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1 Introduction

This notes serves for the short introduction to the Lichtenbaum-Quillen conjecture, along with the Rost-
Voevodsky norm residue conjecture.

2 Dedekind zeta function

The Quillen-Lichtenbaum conjecture is classically trying to related the algebraic K-theory to the Dedekind
zeta function. Recall that

Definition 1. Let F be an algebraic number field, then the Dedekind zeta function is defined to be

ζF (s) =
∑

0 ̸=I⊴OF

([OF : I])−s.

where OF is the ring of integers. Here we ask Re s > 1.

If F = Q, then OF = Z. Since Z is a PID, the Dedekind zeta function becomes

ζF (s) =
∑

(n):n∈Z

([Z : (n)])−s

=
∑
n≥1

1

ns
,

which recovers the Riemann zeta function.
As a generalization of Riemann zeta function, Dedekind zeta function also has some analytic properties

that we will state without any proof:

Proposition 1. 1. ζF (s) can be analytically continued to a meromorphic function on C with a pole
at s = 1.

2. Euler product formula:

ζF (s) =
∏

o ̸=q∈SpecOF

1

1− ([OF : q])−s
.

3. Functional equation: assume [F : Q] = r1 + 2r2 = n, where r1 is the number of real embeddings,
and r2 is the number of complex embeddings. Let

ξF (s) =

(
|△F |
22r2πn

)s/2

Γ(
s

2
)r1Γ(s)r2ζF (s),

where △F is the discriminant of F . Then

ξF (1− s) = ξF (s).
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Recall K0(OF ) = Z⊕PicOF and K1(OF ) = O×
F . In general, Quillen showed in [Qui73] that Kn(OF )

is finitely generated for all n ≥ 0, and shortly after that Borel showed in [Bol74] that Kn(OF ) is finite
for n is even, and if n = 2m− 1, then rank(Kn(OF )⊗ Q) = dm. Here

dm =


r1 + r2 − 1 , if m = 1;

r1 + r2 , if m is odd,m ≥ 3;

r2 , if m is even.

for [F : Q] = r1 + 2r2. Even shockingly, Hesselholt and Madsen [?] actually computed Ki(OF /µ
n) for

µ the uniformizer via the trace method. From that, they ended up proving the Lichtenbaum-Quillen
conjecture (1) for local fields. Later, Liu and Wang [LW22] revisited their computation, and gave a
even better and efficient computation of TC(OF /µ

n) via the descent spectral sequence with respect
to the polynomial rings over the spherical Witt vectors, where they adapted the new definition of TC
by Nikolaus-Scholze [NS18]. Recently, Antieau-Krause-Nikolaus [AKN24] proceeded the computation
of trace method, and gave the desired result of Ki(OF /µ

n) by computer, via Liu-Wang’s method and
motivic filtrations on TC by Hahn-Raksit-Wilson [HRW22].

Back to our discussion. In order to prove the structure theorem of Km(OF ), Borel defined a regulator
map

ρF,m : K2m−1(OF ) → Rdm ,

where dm is defined as above. He showed that for any m ∈ Z>0, the kernel of this regulator map is finite.
So the image of ρF,m is a lattice in Rdm . We denote the covolume of this lattice (i.e. the determinant of
the base vectors) by RF,m. This is called the Borel regulator. We present a very brief way to define
such regulator map as follows:

Starting from the induced map by F ↪→ C,

K2m−1(OF ) ∼= K2m−1(F ) →
⊕

Hom(F,C)

K2m−1(C) → Z[Hom(F,C)]⊗ R(m− 1), (1)

where R(m− 1) = (2πi)m−1R, and the map K2m−1(C) → R(m− 1) is given by the composition of bm−1

and h2m−1. Here

h2m−1 : K2m−1(C) = π2m−1(BGL(C)+) → H2m−1(BGL(C)+) ∼= H2m−1(GL(C)+),

and bm−1 ∈ H2m−1
cts (GL(C),R(m − 1)) is the universal Borel class, see [Gil02]. Here H2m−1

cts is the
continuous cohomology, which induces a map

bm−1 : H2m−1(GL(C)) → R(m− 1).

