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1 INTRODUCTION 3

1 Introduction

These notes were taken in University of Illinois, Urbana Champaign (UIUC)’s Math 545 (Harmonic
Analysis) class in Spring 2020, taught by Professor Xiaochun Li. Please send questions, comments,

complaints, and corrections to |jinghui4@illinois.edu.

These notes are an overview of harmonic analysis in real methods. Basically we will cover the

topics:

Marcinkiewicz interpolation; Approximation to the identity; Fourier transforms;

The theory of Calderon-Zygmund singular integrals;

Littlewood-Paley theory; Multiplies;

e« BMO and Carleson measure; T'1 theroem:;
e Besicovitch sets and the unboundedness of the disk multiplier.

The course web page can be founded here: https://faculty.math.illinois.edu/~xcli/teaching/
20math545/math545.html.

In this note, we will frequently use some abbreviations:
e« MCT = Monotone Convergence Theorem;

e« DCT = Dominated Convergence Theorem.


jinghui4@illinois.edu
https://faculty.math.illinois.edu/~xcli/teaching/20math545/math545.html
https://faculty.math.illinois.edu/~xcli/teaching/20math545/math545.html
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2 Marcinkewicz Interpolation Theorem

We will always assume (X, A, 1) is a measure space.

Definition 1. A Weak-L? norm is defined to be
[ £llp,00 = sup [N u({z € X : [f(z)] > A})]" .
A>0
Denote LP>*(X) = {f: X = C: || fllp.coc < 00}, and set L=>*(X) = L>*(X).
Note 1. We have L>(X) C LP>*(X).

Theorem 1 (Riesz-Thorin Interpolation Theorem). Suppose (X, A, 1) and (Y, B, v) are measure
spaces, and po, P1, 4o, ¢1 € [1,00]. If g = ¢1 = o0, we further assume v is o-finite. If T'is a linear operator
such that |T'fllq, < Mol fllp, for all f € LPo (that is, T' is strong (po,qo)) and ||T'f|lq < Myl fl|p, for
all f € LP*, then for any 0 < 6 < 1, we have for any f € LP?,

ITflla < Mo~ M| f 15,

Here py, g9 are given by

1 _1=6 4 6
Pe  Po +p1
1 _1=0, 6
4% Qo +Q1

For the proof, readers can refer to [1].
Definition 2. T is called sublinear if |T'(f; + f2)| < |Tf1]| + |T fo| for any f1, fo € LP(X, A, u), and
[ T(ef)] = laf - |Tf]
for any f € L? and a € C. If T satisfies |T'f||1r.(x) < C| fl|, for any f € LP, then T is called weak

(p, q)-

Theorem 2 (Marcinkiewicz Interpolation Theorem, or Real Interpolation Theorem). Sup-
pose that (X, A, ) and (Y, B,v) are measure spaces, and po,p1,qo,q1 € [1,00] s.t. po < qo, p1 < @1,
qo # q1- Let p, q are given by

1 _ 1-6 0

T po + p1
1_1-0_ 0
q q0 q1

Then T is a sublinear operator s.t. T is weak (po, qo) and weak (p1,q1), then T is weak (p, q).
To prove this theorem, we first need an easy fact.

Lemma 1. ||f|t=p [N u({z € X : |f(z)] > A})dA, 0 < X < oo,



2 MARCINKEWICZ INTERPOLATION THEOREM 5

Proof. Suppose pu is o-finite. Let Fy = {x : |f(z)| > A}. Then

p/ /\pfllu(E/\) :p/ )\pl/ X(E,\)d,ud)\
0 0 X
—p/ (/ APIX(E*)CD‘> dp (Fubini’s Theorem)
X

0

£ ()]
:p/ / Nrd\ | dp
b's

0
AR
X
=171

The general case when g is necessarily o-finite is left to the readers.

Proof of Theorem @
By assumption, T is weak (pg, po) and weak (p1,p1). We show that T is strong (p, q).
V>0, write f = fo + fi, where fo = f-x({z : |f(z)] > CA}) and f1 = f - x({z : |f(z)| < CA}).
Note
ple: [TF()| > A) < e [T ()| > 51) + al{e: [T F(@)] > ). 1)

1. Case 1: p; = .

In this case, [|Tf|lcoc < A1 f]oo-
Thus, [|Tf1llee < A1]lfi1llee < CAA;.

Choose C = ﬁ, we obtain |7 1|l < %, which implies u({z : [Ty f(z)| > 4}) = 0. Then from

Lemma m, we have
ITfl2 =p / X Ua{a : [Tf(2)] > AP)dA
<p [ Ve s 1T @) > FHin

= 9 AP || ]P0
<p / AP _1(0))\p(|)|f0|md)\ (Chebyshev’s inequality)
0

= p(240)7° / P / | f ()P dpud A
0 {z:[f(x)|>CA}

_p<2AO)pO/X|f(x)|po (/OWC”

— P @app - @A) f).

b —Po

Appold)\> du
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2. Case 1: p; < 0.

515 <p [l [Tof@)) > Jhar+p [t T @] > SHix

(24 o X o1 (24 "
<o [T (Bousa ) nep [ (Bl ) o
0 0

< p(24)" / Arro=t / F(@)PodudA
0 {z:|f(x)|>CX}

pagr [ [ |£(@)|P* dud
0 {z:1f(z)|<CA}

_ p-(240)P0 p-(24,)7 . )
= (Cp—po(p _pO) Cp—n1 <p1 _p>> Hpr

We have another vision for Theorem E in the restricted version, which is stated as follow:

Theorem 3 (Stein-Weiss Theorem). Let po,p1,qo,¢1 € [1,00]. Suppose T is linear and for any
measurable set E, [T - X(E)|lg.00 < Co - |E|YP and ||T - x(E)|lg.00 < C1 - |E[*/P Let p,q are given by

|
I
—
|
B}
+

A
Po p1

where 0 < 6 < 1. Then T is strong (p, q).

Proof. By the same way we proved Marcinkiewicz Interpolation Theorem, it is obvious that from the

assumption in the theorem, T satisfies
IT - xzll, < C|E|'7.

