ∅ that is totally
ordered,

HomSet(∆
J , Idem+) = {(J0,∼) : J0 ⊆ J, and “ ∼ ”satisfies for i ≤ j ≤ k ∈ J , i, k ∈ J0, i ∼ k

implies j ∈ J0 and i ∼ j ∼ k}.

From here we let Idem ⊆ Idem+ denote the simplicial sets such that J0 = J in pairs (J0,∼).

3. Finally, we can define what we mean by “idempotent complete”.

Definition 8.13. Let C ∈ Catst∞, we say C is idempotent complete if for all F ∈ Fun(Idem, C), F is
effective. By effective, we mean that F can be extended to Fun(Idem+, C).

4. The Idem functor sends C to its idempotent completion.

After explaining the terminologies, we need three more definitions.

Definition 8.14. Let f : C → D ∈ Catst∞ be a functor. We say that f is a Morita equivalence if Idem f :
Idem C → IdemD is an equivalence.
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Definition 8.15. Consider the composition of functors in Catst∞

C D Ef g

We say that this is an exact sequence if:

1. f is fully-faithful.

2. D/C ≃ E . Here by the quotient D/C, we mean the pushout in the diagram

C D

0 D/C

f

3. g ◦ f = 0.

This exact sequence splits if there is a section s : E → D, s′ : D → C (here a section should be thought of as a
right adjoint going back such that composition is equivalent to identity via the adjunction morphism).

Definition 8.16. A functor F : Catst∞ → Sp (into the stable ∞-category of spectra) is called an additive
invariant if:

1. F inverts Morita equivalence.

2. F preserves filtered colimits.

3. F maps split exact sequence to split cofiber sequence.

F is called an localizing invariant if the first two conditions above holds, and (3’) F takes exact sequence to
cofiber sequence.

Theorem 8.17. The algebraic K-theory construction K taking a small stable∞-category to an algebraic K-
theory spectra is an additive invariant. If we take the non-connective construction of the spectrum, the functor
K is a localizing invariant.

Remark 8.18. Topological Hochschild homology is an additive invariant.

Notation: Let us write PSh+Sp(Cat
st
∞) be the category of presheaves

F : ((Catst∞)W )op → Sp

such that Condition (3) (not (3’)) in Definition 8.16 is satisfied. Also let PShSp((Cat
st
∞)W ) be the category of

presheaves to be the same as the plus version, but without requiring condition (3). Here (Catst∞)W is the full sub-
category given by compact objects.

There is a forgetful functor
Forget : PSh+Sp(Cat

st
∞)→ PShSp((Cat

st
∞)W )

where we just forget about Condition (3). It turns out this admits an adjointL+ : PShSp((Cat
st
∞)W )→ PSh+Sp(Cat

st
∞)
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Definition 8.19. Let L+ be the adjoint as above, we can define a map M+ as follows.

M+ : Catst∞ PShSp((Cat
st
∞)W ) PSh+Sp(Cat

st
∞)

C 7→M+(C)

Yoneda L+

This map is called the additive non-commutative motive.

Remark 8.20. There is a similar map Mloc we can define for localizing non-commutative motive.

Finally, we are ready to state the main theorem.

Theorem 8.21 (Blumberg-Gepner-Tabuada, 2013, [BGT13]). For all C ∈ Catperf∞ , there exists two natural
equivalences:

1. Map(M+(Sp
W ),M+(C)) ≃ K(C).

2. Map(Mloc(Sp
W ),Mloc(C)) ≃ K(C).

Here SpW is the full subcategory given by compact objects. This is actually called the∞-category of finite
spectra. Equivalently, this means that

Ψ : PSh+Sp(Cat
st
∞)→ Sp

is co-representable. There is a similar story that happens with localizing invariants.

From here, we obtain three corollaries.

Corollary 8.22. For all n ∈ Z,

KnC ≃ Hom(M+(Sp
W ),Σ−nM+C)

Corollary 8.23. For any additive invariant F ,

Map(K,F ) = F (SpW )

This means that K is the universal additive invariant!

Similarly, we also have that

Corollary 8.24. For any localizing invariant F ,

Map(K, F ) = F (SpW )

This means that K is the universal localizing invariant!

Now we give an outline for the proof of Theorem 8.21 for the additive case.
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Proof Sketch of Theorem 8.21. We only sketch the proof of the additive case. Indeed, for allA ∈ Catst∞, B ∈ Catperf∞
with B compact in Catperf∞ , then one can show that M+(A) ≃ KA. Here KA is defined as follows:

• KA ∈ PShSp((Cat
st
∞)W )

• KA(C) = K(Funex(C, IdemA)). Here, Funex denote the exact functors.

• Note that KA(Sp
W ) = K(A).

• One can also show that the functor KA is local. In other words, for all split exact sequence B → C → D in
(Catperf∞ )W , there is an equivalence

Map(ψ(D),KA) ≃ Map(ψ(C)/ψ(A),KA) (†).

where ψ : Catperf∞ → PShSp((Cat
perf
∞ )W ) is the Yoneda embedding.

Thus, we have that

Map(M+(B),M+(A)) ≃ Map(M+(B),KA) Recall M+(A) ≃ KA

= Map(L+ ◦ ψ(B),KA)

= Map(ψ(B),KA).

Here, the maps in the last line should be thought of as happening in PShSp((Cat
st
∞)W ). We obtained the last equality

using the adjunction between L+ and Forget. Thus, we have that

Map(M+(B),M+(A)) ≃ Map(ψ(B),KA)).

From here, since B is in (Catperf∞ ) and is compact, ψ(B) is representable.