Thus, the image of (1) is invariant under complex conjugation acting both on Z[Hom(F,C)] and R(m−1).
So we get a map

K2m−1(OF ) → (Z[Hom(F,C)]⊗ R(m− 1))c,

where (−)c is taking the fixed point under the complex conjugation action. It can be shown that this
fixed point is identified with Rdm , as desired. See [Bol74] for a detailed proof.

With the help of Borel regulator map, Borel was able to show that the special value of Dedekind zeta
function ζF (s) at s = 1−m, denoted m := lims→1−m(s+m− 1)−dmζF (s), can be interpreted as

m = C ·RF,m

for some C ∈ Q. Lichtenbaum conjectured that, for m ≥ 2,

C ≃ |K2m−2(OF )|
|K2m−1(OF )tor|

. (2)

Here ≃ means equal up to a sign times a power of 2, and (−)rm means the finite torsion subgroup. This
should be some generalization of the Dirichlet class number formula.
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3 Étale cohomology

Let S be a scheme over a field k of characteristic p, Sét be the (small) étale site, whose objects are X → S,
i.e. schemes over S. Consider the sheaves of abelian groups on Sét, denoted Sh(Sét). This category has
enough injectives. Consider the functor

F : Sh(Sét) → Ab

sending each sheaf F to F (S). The sheaf F is left exact, and we define its r-th right derived functor
by Hr(Sét,−). This is the étale cohomology. Explicitly, there is always an injective resolution of any
F ∈ Sh(Sét)

0 → F → I0 → I1 → I2 → · · · ,

and so Hr(Sét, F ) is the r-th cohomology group of the complex

I0(S) → I1(S) → I2(S) → · · · .

By standard techniques in homological algebra, one can check that étale cohomology is really a coho-
mology theory, i.e. satisfies the Eilenberg-Steenrod axioms (homotopy, excision, additivity, exactness,
dimension). In general, one can define for any X ∈ Sét, the étale cohomology of X by taking the right
derived functors with respect to the functor FX(−) = Γ(X,−).

Let µm be the étale sheaf on S, given by µm(X) = {f ∈ Γ(X,OX) : fm = 1}. Let Gm be the
multiplicative group scheme, viewed as an étale sheaf. We have a Kummer sequence

0 → µm → Gm
(−)m−−−→ Gm → 0. (3)

The Tate twist µ⊗n
m =: Z/m(n) is a new étale sheaf satisfies the Poincaré duality:

Hi
ét(X,Z/m(n))×H2d+1−i

ét (X,Z/m(d− n)) → Z/m,

for X has dimension d. b We can define the ℓ-adic (ℓ is coprime to p and ℓ−1 ∈ k) Tate twist by taking
the limit:

Zℓ(n) := lim
r

Z/ℓr(n).

For completeness, We also define Z(1) = Gm[−1], Z(n) = Z(1)⊗n, Z(0) = Z. These are known as the
motivic complexes. However, the readers should be warned that, Z(n) shares no similarities with Zℓ(n)
defined above since Z(n) is a sheaf over Zariski site of SpecZ, while Zℓ(n) defined above is an étale sheaf.

Let X = SpecOF [1/p] and F is a totally real number field for simplicity. By the main conjecture
of Iwasawa theory, proved by Mazur-Wiles, we can reformulate the Lichtenbaum conjecture (2) into the
cohomological analogy:

C ≃ |H2
ét(X,Zp(m)|

|H1
ét(X,Zp(m))tor|

. (4)

See Chapter 0 of [Kol02] for a detailed discussion. From (2) and (4), one might expect there is a
relationship between the algebraic K-theory and the étale cohomology. Soulé [Sou79] constructed the
étale Chern character

chi,j : K2i−j(OF )⊗ Zℓ → Hj
ét(OF ,Zℓ(i)) (5)

for j = 1, 2 and i ≥ 2, and proved surjectivity with finite kernel. In general, the Lichtenbaum-Quillen
conjecture said:

Conjecture 1 (Lichtenbaum-Quillen). chi,j is an isomorphism.