Call this T restricted (strong) type (p,q). Now take f € L?, where 1/¢+ 1/¢ = 1, and E

measurable with |E| < co. Define

by(B) = [T fla)d

By Holder’s inequality,
b7 (B) < |IT - xellq - [1flg < CLEM[fllq-

Hence by(-) is a signed measure, and is absolutely continuous with respect to p. By Radon-Nikodym
Theorem, there exists h = T*f € L' s.t.

be(E) = / h(zx)dp.
E
Therefore, for any f € L? and measurable E with |E| < oo, there is

[T xe f@ydn = [ e f)dn
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Because T is linear, for any simple function s, we have

[ st@) - s@yin = [ sta)- 1 pa)d
We need the following lemma:

Lemma 2. Suppose T satisfies the conditions stated in the theorem. Then T™* is weak (p, q) type.

Proof. For A > 0, denote

ET(A) ={z: T"f(z) > A},
E-\)={z:T"f(z) < =)}
Then
p({z [T f(2)] > A}) = w(ET(N) + u(E~ (V).
For E*(\), we have

W(ET (V) = /X Yot o (@)du

1

< )\/T*f(ﬂf) XE+ () (2)dp

=% / f(@) - Txp+ oy (x)dp

q

1
< XHTXEJF(A)”q |

q -

C
<SIEF P -|
Similar we can obtain the estimate for E~ (). O

Now back to the theorem. Take 0y,0; s.t. 0 < 0y < 0 < 0; < 1, then from previous discussion,
T is restricted (strong) type (pe,,qs,) and restricted (strong) type (pe,,qs,). Then from Lemma E,
we know T is weak (qp,,pp,) and weak (gp,,pp, ). From Marcinkiewicz Interpolation Theorem, T is
strong (gy,pp). In the same way, we know T** is strong (pg, qo). Now for any simple function s and

fe Lqé, we have
/ T f(z) - s(z)dp = / f(z) - Ts(z)dp = / f(@) - T s(x)dp,

hence T**s = T's. By MCT, we know T = T*, which implies that T is strong (pg, qy), or just strong
(p,a)- O
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3 Maximal Functions
Definition 3. If [, |f(z)|dz < oo for any compact set K, then say f(x) is locally integrable. Denote
L (R") = {f:R™ = C: f locally integrable}.

Definition 4. For f € L}, (R"), we define the (Hardy-Littlewood) maximal function to be
Xx(B) /
| (y)ld
1Bl Jg

Theorem 4. M is weak (1,1), i.e. oo < C|fll, or

M f(x) = sup
B

for every x € R™.

{z € R": Mf(z) > A}| < ”f”1

and [[M flloe < [[flloo-
Corollary 1. M is strong (p,p), for 1 < p < cc.

Lemma 3 (Vitali Covering Lemma). Let E C R" be Lebesgue measurable set. E C U, B,, where
B, are balls in R™ and sup,, (B, ) < oo. Then there exists a disjoint collection B,,, By2, - (at most
countably), such that Y ;- m(B,,) > C,, - m(E), where the constant depends only on n. (Usually, we
choose C,, =57".)

Proof. Take B,, to be a ball in {B,} such that r(Ba) >
B,,, -+ ,Ba,. Now to choose the next ball B

%supa r(B,). Suppose we’ve chosen

A1
1. Bo,,, N (UAB,,) =@
2. 7(Bay,,) = ssup{r(Ba) : Bo N (UleBaJ) =g}

Then B,,, -, B,,, - are disjoint, and

§im(3

k=1

We've chosen the sequence {B,, }. If RHS = oo, then we have our result. Now assume >~ m(Ba,) <
oo. Let By, be the ball with same center as B,, , but 5 times the radius. Claim that £ C UB;; . Once

we have this, we have

m(E) <m(UB;) <> m(B;)=5">_ m(Ba,).

Suffice to prove the claim. It suffices to show that each B, C UB;;, . Fix a. If a = ay, for some k, we're
done. Suppose o # .
By assumption, d(Ba,) — 0. Let k be the smallest integer s.t. d(Ba,,,) < 3d(Ba). Then B, must

intersect one of B,,,- -, B,,, or else we may choose it instead of B Therefore B, must intersects

Xp41°

some By for some 8 < ay. Also 3d(B,) < d(Bg). Claim that B, C Bj.
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Indeed, let zs be the center of Bz and y be a point in Bg N B,. Then V2 € B,, we have
1 5
o= gl < [z — 9l + by — 2] < d(Bo) + 5d(By) < 2d(By),
or z € Bj. Therefore we've show B, C Bj and we're done. O

Proof of Theorem . We need to show for any A > 0,

CllAl
.-

Let Ey == {x : M f(z) > A\}. Now for any = € E, there exists B, s.t. z € B, and

m@ /B sy > (+)

Thus E\ C Uyep, Bz, sup,cp, 7(B:) < 0o. By (%),

m(B) <5 [ iy <5 [ 1= <o

and then sup,cp, m(B;) < I /\”1 < 00, m(B;) = C,(r(B;))". By Vitali Covering Lemma (Lemma E),
there exists By,, -+, By, - s.t. they are disjoint and

m(E) <Y omiB) < Gy [ sy =23 [ i< I,
k=1 k=1 z k T

m({zx e R" : Mf(x) > A\}) <

Theorem 5 (Lebesgue Differentiation Theorem). Let f € LP(R™) (p > 1). Then

1

”%?;1’0 m(B)/Bf(y)dy = f(z) a.e. zeR"™

Proof. 1f f € C.(R™) = {all continuous functions with compact support}. Then

. 1 B
T(gggom(B)/Bf(y)dy = f(x).