It turns out there is a theorem called the spectral Yoneda lemma. In this case, when we apply the spectral Yoneda
lemma to ψ(B), we have that Map(ψ(B),KA)) ≃ KA(B). Plugging B = SpW then obtains the proof of the additive
case. ■

Remark 8.25. While we did not define THH (topological Hochschild Homology), we do in fact that that

π0 Map(K,THH) = π0(THH(SpW )) ≃ π0(THH(S)) = Z.

The element 1 in Z corresponds to a unique map K → THH which is called the Dennis trace.



Motivations for Algebraic L-Theory Page 52 of 69

9 Meeting November 7th, 2024
Speaker: Mattie Ji
Title: Introduction to Algebraic L-Theory

9.1 Motivations for Algebraic L-Theory
Algebraic L-theory is often called an analog ofK-theory for modules equipped with quadratic forms. Let us first offer
some geometric motivations for how studying quadratic forms arose in a geometric setting.

Let Mn be a closed orientable connected manifold. The classic Poincaré duality in algebraic topology asserts the
following.

Theorem 9.1. For all k ∈ Z, Hn−k(M ;Z) ∼= Hk(M ;Z).

Poincaré duality is quite useful in the study of 4-manifolds in low-dimensional topology. More generally, when n = 4k
is a multiple of 4, Poincaré duality provides the following invariant on M .

Theorem 9.2. There exists an element [M ] ∈ Hn(M ;R) such that the following is a non-degenerate symmetric
bilinear form:

⟨•, •⟩M : H2k(M ;R)×H2k(M ;R) H4k(M ;R) H0(M ;R) ∼= R∪ •∩[M ]

The non-degenerate quadratic form associated to the manifold M is an invariant, and we can assign an invariant to it.

Definition 9.3. We can choose a basis x1, ..., xa, y1, ..., yb (a + b = dimRH
2k(M ;R)) of H2k(M ;R) such

that ⟨xi, xi⟩ = 1 (ie. positive eigenvalues) and ⟨yi, yi⟩ = −1 (ie. negative eigenvalues). The difference a− b is
called the signature of M . Note that the sign of the signature depends on the choice of the fundamental class,
so we refer to the signature modulo sign.

It is a standard fact in linear algebra that a non-degenerate quadratic form over the reals is completely determined by
its dimension and signature.

When n = 4k+2, in this case the middle cup product H2k+1(M ;R)×H2k+1(M ;R)→ H4k+2(M ;R) is no longer
commutative but anti-commutative. Over characteristic 2, there is no distinction. Poincaré stills gives the following
theorem.

Theorem 9.4. There exists an element [M ] ∈ Hn(M ;Z/2Z) such that the following is a non-degenerate
symmetric bilinear form:

⟨•, •⟩M : H2k+1(M ;Z/2Z)×H2k+1(M ;Z/2Z) H4k+2(M ;Z/2Z) H0(M ;Z/2Z) ∼= Z/2Z∪ •∩[M ]

There is an analog of signature for 4k-manifolds in the case of 4k+2-manifolds known as the Kervaire/Arf-Invariant.

Definition 9.5. A theorem by Arf shows that there is a basis {e1, f1, ..., er, fr, g1, ..., gs} such that the quadratic
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form associated to ⟨•, •⟩M may be rewritten as

(x1, y1, ..., xr, yr, z1, ..., zs) 7→
r∑

i=1

(aix
2
i + xiyi + biy

2
i ) +

s∑
j=1

gjz
2
j

The Kervaire/Arf invariant is defined as
∑r

i=1 aibi.

Theorem 9.6 (Arf). A non-degenerate bilinear form over Z/2Z is completely determined by its dimension and
Arf invariant.

Remark 9.7. Before we move on, we briefly discuss one more observation about symmetric bilinear forms and
quadratic forms that is reformulated as follows. If R is a commutative ring and let Proj(R) be the category of
finitely generated projective R-modules. We observe that for P ∈ Proj(R)

1. HomR⊗R(P ⊗ P,R) is the collection of bilinear R-valued forms on P .

2. There is an obvious action of C2 on HomR⊗R(P ⊗P,R), from which we have two canonical identifica-
tions

HomR⊗R(P ⊗ P,M)C2 are the symmetric bilinear R-valued forms on P ,

HomR⊗R(P ⊗ P,M)C2 are the quadratic R-valued forms on P .

More generally, we could replace R with an R-module M in the items listed above. If we are considering an
involution as well, we could also produce skew-symmetric and skew-quadratic forms from this identification.

9.2 Symmetric Bilinear and Quadratic Functors
Thus, the study of quadratic forms and symmetric bilinear forms arises quite naturally in algebraic topology and low-
dimensional topology. It is then natural to ask - is there an ∞-categorification of these concepts? The hope is that,
perhaps by abstracting the theory, we can study broader problems with similar phenomenon and make previous con-
crete problems easier.

This is where Algebraic L-theory comes in, but, to explain what algebraic L-theory is, we should first define our
suitable generalizations of symmetric bilinear forms and quadratic forms in∞-category theory.

Throughout this section, every∞-category is a stable∞-category.

• Recall C being stable means that it is pointed, fibers and cofibers exist, and a triangle is a fiber sequence if and
only if it is a cofiber sequence.

• Equivalently, a pointed category C is stable if it admits finite limits and colimits, and a square is a pushout if and
only if it is a pullback (Definition 5.11 of Gallauer).

• There are two canonical functors in C known as the loop functor Ω and the suspension functor Σ.

• The stable∞-category of spectra Sp is a canonical example of stable∞-categories.