Lichtenbaum-Quillen conjecture is now proved as a corollary of the norm residue theorem due to Rost
and Voevodsky. Before we give the statement of the theorem, we need to construct the norm residue
map. Note that the Kummer sequence (3) gives rise to a long exact sequence in étale cohomology

0 → H0
ét(X,µℓ) → H0

ét(X,Gm)
(−)ℓ−−−→ H0

ét(X,Gm)
∂−→ H1

ét(X,µℓ) → H1
ét(X,Gm) → · · · ,
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where we choose m = ℓ and X = Spec k. By Hilbert 90, H1
ét(X,Gm) = Pic(X) = 0 because every

1-dimensional k-vector space over k is isomorphic to k itself. Note also H0
ét(X,Gm) = Γ(X,Gm) =

Gm(Spec k) = k×. Hence ∂ identifies

H0
ét(X,Gm)/ im(−)ℓ = k×/(k×)ℓ

∼=−→ H1
ét(X,µℓ),

and we define the first norm residue map by

∂1 := ∂ : k×/(k×)ℓ → H1
ét(X,µℓ).

Abbreviate k×/(k×)ℓ as k×/ℓ. Taking the tensor power of the source of ∂1 and the cup product on the
target of ∂1, we obtained the n-th norm residue map

∂n : (k×/ℓ)⊗n → H1
ét(X,µℓ)

⊗n ∪n

−−→ Hn
ét(X,µ⊗n

ℓ ), (6)

and (k×/ℓ)⊗n ∼= KM
n (k)/ℓ is the n-th Milnor K-theory group. Now, we are ready for the extraordinary

Fields Medal-level theorem.

Theorem 1 (Norm residue theorem). For any n ≥ 1, ∂n (6) is an isomorphism for all ℓ (including 2,
which is known as the Milnor conjecture).

Remark 1. The theorem stated above is sometimes known as the Bloch-Kato conjecture. In some re-
sources, the norm residue theorem is stated as an isomorphism between some motivic cohomology and the
étale cohomology. This is classically known as the Beilinson–Lichtenbaum conjecture, which was proved
to be equivalent to the Block-Kato conjecture by Voevodsky. For the sake of the proof of Conjecture 1, we
write down the relation between motivic cohomology and étale cohomology without any more explanations:

Hi(X,Z/ℓr(n)) ∼= Hi
ét(X,µ⊗n

ℓr ), (7)

Hn(X,Z(n)) ∼= KM
n (X), (8)

for 0 ≤ i ≤ n, and 0 elsewhere and ℓ is a prime that is invertible in k.

Corollary 1. Lichtenbaum-Quillen conjecture (Conjecture 1) holds.

Proof. This is basically from the motivic spectral sequence for the algebraic K-theory. Recall that the
motivic spectral sequence (see [FS02]) is of the form

Es,t
2 = Hs−t(X,Z(−t)) ⇒ K−s−t(k)

for s, t ≤ 0. Here the E2-page is given by the motivic cohomology. By Suslin-Voevodsky theorem [SV95],
Theorem 1 and (7),

E0,−t
2 = Ht(X,Z(t)) ∼= KM

t (k).

The differentials are torsions and it degenerates modulo groups of finite exponent. See [GS98] and
[Kahn99]. We have the edge homomorphism in the spectral sequence

K2s−t(k) → Ht(X,Z(s)),

given by the composition e−1
F dte

−1
B , where

eB : E−2s,0
2 → E−2s,0

3 → · · · → E−2s,0
∞ = K2s(k)

eF : E0,−t
2 → E0,−t

3 → · · · → E0,−t
∞ = Kt(k)

and dt : E
0,t−1
t → Et,0

t is the differential.
We have the isomorphisms

K2s−2(k) → H2(X,Z(s)),

K2s−1(k) → H1(X,Z(s)).

for all s ≥ 2 up to 2-torsion. Here we use the fact that, for any global field L, Kn(L) is finitely generated
for n, and torsion when n is even.
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