Consider for p = 1. Define

-1
r(llgrio'm(B/Bf(y)dy - ggg T(S;I)E(S m/ f %I—IE(IJ (S;Ea m / f dy’

1 1 1
i =i
r(B)—»o m(B / 1y 5>0 rug@ m(B) / Iy 550 (S;Es m(B) / fy

Define
H(f)(x)zwmm [ —T(B)%m [ s

and we will show 0(f)(z) = 0 a.e. Since C,(R") is dense in L, for f € L', € > 0, there exists g € C.(R™)
sit. |If —glli <¢€ 0(g)(z) =0. Also

0(F) ()] = 10(f)(x) = 6(g) (@) < |0(]f = g])(@)| < 2M(|f — g])(2).
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Because {z : |0(f)(z)| > A} C {z: M(f — g)(z) > 3},

(e 105)@)| > A) < m(fa: M(F—g)() > 21 < SIf —glh < e

Let € — 0, m({x : |0(f)(z)| > A}) = 0, which implies 0(f)(xz) =0 a.e.
Let
~ x(B) s
Fof(o) = X5 [ 1= rt@)

we will show lim "(B)=0 Fpf(z) =0 a.e. This can be obtained from
rE

i Fof(e)| = | I (Fuf(e) - Fagla))| < lim 2M(f - g)(z) = 2M(f - )a).
Hence
mi(o: | m Fof(@)] > A) < mife: M- g)@) > 2 < Ddle O

which tends to 0 as € — 0, and thus lim»)~0 Fpf(xz) =0 a.e. O
rxeB
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4 Approximate to the Identity
Definition 5. Let ¢ € L'(R") and [;, ¢dx = 1. Define
be(x) = € "p(e '),
Then {¢.}c~o is called an approximation to the identity.
Definition 6. Schwartz space, denoted by S(R™), is defined to be the space
SR™") ={f € C*(R"): s;lﬂg |3:aDﬁf(x)| < oo,a, € N}

where for z = (1,22, - ,2,) € R" and a = (v, 9, -+ ,0,) € N™,

[£20)
n

DP =9z .. gxPr.

ma:x?l...x

Observation 1. C*(R™) C S(R™).

Lemma 4. Let f € S(R"™), then
CN7ﬁ

(1+ [z
for any N € N, x € R” and 8 € N, and Cy 3 is independent of x.

|D” f(z)] <

Definition 7. Define the convolution of f and g by
fro=[ sta-gtdy
R‘n,
Observation 2. fxg=gx* f.

Lemma 5. Let {¢.}.~0 be an approximation to the identity. Then lim. o ¢. * f(x) = f(x) for any
feSR).

Proof. By definition, we have

So lime_y0 ¢e * f(x) = limeo [ ¢(y)f(z — ey)dy. Since f € S, which implies f € L>, and also

lp(y) f(z — ey)| < [d(Y)] - [|f]oo-
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Then by DCT, we have
li . + f(«) =l [ 90w — )y
= /¢(y) lim f(z — ey)dy
— [ o) @iy
=1@) | o)y =f(x)

Example 1. Let ¢(z) = e~z then {bc}e>0 is an approximation to the identity.

Lemma 6 (Minkowski). For 1 < p < oo,

(L)' ] "= [ ([ )

Remark 1. For 1 < p < oo, we always have

1 1
I =suw | [ fo|:a€ e tal =11+ =1
R b q

Proof. By Remark [, LHS = sup {| fo.. (Je. |/ (2. )ldy) - g(@)da| : g € LI®™), glly =1, L+ =1},

Note that
[ ([ 15wty -stwas| < [ [1560lan- ool
= [ ([ - latwiaz ) a (Fubini)
<[(/ |f<x,y>|pdx)1/p Ngllody (Holder)
-/(/ |f<x,y>|pdz)l/pdy.
Taking exponent % to both sides, we obtain our results. O

Theorem 6. Let 1 < p < oo, ¢ € LY(R"), [¢ =1, and ¢(x) = e "¢(e *z). Then V f € LP(R™), we
have
ti 1 + 6 — 1, = 0.

Remark 2. In case for p = oo, the theorem does NOT hold generally!

Theorem 7. Let ¢ € L', [ ¢ = 1 and 9(z) = supy, >, [#(y)| (¢ is called the least decreasing radial
majorant of ¢). Suppose ¢) € L', [¢) = A. Then

1. We have sup.. |f * ¢.(z)] < A- M f(z) for any f € L}

loc*
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2. For any f € LP(R™) with 1 < p < oo,

lim f % ¢ () = f(x) a.e.x € R™

Proof of Theorem E Note that
Froo) = @) = [ (o =0) = £(@) 8.(0)dy
= [ (G- e) = £le)) o).

By Minkowski’s inequality,

1001 < [ 161176 =e) = SOl

Hence
ti 1/ 6= Fll < [ 1ol 17 = ) = £l
= [ 161 Ty 17 = ) = £ (DCT)
and by ||f(- —ey) — f(-)|l, = 0, as € — 0, we obtain the assertion. O

Proof of Theorem H Part 2 of the theorem follows from Theorem m It suffices to check part 1 of
the theorem.
By the translate invariance and dilation invariance, it is suffices to show that | fx¢1(0)| < A-M f(0).

Note that |¢p(y)| < |¢(x)| for all z, it suffices to show for any non-negative function f, we have

f*x(0) <A-Mf£(0).
— = r Y ,.n—1 /
. f(z)dx —/0 /Sn_1 f(ra)yr™ = da'dr,

Recall that
where dz’ is the surface measure of S»~1. Note
f*9(0) = f()(x)dx
Rn
= / f(ra" ) (r)yr"tda'dr
0o Jsn—1

— /Ooo ( - f(r:c’)da:’) () Ldr.

Set F(r) = [4._ f(ra')da’, then f*(0) = [~ F r"=tdr. Let

G(T)_/B(O,r) f(x)dx—/OTt"l Sn_lf(tx')dx’dt—/ort"1F(t)dt.

Then G'(r) = r" ' F(r), which implies

_/OOOG'(T)z/)(r PG ) =2 / G(r)du(r

Claim 1. lim, ., ¢ (r)G(r) = lim,_,o ¥ (r)G(r) = 0. Moreover, lim, . 9 (r)r" = lim,_,o ¢ (r)r"™ = 0.
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Assume Claim [, we have
Fev = [ v
<C-MJO) [ rat-uir)
— nC,, - M(0) /OOO Py dr
=M [(0) . Y(z)dr = A- Mf(0).
Proof of Claim [l. Since |G(r)| = ) Jom £(@)dz

[Y(r)G(r)] < Cutp(r)r™ - M f(0).

< C,-r"- Mf(0), we have

It remains to show lim, o ¢ (r)r"™ = 0 = lim, o, ¥ (r)r™. Note that

Y(r)yr =G, (/T<| B dx) P(r)

<c,’ (/ z/)(x)dx> (1(z) is monotonically decreasing and L!)
r<lz|<r

— 0,

as r — 0 (also when r — o0). The claim follows.

14

O

O

Lemma 7. Let {T.}.-( be a family of linear operators on L?(R") and define T* f(x) = sup.~.q |T.f(x)|.