Let F : C → D be a functor between stable∞-categories, we say F is reduced if it sends the zero object to the zero
object (ie. F (0) = 0). We say a reduced functor is exact if it takes fiber sequences to fiber sequences.
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Recall a fiber sequence is given by the homotopy pull-back

fib(f) X

0 Y

f

Let us recall that for any stable∞-category C with object X . For any other object X , there is a sequence of mapping
spaces {MapC(Y,Σ

nX)} that constitutes a spectrum we will write as MorC(Y,X). A mapping space MapC(c, d) is
given by the pullback:

MapC(c, d) Fun(∆1, C)

∆0 Fun(∂∆1, C)
(c,d)

Definition 9.8 (Symmetric and Non-degenerate Bilinear Functors). A bilinear functor is a functor B : C ×
D → E such that for all c ∈ C, the following two functors are both exact,

d 7→ B(c, d), d 7→ B(d, c).

We use Funb(C) ⊆ Fun(Cop × Cop,Sp) to denote the full subcategory given by the bilinear functors.

Symmetric: There is a C2 action on Funb(C) by flipping the two entries, we use

Funs(C) = [Funb(C)]hC2

to denote the ∞-category of C2-equivariant objects in Funb(C). A bilinear functor B ∈ Funs(C) is called
symmetric. Note that this is also called the homotopy fixed point spectra with respect to C2.

Non-degenerate: Let B ∈ Funb(C) be a bilinear functor.

1. We say that B is right non-degenerate if for each Y ∈ C, the functor B(−, Y ) is representable by an
object in C. In other words, we can write

B(X,Y ) ≃ MorC(X,D
rightY ).

Here Drigt : Cop → C is a functor keeping track of the representation.

2. We say that B is left non-degenerate if for each X ∈ C, the functor B(X,−) is representable by an
object in C. In other words, we can write

B(X,Y ) ≃ MorC(Y, (D
left)opX) ≃ MorCop(DleftX,Y ).

Here Dleft : C → Cop is a functor keeping track of the representation.

3. We say B is non-degenerate if it is both left and right non-degenerate. From definition, we can see that
Dleft and Dright are adjoint as

MorCop(DleftX,Y ) ≃ B(X,Y ) ≃ MorC(X,D
rightY ).

4. When B is symmetric and non-degenerate (notation: B ∈ Funsn(C)), we write D as Dright. We note
that Dleft is actually Dop since

MorCop(DleftX,Y ) ≃ B(X,Y )

≃ B(Y,X)

≃ MorC(Y,DX)

≃ MorCop(DopX,Y ).
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Perfect: Let B ∈ Funsn(C), from the discussion above we know that Dop is adjoint to D. The unit of this
adjunction gives an evaluation map:

ev : id =⇒ DDop.

We say that B is perfect if ev is an equivalence.

Example 9.9 (Spainer-Whitehead Duality). Let C = Sp and B be

B(X,Y ) = MorSp(X ∧ Y, S).

B is a symmetric non-degenerate bilinear functor on C. The corresponding duality functor D is called the
Spainer-Whitehead Duality.

The restriction of B to Spω (full subcategory spanned by the compact objects in Sp, in other words, the finite
spectra) is perfect.

We also want to establish the analog of a quadratic form in∞-categories. Motivated by the story in linear algebra, we
consider the following construction.

Construction 9.10. Let Q : Cop → Sp be a reduced functor. For X,Y ∈ C, we have consider maps

Q(X)⊕Q(Y )→f Q(X ⊕ Y )→g Q(X)⊕Q(Y )

We note that up to equivalence, Remark 1.1.3.5 of Lurie tells us that Q(X) ⊕ Q(Y ) is both the product and
coproduct of Q(X) and Q(Y ). From universal property, we have the following maps:

X X

X X ⊕ Y Y X X ⊕ Y Y

Y Y

idX gX 0idX

iX

0

fX

fY

0

iY

idY

qX qY

0
gY

idY

Since Q is contravariant, we obtain maps

1. Q(fX) : Q(X) → Q(X ⊕ Y ) and Q(fX) : Q(X) → Q(X ⊕ Y ), which induces the map f : Q(X) ⊕
Q(Y )→ Q(X ⊕ Y ) by universal property.

2. Q(gX) : Q(X ⊕Y )→ Q(X) and Q(gY ) : Q(XY )→ Q(Y ), which induces the map g : Q(X ⊕Y )→
Q(X)⊕Q(Y ) by universal property.

Schematically, we can think of g ◦ f as the matrix(
Q(idX) Q(0)
Q(0) Q(idY )

)

Proposition 9.11. The composition g ◦ f is the identity, and this makes Q(X) ⊕ Q(Y ) a direct summand of
Q(X ⊕ Y ). In particular, this gives a symmetric (in its arguments) functor B : Cop × Cop → Sp such that

Q(X ⊕ Y ) ≃ Q(X)⊕Q(Y )⊕B(X,Y ).

B is called the polarization of Q.
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Remark 9.12. The proposition is really an analog of the following idea in linear algebra - if q(x) is a quadratic
form, then the term q(x+ y)− q(x)− q(y) is a symmetric bilinear function.

Proof Idea. We said earlier that g ◦ f should be schematically thought of as the matrix(
Q(idX) Q(0)
Q(0) Q(idY )

)
.