If T* is weak (p,p), then the set {f € LP(R") : lim.,o T, f(x) = f(z) a.e.} is closed in LP(R™).

Proof. Let f, € L? and ||fx — f|l, — 0 as k — oo. Suppose lim. o T, fx(z) = fr(z) a.e. Show that

lim, .o 7. f(z) = f(z) a.e. This is straightforward, since

{o e x s L) - 1@ > 2| = [{o e X s 07 - )0 - (¢ - @ >4

gm({xeX:T*(f—fk)(x) > ;‘}) +m({

e—0

< CUIS = fullp | CENF — Fillp
AP AP

—($) 1= s

We end this section with an example, which is fundamental in PDE.

which converges to 0 as k — oo.

Example 2. Let ¢(z) = (47) /2~ 1=*/* and e = v/t for t > 0. Define ¢ () = ¢ i(x) = (4t) /2121 /48,

Now consider the initial value problem:

Ayu = uy, (z,t) € R = {(2,t) : z € R",t > 0}
u(z,0) = f(z) € LP(R"), 1<p<o

zeX:|(f = f)@)] >3

1)

(%)
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Then u(x,t) = Wyx f(x) = ¢ * f(x) solves (), and from Theorem ﬁ, we have lim;_,o u(x,t) = f(z).

Remark 3. The function ¢, is the function W;(x), the fundamental solution for A,u — u; = 0.
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5 Fourier Transform
Definition 8. Let f € L'(R"), define its Fourier transform f(f), £ e R" to be
f© = [ s
Theorem 8. Let f € L'(R"), then

L[ flloo < 111

2. f is uniformly continuous on R".

3. limje oo £(€) = 0.
4. If g€ LY(R"), then f+g=f - §.

Proof. Part 1 and 2 are straightforward and left to readers. We only prove the last two parts.

For 3, note
e

_/f<x)e—27rz§ z+ﬁ)dw

== [ (o) s

Also by definition f(¢) = [ f(z)e >™*¢dx, so 2f(€) = [ (f(as — ( — ﬁ)) e~ 2m¢dx, and thus

2|f(§)| < [ ‘f(x) —f (x — 2|§|2) This implies hmw_)oof ‘f(x (35 — 2|§|2)‘d$ 0, since
2\§T\2 — 0 and by continuity of L'-norm. Hence we have the result.

= [ fegtare
//f z —y)g(y)dy - e > dx
~ [ 4 / Fo)e vty . 2y
©.

For 4, we directly calculate:

=f(&) g

Theorem 9. Let f € L!.

1. (TLf)(€) = e=27€0 f(¢), where Ty f(z) = f(x +b).
2. (M, f)(€) = f(€ — h), where M, f(x) = e27i¢h f(z).

—

3. (D f)(€) = f(t€), where D, f(z) = t—" f(t 'x).
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4. Let p be an orthogonal transformation on R™. (We call a linear transformation p : R™ — R" is
orthogonal if p preserves the inner product, i.e. p(x)-p(y) = p(z-y)) Then m(g) = fop(ﬁ) =
F(p(£)).

Proof. Parts 1~3 are left to readers. We only concern part 4. It is also straightforward:
For(e) = [ flptae=éda
— /f(y)e%ip_l(y)édy

= f(y)e 2" ©vdy = f(p(¢)).

O
1(Ton of(&) _ " : 1(Ton (o1 ) _
Theorem 10. Let f € L'(R"), then & = (—27iz, f(2))(€), if 2, f(x) € L*(R"), and (Wk)(g)(k) -
omig. f(€) if 2L e L.
Proof. Let h = (0,---,0,hg,0,---,0), then by nasty calculation,
of . f(E+h)—f —
The other is the same. The calculation is left to readers. O

Theorem 11. Let D* (= 8—“) = 0x{'0x5? - - 0xl~, where o = (g, -+ ,,) € N™"\0. Let p(x) =

oz n
> anz®, where || = 3" | a;. Define p(D) = Z‘ . aoD®. Then for f € S(R"),

P(D)f(€) = (P(~2riz) f(2))(),

and

—

P(D)[(&) = P(2mi§)f(€).
The proof is left to readers.

Definition 9. The inverse Fourier Transform is defined to be
3@) = [ g©emde = g(-o)

A natural question comes up: whether we can find a relationship of Fourier Transform and inverse

Fourier Transform? Or explicitly, does there exist the following relation:
Claim 2. f = f?

The answer is yes, provided f, f € L', which we will state as the following theorem:
Theorem 12. Let f, f € L', then f: f

We need a few lemmas before we prove the theorem.

Lemma 8. Let f,g € L', then [ fg= [ fg.
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Proof.

LHS = / / ¢ f(a)da - g(€)dé

/f (/g(ﬁ 2’”£$d§> dr = RHS.

Lemma 9. ¢—'P(¢) = eI,
Proof. 1t suffices to show it in 1-dimensional case, since by Fubini’s theorem,

LHS = /eﬂ'(a:iJr...g;i)e27ri(w1§1+...+wn£n)d§1 . dgn

— H / Jem2miniti e

Let f(x) = e~™" where z € R. Now to show f = f. Notice that f is the solution of system

uw +2mzu =0
{ (*)

u(0) =1

ie. (uw ﬁxu) = 0. This implies @’ + (%) =0, and it is 2miu (&) +iu'(§) = 0. So @' + 2w&a =0
and 4(0) = [, u(z)dr = [, f = 1. We observe @ also satisfies (). Thus f is the solution of (x). By

uniqueness of solution, f = f 0
Corollary 2. ej7f2\|'|2(§) = (477)—n/2e—|£|2/4.

Example 3 (Gaussian mean). Let g € L'(R"), then

/ g —471'262\5\2d§
Rn

is called the Gaussian mean of [;, g(&)d¢.
Observation 3. lim._,q Gc(g9) = [g. 9(

Lemma 10. If f € L'(R"), then when ¢ — 0,

f(é—)627rix5674772\§\262d§ _ f(I) 0.
R™ Ll(R”)
That is, [, f(&)ezmizs eI’ ge 5 £ in L1,
Proof.
/ ‘]E(§>62m‘z§ef4ﬂ—2‘5‘262 df _ f(y)(e%”fci\‘“z‘g'm)(y)dy (Lemma E>
n RTL

[ Fw)e M T = y)dy,

Let p(z) = (emz)(az) = (47) /212 /4 (by Corollary E) Note [ ¢ =1, so {¢.} is an approximation
to the identity. Thus Lemma @ holds by Theorem E O
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Now we’re ready to prove our main theorem for the chapter.
Proof of Theorem . By Lemma @, there exists a subsequence {¢;} such that
1. ¢ — 0, as k — oo.

2. lime o [, f(E)2 e €7 dg = f(x) a.e. x € R™. Then by DCT,

|262

LHS = / F(€)e¥™ i lim e 1K< g¢
Rn

k—o0

(£)€2ﬂiw§

n

Il
TR %\
>
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6 Fourier Transform on LZ(R”) and LP(R") (1<p<2)

We shall always notice that L? is a Hilbert space.
Proposition 1. f € S(R") if and only if f € S(R™).
Proof. For implication direction, we need to show if f € S(R"),

sup |(2mi€)*DP f(€)| < .
£ERN

Note
(2mi€) DP f () = (2mi€)*((—2miz)? f(2))(€)

=[D* ((=2miz)P f(x))](£)
— /DO‘ ((—2miz)? f(z)) e > dz,

and Schwartz function implies |(27wi€)*D? f(£)| < Ik ﬁ%dm < 00, for any N € N. For the reverse
direction, suppose f € S (R™), then fes (R™) by a similar argument as we did for implication direction,
since f = f by Theorem @ O
Proposition 2. Suppose that f, f,h,h € L*(R"). Then (f,h) = <f,f1>, where (f,h) = [ fh. In
particular, if f = h, ||f]la = || ]2

Proof.
< 7 h> — [ fh= / F@)h. (Fubini)
Note
h= [ Feemerag
= [ gemised = iz) = le),
which implies < I3 B> = [ f(2)h(x)dz = (f,R). 0

Our goal in this section, is to extend our Fourier transform to L?(R"). For any f € L*(R"), choose
{fx} in S(R™) such that fj RN f. Thus f, is well-defined, f, € S(R™). Note that Schwartz functions

are dense in L? space. There are few things to check:
e {fi} is Cauchy in L2(R™):
1fe = Fill2 = 1 = Fill2 = [1fi = fill2 = 0.

By the completeness of L*(R"), there exists g € L?(R") such that limy s fr = g, that is,
limy o0 || fe — gll2 = 0. Finally, define f = g.
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o This is well-definiteness: Show that g is independent of choice of Cauchy sequence. Take fj, SN 7,
fr € S(R™). Assume that fx L, g. We will show that g = g.

Consider the sequence {f1, f1, fo, f2, - - ,fj,fj, <} ={hi}32,. Then hy LN f because fj, LN f
and fy REN f-

{hy} is Cauchy, hence hy, L—2>Ah for some h € L2(R™). Note {h;,} = {fl,fl,fQ,fz, e ,fj,fj, < b

So g = limy_, o fk L limg oo fro = § L h. Hence g =g =hin L% g = § a.e.
Theorem 13 (Plancherel). f € L2, then f € L2 and || f||ls = [|f]|2.
Proof. Let fj L—2> fy, fr € S Then ||f|l2 = limg_eo || fxll2, and f o limy, o0 fk This implies
limy o0 || fill2 = [ £]]2- Notice that || fil> = || fillz, so
[ fll2 = Jim I fxllz = lim || fill2 = || £]l2-
—00 k— o0
O

Theorem 14. Fourier transform is a unitary operator on L?*(R™). (The unitary operator on H is a

linear operator which is an onto isometry.)

Proof. Tt remains to show Fourier transform is onto. We have the following claim:

Claim 3. The range of Fourier transform is closed.

2
Proof of Claim B Suppose that gy EEN h, where g, € L?. We show that h = § for some g € L2
{gx} is Cauchy in L?. By previous theorem, {g;} is Cauchy in L% So there exists g € L* such that
2
g = limy, o0 gk, 1-€. limy o0 ||gx — gll2 = 0. Suffice to show h = §. It follows from
1g = hll2 =119 — gr + g — Rll2 < 1§ — gill2 + llgic — hll2
=g = gkllz + [Igc — hll2 = 0.

O

Let R := the range of Fourier transform in L?. R is a closed subspace of L2. L*(R") = R® R*,
where R+ = {g € L? : (f,g) = 0,Vf € R}. Assume R # L?(R?). Then R* contains a non-zero
function, say, h € R+ and h # 0, [ fh =0 for all f € L2.

Exercise 1. Show that [ fg = [ f§ for all f, g € L.
Exercise 2. Suppose f € L', g € LP, 1 < p < 2. Show that (m)(f) = fg a.e.

By Exercise m, [fh =0 for all f € L?, which means hLL?, thus h = 0. This implies |[h|jy =
|A||2 = 0, and hence h = 0 a.e. Contradiction! O

Same as in L', we can define inverse Fourier transform:

Definition 10. The inverse Fourier transform is defined to be f(z) = [ f(&)e*™*¢d¢ for f € S(R™).
If f € L*>(R™), we define the inverse Fourier transform f L limy o0 f3, here f, z, f and fi € S(R™).
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Theorem 15. For any f € L2, we have f: f ae.

Proof. Let U be the Fourier transform operator, i.e. Uf = f . We make the first claim:

Claim 4. The left adjoint operator is given by U*f = f, i.e. for any f,g € L?, we have (U*f,g) =
(f.Ug).

Proof of Claim . For f,g € S(R™),

(U f.9)=(f,Ug)=(f.9) (Exercise [I)

So U* f = f for all Schwartz functions f. Now let f € L?(R"), we need to show the same equality. Let
fr € S(R) s.t. fr SN f, and by definition limy_,o f = f. For any g € L?,

(U f,9)=(f,Ug) = ([, 9)
=(f = fr,9) + (fr, 9)
=(f = f&:9) +(U" fr,9)

which implies

U f=U"fr,9) | = {f = fr ) | < If = frll2 - lgll2 — 0.