Since Q is a reduced functor, this matrix becomes(
idQ(X) 0

0 idQ(Y )

)
,

which is clearly the identity. More rigorously, the universal property tells us that the identity map is the unique map
satisfying

Q(X)

Q(X)⊕Q(Y ) Q(X)⊕Q(Y )

Q(Y )

jX
jX

id

jY
jY

It suffices for us to show this diagram holds when we replace the identity map by g ◦ f . Now we currently have a
diagram of the form

Q(X) Q(X)

Q(X)⊕Q(Y ) Q(X ⊕ Y ) Q(X)⊕Q(Y )

Q(Y ) Q(Y )

jX
Q(fX)

f

Q(gX)

g

Q(gY )

rX

rYjY
Q(fY )

Let us try to compute the term g ◦ f ◦ jX . Now we see that

rX ◦ (g ◦ f ◦ jX) = Q(gX) ◦Q(fX) = Q(gX ◦ fX) = idQ(X)

rY ◦ (g ◦ f ◦ jX) = Q(gY ) ◦Q(fX) = Q(0) = 0.

Thus, g ◦ f ◦ jX is the induced map in the diagram

Q(X)

Q(X)⊕Q(Y ) Q(X)

Q(Y )

rX

rY

idQ(X)

0

But jX is the other map that satisfies this (Q(X) ⊕ Q(Y ) is both the product and the coproduct), so we have that
g ◦ f ◦ jX = jX . Similarly, we also have that g ◦ f ◦ jY = jY , so we conclude that g ◦ f is the identity.

Showing that Q(X) ⊕ Q(Y ) is a direct summand of Q(X ⊕ Y ) follows more generally from the following fact - let
f : X → Y, g : Y → X between spectrum such that g ◦ f is the identity, then X is a direct summand of Y . To see
why, let Cf be the cofiber of f : X → Y and Z be any spectrum, we have an exact sequence

0→ [Z,X]→ [Z, Y ]→ [Z,Cf ]→ 0.
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The existence of g can show that this is in fact split injective! Since we are really looking at cohomology here, this
gives us

[Z, Y ] ∼= [Z,X]⊕ [Z,Cf ].

On the other hand, recall that the coproduct is wedge sum, so we have that

[Z,X ∨ Cf ] ∼= [Z,X]⊕ [Z,Cf ].

Since this holds for all Z, the Yoneda lemma implies that X ∨ Cf ≃ Y . ■

There is a canonical map we are interested in between Q and B. To reach there we first need to briefly discuss the
notion of homotopy fixed points and homotopy orbit. We will not go too into details for the definition, so is life, but
we will give two examples to help parse with the definition. We will also only talk about the specific case for C2.

Definition 9.13. Let X be a spectrum equipped with a C2-action, in a natural way compatible to X . Then, the
homotopy fixed point spectrum of X with respect to C2 is

XhC2 = FunG(Σ
∞(EC2)+, X)

is the mapping space of C2-equivariant maps between the two spectra.

The homotopy orbit spectrum of X with respect to C2 is

XhC2
= Σ∞(EC2)+ ∧C2

X.

Here the wedge product is taken with respect in C2-spectra.

Example 9.14. Here are two examples whose proofs might not be that obvious

1. Let KU and KO be the complex and real K-theory spectra respectively. There is a C2-action on KU by
replacing a complex vector bundle with its complex conjugate bundle, and KUhC2 = KO.

2. On the level of spaces, the homotopy orbit of a one-point space ∗ under C2 is RP∞.

Construction 9.15. Let Q : Cop → Sp be a reduced functor with polarization B. The diagonal map ∆ : X →
X ⊕X and codiagonal map ∇ : X ⊕X → X induces maps

Q(X ⊕X) Q(X) Q(X ⊕X)
Q(∆) Q(∇)

There is an inclusion map i : B(X,X) → Q(X ⊕X) and a projection map π : Q(X ⊕X) → B(X,X), so
we can extend this sequence to

B(X,X) Q(X ⊕X) Q(X) Q(X ⊕X) B(X,X)i Q(∆) Q(∇) π

There is a canonical C2 action on B(X,X) roughly described as follows. B is symmetric in the higher
categorical sense, meaning we are given an isomorphism between B(X,Y ) and B(Y,X). When X = Y ,
this becomes an automorphism on B(X,X) that defines a C2 action. An alternative way to phrase this is that
∆(B) is a C2 object of Fun(Cop, Sp), where ∆ : Fun(Cop ×Cop, Sp)→ Fun(Cop, Sp) is the restriction to the
diagonal.

Furthermore, since Q(∇) and Q(∆) are both C2-equivariant, the diagram above factors through as

B(X,X)hC2
Q(X) B(X,X)hC2

Remark: The composition here is the norm map.
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Thus, we have showed that every reduced functor Q : Cop → Sp can produce an associated functor B : Cop × Cop →
Sp. The definition of a quadratic functor is given as follows:

Definition 9.16. Let Q : Cop → Sp be a reduced functor with polarization B. We say Q is quadratic if any of
the two equivalent conditions is true

1. B is bilinear and the functor X 7→ fib(Q(X)→ B(X,X)hC2) is exact.

2. B is bilinear and the functor X 7→ cofib(B(X,X)hC2 → Q(X)) is exact.

Furthermore, Q is perfect if its polarization B is perfect.

Remark 9.17. A quadratic functor in our talk is really what Thomas Goodwillie would call “a (reduced) and
2-excisive functor” in the framework of Goodwillie Calculus.

Example 9.18. Here are some examples of quadratic functors:

1. Any exact functorQ : Cop → Sp is quadratic. In fact, they correspond to all the quadratic functors whose
polarization vanishes.

2. Let C be a stable∞-category and B ∈ Funbs(C), then

Qq
B(X) = B(X,X)hC2

and Qs
B(X) = B(X,X)hC2

are quadratic functors. Qq
B is the analog of quadratic form andQs

B is the analog of symmetric bilinear
form.