So U f Z limy_yo U* fi,  limyoo fio = . O

We have another claim:

Claim 5. U is unitary operator, so U* = U~L.
Proof of Claim B Let x € L?. Then from Claim H,
({U'Uz,2) = (Uz,Uz) = |Uz|3 = ||z]3 = (z,2).
Hence U**Uz = x, i.e. U* =U"1. O
Back to our Theorem @ Combine Claim H and Claim a, we have
f=Uf=UUf=UO)f = .
O

Now to extend Fourier transform to LP, 1 < p < 2. We have already done when p = 1 and 2. It
suffice to consider the 1 < p < 2 part.
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Let f € LP, then one can write f = f; + fo, where f1 = f - x({z : |f(z)| > 1}) and fo = f - x({z:
|f(x)| < 1}), with f; € L' and f, € L2. Define f := f, + fo, where f; is Fourier transform in L* and
f> is Fourier transform in L2

This definition is well-defined:

Let Ll +L2 = {f : f = fl +f27f1 S Ll,fg € LQ}, then

o IPC L'+ 12

This is because by define for any f € L, let f = f1 + f2, where f; = f - x({z : |f(x)| > 1}) and

fo=f -x({x:|f(z)| <1}), then

[15k < [18r< [111 <.
[is1= [unr < [l <o

This means f; € L' and f, € L?.

o If f=fi+ fo=qi+ ¢, where fi,g1 € L' and fa,go € L2. Then f; — g1 = go — fo € L' N L2
Thus fi — g1 = g» — f2, which implies f; + fo = g1 + ga.
Theorem 16 (Hausdorff-Young). Let f € L, 1 < p < 2. Then f € L% and | f||, < I f]lp, 1%—1—% =1

Proof. Note || fllo = supgn | £(€)] = supge | [ f(x)e* x| < [|f] = [Ifll: (f € L') and [|fl]> < || [}
(f € L*). By Riesz-Thorin Interpolation Theorem (Theorem m), 1£lla < I1F1lp- O

Theorem 17 (Young). Let f € LP, g € L9, p,q > 1. Then fxg € L", where 1—|—% = %4—%. Moreover,

1+ gl <[ fllp - [lgllg-

Proof. Fix f € L7, || fxglly < 1], llglly by Minkowski’s inequality (Lemma B). [ fgllsc < [1£]l,- 9l
where % + i = 1, by Holder’s inequality. By Riesz-Thorin Interpolation Theorem (Theorem m),
1f*glle < fllp-llgllq for £ =20+ £ 1= #—5—5, where 6 € (0,1), which implies 1+ = >+ 2. [

p o0’ g q

Recall the Schwartz functions space S(R™). Now define
1flla.s = sup |z*D?f(x)],
IER'VL
and fk — f € S(Rn) iff limy_y oo ||f;~C — f”aﬁ = 0 for all Oz,ﬂ e N™.

Definition 11. Let L : S(R") — C be linear. L is called a continuous linear functional if
limy, o0 L(fx) = 0 whenever fr — 0 in S(R"™).

Definition 12. Let §’'(R™) = {all continuous linear functionals on S(R™)}, called the space of tem-

pered distributions.

Definition 13. Let T € S'(R"). Define T € S'(R™) by

T(p) =T(¢),

for all ¢ € S(R™).
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Example 4. f is called tempered function if

f (@)
/ Tty =

for some N > 1. Let J = {f: f is tempered}. Then Vg € J, if 3 f s.t.

/ gp = %
n Rn

Example 5. Let p be a finite Borel measure. Define

for all ¢ € S(R™), then define g == f.

i(6) = [ o)
We define the Dirac measure at 0, denoted by J, that

1 ,0€E
0 ,0¢F,

5(E) =

where E is Borel set. Consider its Fourier transform as follow:

5(€) = / ) e~2miat gy

:/ 62m‘x5d5+/ e~ 2mizg g5
R7\{0} {0}

—0+1-5({0}) = 1.

Hence a fact is that,

[SoR
I
—_

or

i<
I
&

24
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7 Singular Integrals

Definition 14 (Standard Calderén-Zygmund Kernel). Let K € S'(R" x R"). Call K is a standard
Calderén-Zygmund kernel if K is a C-valued function in R” x R"\{(z,y) € R® x R" : = y}, and
K satisfies

1. |K(z,y)| < ﬁ, for x # y.

2. |K(z,y) — K(z,y')] < Cly=y'l° for € > 0 and |z —y| > 2|y — /|

[e—g|nte)
3. |K(z,y) — K(2',y)| < €2=2L for ¢ > 0 and |z — y| > 2|z — 2/

o=yl

The above conditions 1~3 are called Calderén-Zygmund conditions, or C-Z conditionsd

Definition 15. Let T : S — &’ be continuous in § and linear. T is called a Calderén-Zygmund
singular integral operator, or C-Z singular integral operator if T is associated with a standard
C-Z kernel, that is,

(T, ) = (K, p@1),

where ¢ ® ¥(x,y) = p(z)¥(y). Indeed, we have

(K, ®v) = / K (2, ) (@)p(y)dady

R7 xR™
N / < - K(x’y)@(y)dy) Y(w)de (supp ¢ N supp ¢ # @)
= (Tp,¢),
and Ty = [p. K(z,y)¢p(y)dy.

Remark 4. One would wonder whether such a singular integral operator T' can be extended to a
bounded operator on L?? The answer is yes. One can refer to T'1 Theorem proved by David-Journé
(1984) [2]. Readers can also see in Lecture @

Theorem 18. Let T : S(R") — S'(R™) be a C-Z singular integral operator. If T' can be extended to
a bounded operator on L?(R"), then T is a weak (1,1) operator, that is,

C
m({z € R* + [Tf()] > A}) < [Iflls,
for any A > 0.

Example 6 (Hilbert transform). For f € C}(R), we define the Hilbert transform H f(z) to be

1 1
Hf(x) =—lim 1) dy = —p.v. 1) dy

T e=0 |:r7y\>ex_y ™ RL—Y
1 — 1 —

o / Fe=y), Ly [ fE=9),
T Yy T e=0 ly|>e Y

Now write
Hf(x)=lim Mdy + / Ly)dy =I141L
0 Jecla—yl<1 T =Y lz—y|>1 L~ Y
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Note that ;
dy 1 2. ,
= </| w2e) (fier) <e
also
. f) ~ f)
|I‘ B lHO /e<z—y|<1 r—y
=0 [z =yl

since | f(y) — f(@)] < [[flloc - |2 —yl-

Example 7 (Riesz transform). Riesz transform is given by

R;f(x) = C, - lim Vi iy = G, - pov. / T )y,

e—0 |z—y|>e ‘.Z' - y|n+1 R™ |.’IJ - y|n+1

Example 8 (Cauchy integral along Lipschitz curve). Let v be a Lipschitz curve in C, that is, 7 is the
graph (z, A(z)) = © +iA(x), where A(z) is Lipschitz function. Define the Cauchy integral

1 ,.

zE'yZ_C

Cf(z) = p.v.

Substitute z by x 4+ iA(x) and ¢ by y + ¢A(y), we have

C’f T) = p.v. / - dy,
=Py f ey A - Aw)
where f(y) = (1+iA'(y)) f(y +iA(y))-
e One can check the examples above are examples of C-Z singular integral operators.

Lemma 11 (Calderén-Zygmund Decomposition). Let f € L*(R™). Fix A > 0. Then there exists

non-overlapping family of cubes {Q;}52; s.t.
LA<|Q;I7" o, If <27
2. |f] £ Xae. on R*\(U;>1Q;).
3. 30, 1Qs1 < Al

Proof. Let f € L', [Q™! [, |f| < |QI7[If]lx — 0, as |Q| — oc. Divide R" into a union of disjoint cubes
Q’s with the same size. Let |@Q| be big enough such that

1
|Q|/Q|f|<)\-

We subdivide each @ into 2" many subcubes Q' with the side length 1¢(Q). For each Q' C Q, Q'

satisfies one of the following conditions:

L Q'™ [y

f| > A (called the good cubes).
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2. [Q'I"" [, [f] £ A (called the bad cubes).

If Q' is good, then
2"L
<@t [ i< [ <
@ QI Jg

Stop dividing and put @’ as one of the cubes in the collection {Q;}. If @’ is bad, then subdivide it into
2™ many subcubes with side length %@(Q’ )- Repeat the procedure for each subcubes, we obtain {Q),}
such that

|Q]| Qj |

with Q,"’s are overlapping. If = ¢ U2, @Qj, then there exists {Qr} s.t. |Qr| — 0, z € Q) for some k
and |Q| ™! ka |f] < A. By Lebesgue Differential Theorem (Theorem B),

1
fim oo [ 1A=15@) ae
So 1
|f(2)] = klggo@k‘ g Ifl < A

Note |Q;|™! fQj |f] > A is equivalent to |Q;| < A™! fQj | f], which implies

1 1 1
< AZ/Q f1=5 ] 1A<50n

A

Lemma 12. Fix A > 0. Let f € L*(R"). Then f = g+b s.t.
1. g € L*(R") and ||g[[5 < CA[lf]:-

b(z) = >, bj(z), where b; is supported in some cube @; and Q; are disjoint.

3. 22,;1Q;1 < A7HIfll and [, b; =0, and also 37 ||bjlly < 2||f]]:-

Proof. For f € L* and A > 0, let {Q,} be the collection of cubes in Lemma EI Define

b(z) = Z (f— QJ/. ) x(Q;) = Zbg‘(fﬁ)

. 1
9(@) = f(x) = b(z) = fl@)x((U;Q,)°) + Z ( N /Q j f) X(@;)
Clearly f = g+ b, and

ol < /(50 + 3 ( i |f|> (@)

<A+2"A=C,A.
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Additionally, we have

gl < U1+ DBl < £ 1+ D 11811
J

<Wh+23 [ 191<3051

Also |lgll2 < B f1]1)?(CA) =%, and 6 = 1/2, we have
lglla < C"- X2 | £I2,
or [lgll5 < CAllflx- 0

Proof of Theorem . Suppose that C-Z operator T' can be extended to a bounded operator L2.
Show that for any A > 0, f € L*,

{z e R™: |Tf(2)] > A} <

> Q

Write f = g + b as in Lemma @, then
A A
LHS < |[{z e R" : |Tg(x)| > §}| + {z e R" : |Tb(x)| > §}| =I+1L

Hote c clfl
1
1< Sira < Siolg < S ae g = S

It remains to show II < €|/ f[1. Let E = U;5Q;. Then

= |{z € B: [Tb(x)] > D)\ + o ¢ ¢ [Tb(@)] > D} < || + [{x ¢ B+ [Th()| > 5}

Notice

3 3 [1£111
F| < Q;l <5" Qi <5™-
| |— |5 J|—5 - | ]|—5 /\ )

J

so it suffices to prove |[{z ¢ E : |Tb(z)| > 3}| < §[/f|li. By Chebyshev’s inequality,
A 2
Hz e E°:|Tb(z)| > =} < / |Tb(x)|dz
2 A Jge
2,
<-— Th;(z)|dx
S ALE
2
<3 Z || K@ y)bi(y)dy

Since [ b;(y)dy = 0 (by Lemma @ conditions 2 and 3), [ K(z,y;)b;(y) = 0. Therefore,

c. A2
{x € E°:|Tb(x)| > 2}_/\;/c
: % Z/ : / K (e9) = K ()| b0 dy

dz.

dz

/ (K () — K(2,4;))b; (0)dy
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Note that | —y| > 2|y — y;|, where € E¢, y,y; € Q;, thus x € (5Q),)°. Hence by Fubini’s Theorem,

=S [ ([ ) ay

J J
c / ly — y;l°
<< bl ([ =0 ) gy,
A ; j {z:|z—y|>2|ly—y; |} |z —y|™t
where
{a:la—yl>2ly—y;1} T — Yl {e:lz/>2ly—y;1} 7]
Hence

C, Cn Cn
- AZ/Q by = 5 3l < e
O

Exercise 3. We can obtain the same argument if condition 2 of C-Z kernel is replaced by the Hor-

mander condition:
/ K (2,y) - K(2,y)ldz < C.
{z:lz—y|>2|y—y;|}
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8 Hilbert Transform

Definition 16. The Hilbert transform for f € L!(R is defined by

_ oy L ffe—y L[y 1 flz—y)
Hf(gt)—p.v.w/]R ” dy—p.v.ﬂ_ —dy = —1 /y|>edy.

BT Y =0 y
Let z,t € Rand t > 0.

Definition 17. The Poisson Kernel is defined by

1 t
P(w) = m e

Then one can check {P;};~¢ is an approximation to identity, and u(x,t) = P, % f(x) solves (for
R-valued f € L*(R)):

{ Au =0, (z,t) € R = {(x,t) e R* : t > 0} )

u(z,0) = lim;_o+ u(z,t) = f(x)

Let F(z) =2 [, f(€)e?™*dg, where z € C and Sz > 0. It is easy to see F/(z) is analytic in R2 or
H. Write F(z) = uy(2) + iv(z), with RF = u; and SF = v.