These two constructions should be reminiscent of Remark 9.7.

9.3 L-Theory of Poincare Category
In this section, we will be working to define the L-theory of a Poincare∞-category (C, Q), where Q is perfect.

Definition 9.19. A Poincare∞-category is a pair (C, Q) where Q is perfect.

Definition 9.20. Let E be an Ω-spectrum, we define Ω∞E = E0 (the 0-th space). For a general spectrum E′,
there is a canonical way to produce an associated Ω-spectrum E of E′ by specifying

En = colimk Ω
kE′

n+k.

In this case, we define Ω∞E′ as Ω∞E.

Remark 9.21. We justify the notation Ω∞ as follows. There is a classical correspondence between an Ω-
spectrum and an infinite loop space. Given an infinite loop space X , we can think of X as a sequence of
delooping X0 = X → X1 → ... with weak equivalences Xn ≃ ΩXn+1. Thus, given an Ω-spectrum, its
sequence of spaces naturally produces an infinite delooping of the 0-th space.

Definition 9.22. A quadratic object of (C, Q) is a pair (X ∈ C, q ∈ Ω∞Q(X)).
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Recall there is a map f : Q(X)→ B(X,X)hC2 , so q determines a point f(q) ∈ B(X,X)hC2
0 (the 0-th space).

Since Q is non-degenerate, we recall that B(X,X) ≃ MorC(X,DX), so f(q) determines a map X → DX .
We say that (X, q) is a Poincaré object if X → DX is invertible. We use Poin(C, Q) to denote the collection
of Poincare objects.

According to Lurie - the intuition to have in mind is that Q is a functor that assigns each object X ∈ C a “spectrum of
quadratic forms”. A quadratic object (X, q) can be thought of as a specific choice of quadratic form forX . A Poincare
object (X, q) is a specific choice of a nondegenerate quadratic form.

Example 9.23. The formation of this mapping spectra in C gives a quadratic functor

Qhyp : C × Cop → Sp, (X,Y ) 7→ MorC(X,Y ).

In this case, (C × Cop, Qhyp) is Poincare with duality given by (X,Y ) 7→ (Y,X). (C × Cop, Qhyp) is called
the hyperbolic∞-category associated to C.

Here we give a concrete example of how Poincare objects relate to the geometric setting of manifolds.

Definition 9.24. Let A be an associative ring, the perfect derived ∞-category of A is an ∞-category
Dperf (A) is the full subcategory of D(A) spanned by compact objects. Here D(A) is the derived∞-category
of A (ie. D(A) = N Ch(A)[quasi-iso−1]). Concretely, Dperf (A) is roughly constructed as follows:

1. The 0-simplicies of Dperf (A) are bounded chain complexes of finitely generated projective left A-
modules.

2. A 1-simplex of Dperf (A) is the map of chain complexes f : P• → Q•.

3. A 2-simplex of Dperf (A) is a (not necessarily commutative) diagram of chain complexes

Q•

P• R•

gf

h

with a chain homotopy from h to g ◦ f .

4. Higher dimensional simplicies are given analogously with higher-order chain homotopies.

Note that Dperf (A) is clearly stable.

Example 9.25. Informally, recall there is a canonical mapping spectrum Mor attached to any stable ∞-
category. Specifically we consider B on Dperf (R) given by

Bi(X,Y ) = MorR⊗R(X ⊗R Y,R[−i]).

Here R[−i] is the chain complex that is everywhere zero except for a single copy of R concentrated at the −i
degree.

There is an obvious duality given by the Hom-Tensor adjunction, and the associated Qq,i
R and Qs,i

R are both
(perfect) quadratic functors. Here we append an index i to indicate that we are considering morphisms into
R[−i]. We also write Qq

R = Qq,0
R and Qs

R = Qs,0
R .
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The following example is arguably the most important example of this talk. If the reader should get anything out of
this talk, it should be this key example.

Example 9.26. Let C = Dperf(Z) and define

Q(X) := MorDperf (Z)(X ⊗X,Z[−n])hC2 .

(Note that Q is Qs,n
Z from our earlier example).

Let Mn be a closed oriented manifold. The singular cochain complexes C∗(M,Z) is an object of Dperf (Z).
There is a quadratic functor Q on Dperf(Z) given by

Q(X) := MorDperf (Z)(X ⊗X,Z[−n])hC2 .

Here Z[−n] is a chain complex that is all zero except for a single copy of Z at degree −n.
In this case, we have a symmetric intersection pairing on M :

(C∗(M ;Z)⊗ C∗(M ;Z))hC2 → C∗(M ;Z)→[M ] Z[−n]

is a point qM ∈ Ω∞Q(C∗(M ;Z)). In this example, the statement of Poincare duality may be reformulated as
follows:

Theorem 9.27 (Poincare Duality Reformulated). (C∗(M ;Z), qM ) is a Poincare object of
(Dperf (Z), Q).

Note that we shifted the index to −n because we defined everything at the 0-th space. In general, a Poincare
object of dimension n is a Poincare object of dimension 0 with the index shifted down by n.

Our goal is to now construct a suitable algebraic structure on the collection of Poincaré objects to study them.

Definition 9.28. Let (X, q) and (X ′, q′) be two quadratic (resp. Poincare) objects on (C, Q). We define

(X, q)⊕ (X ′, q′) := (X ⊕X ′, q ⊕ q′).

Here X ⊕X ′ is the standard (co)product of X and X ′, and q ⊕ q′ is the image of (q, q′) under the canonical
map Q(X)⊕Q(X ′)→ Q(X ⊕X ′). It is a fact that (X ⊕X ′, q ⊕ q′) is quadratic (resp. Poincare).

The operation ⊕ only gives a commutative monoid structure on the collection of Poincare objects. We want a suitable
notion of equivalence so that this becomes a group structure.

Definition 9.29. Let (C, Q) be as before, and (X, q), (X ′, q′) be two Poincare objects. An (algebraic) cobor-
dism from (X, q) to (X ′, q′) is the following data:

1. An object L ∈ C with maps α : L→ X and α′ : L→ X ′.

2. Q induces maps Q(X)→ Q(L) and Q(X ′)→ Q(L). Let α∗(q), (α′)∗(q′) be the images of q and q′ be
the images in the space Ω∞Q(L). We also want a path p joining α∗(q) and (α′)∗(q′).

3. (Non-degeneracy condition): The path gives a homotopy between the two maps L→ D(L) given by:

X L X ′

DX DL DX ′

induced by q

α α′

induced by q’

D(α) D(α′)
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The diagram commutes up to a homotopy determined by the path p. Thus, the induced map fib(α) →
L →α′ X ′ → DX ′ → DL is null-homotopic. Thus, there is an induced map of fibers u : fib(α) →
fib(D(α′)). We require u to be invertible.

We say (X, q) and (X ′, q′) are cobordant if there is a cobordism from (X, q) to (X ′, q′).

Theorem 9.30. Being cobordant is an equivalence relation ∼ on Poin(C, Q), the Poincare objects of (C, Q).
Furthermore, ⊕ is a well-defined abelian group operation on Poin(C, Q)/ ∼.

Definition 9.31. We define L0(C, Q) = Poin(C, Q)/ ∼. For n > 0, we define Ln(C, Q) := L0(C,ΩnQ).

Remark 9.32. The usual approach to defining higher degrees of L-theory is to construct a L-theory spectrum
L(C, Q) associated to a Poincaré category, and the n-th L-theory would be the n-th homotopy group of this
spectrum. It turns out that this is canonically isomorphism to our definition. Due to the time constraint of this
talk, we decided to stay with the current approach.

Remark 9.33. Although we have not focused on the classical theory much, we remark that L-theory indeed
did not originate from higher algebra but had more concrete foundations. In the specific case where we have
(Dperf (R), Qq

M ) (with values in an R-module M , possibly with involution), we recover the classical Wall-
Ranicki quadratic L-groups. Similarly with the symmetric case.

9.4 L-Theory of Z and Geometric Connections

Definition 9.34. The quadratic and symmetric L-theory of Z is given by Ln(D
perf (Z), Qs

Z) and
Ln(D

perf (Z), Qq
Z) respectively. As a short hand, we denote them as Ls(Z) and Lq(Z) respectively.

Remark 9.35. This is not how this was defined in Lurie. We should have used finitely presented R-module
spectra, but it turns out there is no difference with using perfect R-module spectra in this case.

The story of quadratic L-groups of Z is very important in the world of low-dimensional topology.

Theorem 9.36. Lq
∗(Z) may be computed as follows:

Lq
n(Z) =


8Z, n = 4k (signature)
0, n = 4k + 1

Z/2Z, n = 4k + 2 (Kervaire invariant),
0, n = 4k + 3
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Theorem 9.37. Ls
∗(Z) may be computed as follows:

Ls
n(Z) =


Z, n = 4k (signature)
Z/2, n = 4k + 1 (de Rham invariant)
0, n = 4k + 2

0, n = 4k + 3

Definition 9.38. The de Rham invariant of M4k+1 is the rank of 2-torsion in H2k(M) modulo 2, or
equivalently the product of two Stiefel Whitney numbers w2w4k−1.

The geometric connections between a compact oriented manifold of L-groups of Z are given as follows.

Theorem 9.39. Let Mn be a compact oriented manifold and n = 4k. Recall we explained earlier that
(C∗(M ;Z), qM ) is a Poincare object of (Dperf (Z), Qs,−n

Z ) (shifted by n-indices down). Thus, M gives an
element element of Ls

n(Z), which is exactly its signature.

Finally, we will end our talk with a brief discussion on the Kervaire invariant one question?

Question 9.40. What manifolds have Kervaire invariant 1?

Theorem 9.41. 1. For n = 6, 14, 30, 62, there exists a Keivarie invariant one manifold (this was known in
the last century).

2. (Hill-Hopkins-Ravenal), If n = 2J+1 − 2 for J ≥ 7, there are no Keivarie invariant one manifold.

3. This only leaves 27 − 2 = 126, which is proved this year (2024) by Lin-Wang-Xu to be positive.
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10 Meeting November 14th, 2024
Speaker: Kartik Tandon
Title: Monadicity in∞-Categories.

For reference, what we are talking about in the lecture (at least when it gets to higher algebra) is adapted from Section
4.7 of Lurie’s Higher Algebra.

10.1 The Classical Setting of Monads
There are a few fundamental questions we can ask that are all connected by the idea of Mondas.

Question 10.1. 1. When are two rings R and S Morita equivalent? In other words, there is an (additive)
equivalence of category between ModR and ModS .

2. LetR be a ring, when is there an equivalence betweenD(R) and Mod(HR) (in terms of infinity category
theory).

3. Descent Theorems

4. Koszul duality, Serre’s Affineness criterion

Here is a classical proposition in Morita equivalences:

Proposition 10.2. Let R = k be a field, then Mn(k) (the n× n matrix ring over k) is Morita equivalent to k.

More generally, we have that

Theorem 10.3. Let R be a ring, then R is Morita equivalent to EndModR
(Qop) if Q satisfies:

• Q is finitely presented (ie. Map(Q,−) commutes with filtered colimits. This should be thought of as a
compactness condition - recall finitely presented R-modules are the compact objects in ModR).

• Q is projective (ie. Map(Q,−) preserves split coequalizers and additivity).

• Q is a generator (ie. Map(Q,−) is faithful. As a remark, this actually implies that Extn(Q,−) = 0, for
all n > 0).

Let S = EndModR
(Qop). After rewriting the three conditions in languages closer to our seminar, we see that the proof

of Morita equivalence is obtained - if we have a lift:

ModS

ModR ModZ

forget

M 7→HomR(Q,M)

and if the three conditions given by the theorem guarantees this lift is an equivalence.

This is where we introduce the proof of monads. To give the definition of monad, we have the following:

Definition 10.4. A monad T ∈ C is a monoid in the category of endofunctors End(C). Specifically, T is the
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data (T : C → C, µ : T 2 =⇒ T, η : 1C =⇒ T ) and we want the following two diagrams to commute

T ◦ T ◦ T T ◦ T T T ◦ T

T ◦ T T T ◦ T T

µT

Tµ µ

ηT

Tη id µ

µ µ

Remark 10.5. “A monad is a monoid in the category of endofunctors” is a long running joke in the world of
Functional Programming.

Definition 10.6. An algebra A over a monad is the pair (A ∈ C, α : TA → A) such that it is a T -module in
the End(C)-tensored category C. That is, we want the following two diagrams to commute:

A TA T ◦ T (A) TA

A TA A

ηA

idA

α

Tα

µA α

α

A morphism f : (A,α) → (B, β) between two T -algebras is a map f : A → B in C such that the following
diagram commutes:

TA TB

A B

Tf

α β

f

Composition and identities are the same as in C.

Together, this forms a category of T -algebras denoted AlgT (C). This is also called the Eilenberg-Moore
Category.

Remark 10.7. Monads arise from adjunctions. Let F : C → D be left adjoint and G : D → C be right adjoint,
then G ◦ F is a monad! In this talk, F will always be left and G will always be right.

Proposition 10.8. Let (T, µ, η) be a monad in C, then there is an adjunction between C and AlgT (C) given by

FT : C ⇄ AlgT (C) : UT

Here UT is the forgetful functor and FT (called the free T -algebra functor) is given by

FT (A) = (TA, µA : T 2A→ TA) and FT f = Tf.

Fruthermore, the adjunction UT ◦ FT recovers the monad (T, µ, η).

Motivated by the proposition, we also give the following definition

Definition 10.9. A free T -algebra X ∈ C is an object in the image of

X 7→ (T (X), µX : T ◦ T (X)→ T (X))
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Definition 10.10. An adjunction F : C → D, G : D → C is monadic if the monad T = G ◦ F induces an
equivalence G̃ : D → AlgT (C) in the following sense:

AlgT (C)

D C

ForgetG̃

G

Example 10.11. Here are some examples:

1. There exists a monad T on Set such that AlgT (Set)
∼= Grp (so the algebra of T over sets are groups). T

comes from the Free and Forgetful functor in the adjunction. The free T -algebras are the free groups.

2. There exists a monad TR on abelian groups such that AlgTR
(Ab) ∼= RMod (so the algebra of TR over

Ab are R-modules). TR comes from the Tensor and Hom functors in adjunction. The free T -algebras are
the free R-modules.

In this case, both adjunctions are monadic.

Given a pair of adjoint functors, we would like a sufficient criterion to determine if they would be monadic.

Theorem 10.12 (Barr-Beck Monadicity Theorem). Let F,G be adjoints as before. Suppose D admits split
coequalizers, then if

• i) G is conservative (if. G ◦ f is an equivalence, then f is an equivalence).

• ii) G preserves split coequalizers.

Then F ⊣ G is monadic.

Remark 10.13. Here even though we say the word “equivalence”, they are isomorphisms as morphisms in the
1-category. It is in higher algebra, we end up calling isomorphisms as “equivalences”.

Proof Idea. We have a lift of the following for F and G - Here is a picture for G:

AlgT (C)

D C

ForgetG̃

G

The proof may be decomposed in a few steps:

1. Step 1 - Showing F̃ ⊣ G̃: We know that we have the following coequalizer in AlgT (C):

TTA TA A
Tα

µA

α

We also have that F̃ (T (A)) = F (A) and F̃ preserves colimits.

In this case, we have the following coequalizer:

F (T (A)) F (A) F̃ (A)
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2. Step 2: The unit map idAlgT (C) → G̃ ◦ F̃ is an equivalence.

The idea for showing the equivalence is that to recall that G preserves reflexive coequalizers. In this case the
following is a coequalizer

GF (GF (A)) GF (A) GF̃ (A)Gθ ,

and we also obtain a coequalizer of the form

GF (GF (A)) GF (A) Aα

This gives us the following commutative diagram:

GFA GF̃ (A,α)

A

hθ

α

3. Step 3: The co-unit map is also an equivalence. The proof is similar in this case.

■

Let us come back to prove Theorem 10.3.

Proof of Theorem 10.3. Consider this diagram

ModS

ModR ModZ

forget

M 7→HomR(Q,M)

Here the horizontal map (call it G) is adjoint in the tensor-hom adjunction. Since Q is a generator, G is conservative.
The other two conditions shows that it preserves relfexive coequalizers. Thus, this adjunction is monadic, so we
have an equivalence between ModR and ModS . Here ModS is equivalent to AlgTR

(Ab) (recall the example given
earlier). ■

10.2 The Story of Monads in Higher Algebra
In the setting of∞-categories, we would like to do the following modifications. First we will give a quick introduction
to the theory of (co)Cartesian fibrations.

Definition 10.14. Let S and T be a simplicial set, with a morphism F : S → T of simplicial sets. Let
f : x→ y be an edge in S.

We say f is a F -Carteisan edge if the following lifting problem has a solution

Λn
n X

∆n Y

σ0

F

σ

when n ≥ 2 and the following composite map corresponds to the edge f : X → Y

∆1 ≃ N•({n− 1 < n}) ↪→ Λn
n →σ0 X.
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We say f is a F -coCarteisan edge if the following lifting problem has a solution

Λn
0 X

∆n Y

σ0

F

σ

when n ≥ 2 and the following composite map corresponds to the edge f : X → Y

∆1 ≃ N•({0 < 1}) ↪→ Λn
0 →σ0

X.

Definition 10.15. Let S and T be simplicial sets. A morphism F : S → T of simplicial sets is a Cartesian
fibration if it is an inner fibration (recall Definition 3.4) and for an edge f : x→ y in T and every y′ ∈ S such
that F (y′) = y, there exists an F -Cartesian edge f ′ : x′ → y′ such that F (x′) = x.

We say F is a Cartesian co-fibration if it is an inner fibration and for an edge f : x→ y in T and every x′ ∈ S
such that F (x′) = x, there exists an F -co-Cartesian edge f ′ : x′ → y′ such that F (y′) = y.

Example 10.16. Let S be a simplicial set an consider the map F : S → ∆0 to the zero simplex. Then, S is an
∞-category if and only if F is a Cartesian fibration, if and only if, F is a co-Cartesian fibration.

Definition 10.17 (Monoidal ∞-Category). The idea of monoidal ∞-categories is to look at co-Cartesian fi-
brations and insist the Segal condition. A monoidal ∞-category (C,⊗) is composed of a simplicial set C⊗
and a co-Cartesian fibration ρ⊗ : C⊗ → N(∆)op. For each n ∈ N, there is a sequence of induced map
C⊗

[n] → C⊗
i,i+1 for all i = 0, ..., n − 1. We also require that the universal property of products gives an

equivalence of the following∞-categories for each n:

C⊗
n → C⊗

0,1 × ...× C
⊗
n−1,n ≃ (C⊗

[1])
n.

Definition 10.18 (Algebraic Objects). Let (C,⊗) be a monoidal∞-category. This has a co-Cartesian fibration
ρ⊗ : C⊗ → N(∆)op. An algebra of (C,⊗) is, roughly speaking, a section s : N(∆)op → C⊗.

We also want to obtain an analog of endofunctors.

Definition 10.19. Let C be an∞-category and consider the functor∞-category Fun(C, C). Observe that the
composition and evaluation maps:

Fun(C, C)× Fun(C, C)→ Fun(C, C) and Fun(C, C)× C → C

gives Fun(C, C) the structure of a simplicial monoid with a left action on C. Thus, we can regard Fun(C, C) as
a monoidal∞-category.

Definition 10.20. A monad of an ∞-category C is an algebraic object of the monoidal ∞-category End(C).
Informally, this should be thought of as the classical monad with endofunctor T : C → C and maps
µ : T ◦ T → T , η : 1C → T satisfying the same diagrams up to coherent homotopy.
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We use AlgT (C) to denote the∞-category of (left) T -modules in C. Informally, this is an analog of the algebra
over monads in the classical setting for∞-categories.

Remark 10.21. In Lurie, AlgT (C) is denoted as LModT (C). We used the former notation to be consistent
with the previous section in the classical setting.

In this case, we still have a way to obtain monads from adjunctions. While we have given one definition of adjunction
before, there are many ways to define an adjunction (that are equivalent), the most convenient definition to see how
monads arise from adjunctions is the following definition:

Definition 10.22. An adjunction between∞-categories C and D is a functor M → [1] = {0→ 1} that is both
a coCartesian fibration and a Cartesian fibration. Here we identify the fiber M0 as C and M1 as D in the usual
set-up of an adjunction.

Theorem 10.23 (Barr-Beck-Lurie Monadicity Theorem). Let F,G be adjoints on∞-categories C andD. Sup-
pose D admits geometric realization of simplicial objects, then if

• i) G is conservative (if. G ◦ f is a equivalence, then f is an equivalence).

• ii) G preserves geometric realizations.

Then F ⊣ G is monadic in the sense of∞-categories. That is, there exists a monad T on C and an equivalence
given in the lift of:

AlgT (C)

D C

ForgetG̃

G

(Here the diagram is up to homotopy)

Why are we doing all the labor to generalize this to the setting of∞-categories? There are some incredible applica-
tions.

Theorem 10.24 (Schwede-Shipley). Let C be a presentable stable∞-category withQ ∈ C a compact generator,
then C ∼= AlgT (Sp)

∼= Mod(End(Qop)). Here T is an appropriately chosen monad coming from the ∞-
category analog of tensor-hom adjunction.

Remark 10.25. The original theorem of Schwede-Shipley was done over model categories with a fairly lengthy
proof. This proof is shortened and generalized in the language of∞-categories in Lurie’s Higher Algebra.

From this theorem, we obtain the following corollary:

Corollary 10.26. Let R be a ring, then the derived∞-category D(R) is equivalent to Mod(HR).

Proof. In the case where C = D(R), we observe that EndD(R)(R) is concentrated in degree 0 and its degree 0 term
is R. Since spectra is determined by maps inducing isomorphisms of homotopy groups, this is exactly HR. Thus, we
have that D(R) is equivalent to Mod(HR). ■
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