Claim 6. u; = u, which is defined in equation ().

Proof of Claim B Easy to see Au; = 0 (by C-R equation). Note
wi (@ +i0) =i (z) = /0 G / WG
— [ d@eni = fa).
Thus wu; satisfies (), and by uniqueness we obtain u = ;. O

Definition 18. In the definition above, v is called the harmonic conjugate.

Note that
e’} 0
v(z) = (=i) ( | i@ [ f<§>e2m€d§)
= / (isgn() ORI f(g)e
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Write z = x + it = (z,t), then
o) = oet) = [ (misgu(e)) e len i g dg
K

G(§)e*ede,

where G(§) = —isgn(§)e 2™1¢ f(¢).

Claim 7. F(z) = (P, 4+ iQ;) * f(z) for Rz > 0, where Q;(z) = £ -

T
t24xz2 "

Proof. Write z = x 4 it. Then

2) =2 /0 (&) d

:2/00 (/ f(y)e_Qﬂ—igydy> 62m’£zd£
0
:2/f(y (/00 eme(mth)df) dy (Fubini)

/f(y yﬂt) dy.

On the other hand, P +iQ; = - which implies

= w(m+zt

(P, +iQy) * f(a / fy) —— iy = F(2).

xfy+zt)

Fix ¢, then
Qq * F(€) = —isgn(€)e > f(&) = GQ(e).

It is evident that

oant) = Qo fla) = = [ S fa =)y

Theorem 19. Let f € LP(R"), 1 < p < oco. Then
lim Q, * f(x) = Hf(z) a.e
t—0+

Remark 5. Hf(z) = lim;_,o+ F(x + it).

Proof. Let ty(x) =

need to show

-2 x({|z| > t}). Then H f(z) = lim;_,o+ ¢, * f(x). To prove the theorem, we

1
™

lim (Q: — ) * f(2) = 0.

t—0+t

Note (Qu =)+ f(z) = [ £ (ki = Ix({lyl > 1)) f@ —y)dy. Let () = L (4 — Ix({lyl > 11),

then

(Q — Uy) * f(x) = &y * f(2),
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where ®,(y) =t~ 1®(t'y). Note that

P(y) = {
1

1 — 1 [ty
@ydy:/ dy+/ dy # 0.
/ @) T Jiys1 y(1 +y?) ™) 1+y?
Recall that if sup, >, |®(y)| € L'(R), then sup,.|®; * f(x)| < C- M f(x), and

—1

e o >l

A= 3=

also

ly|>|z| = x|l <1,

1 1
sup |®(y)| < {”|T|(1+z2) x> 1

which is in L'. Hence lim,_,o+ ®; * f(z) =0, for f € S(R™). Since sup,. |®; * f(z)| is weak (p,p),
t]i%lJr D, x f(x) =0

for all f € LP(R), 1 <p < o0. O

Theorem 20. f[?(é‘) = —isgn(&)f(€), where f € L2

Proof. Let f € S(R), then H f(z) = lim,_o+ Q; * f(x) by Theorem [1d.
H7©) = [ Hi@e ™ *da
_ / Tim Qq x f(w)e
= lim / Q: * f(x)e ™" dxy (DCT)

t—0+t

—

= lim Q; * f(§)

t—0t

= tli% (—z‘ sgn(f)e_zﬂtm) f(g)

= —isgn(&)f(&).

Let f € L?, there exists f;, LN f, k — oo, where f; € S(R). So

2 2 ~ 2

Hf(§) = lim Hfi(€) £ lim —isgn(€)fi(§) = ~isen(€)f(9).
Therefore, H f(£) = —isgn(£)£(€) a.e. O
Corollary 3. |Hf|j = || f|l2.
Corollary 4. H is weak (p,p) (by Theorem [1g).

Corollary 5. H is of (p,p), 1 < p < o0, i.e.

H flly < Cpll £1l,-
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Theorem 21. Let H* f(x) = sup,.
and any 1 < p < oo.

%f|y|>e fle—y)- %dy - Then ||H*f|[, < Cp- || f|lp for any f € L?

Proof. We will prove
H* f(z) < M(Hf)(z) +C- Mf(z).

Let v () = - L - x({|z] > ¢}), then

Y o) — L flx—y)
dor sy = [ Ty

Let ¢ € S(R) be non-negative, even, decreasing on (0, 00), supported on [—1/2,1/2] and [¢ = 1. Now
Yex [(x) = $ox (H f) (@) +[ex f (2)—dex (H f) (). By Theorem [l, sup,.q [dox(H f)(x)| < C-M(H f)(2).
Claim 8. [¢). * f(z) — ¢ x (Hf)(z)| < C - M f(z).

Proof of Claim §. Indeed,

LHS — ‘/ (wy) _ % v, /j{iw) - y)dy‘.

Note
Ye(y) — % p.v. j{zidz’ < 62222. (k)
Exercise 4. Prove (xx).
From the preceding exercise, we have
LHS < C- / T |f(z—y)|dy < C-Mf(z).
O

Hence

H" fllp < IM(HF)]lp + ClIMF,
<Gy 1Hf o+ Cp - 1 flp < Co - 1 £l
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9 Riesz Transform
Definition 19. Let 1 < j < n. We define the Riesz transform of f € L'(R") to be

R;f(z) =C,, - lim Y f(y)dy

€0 |lz—y|>e |m_y|n+1
=C, /K x,y) f(y)dy,

Tji—Yj
lz—y[m+T-

where K(z,y) = p.v.

]

Let Tf(x) = pv. [ T8 f(y)dy =limeso [, B f(y)dy.

|z— yl“ z—y|>e |z—y["

Note 2. Here we urge (2 satisfies:
1. Q(A\x) = Q(z) for any A > 0,2 € R™ and n > 2.
2. Qe LS.
3. [gur Qy)do(y') = 0.

For Riesz transform, Q(x) = one can easily check it satisfies all the conditions. (Exercise)

\r\’

Let K(z) = p.v. ?(lw) = lim_ & Il X({|z| > €}). Then T'f(x) = K * f(x).

Theorem 22. If 2 satisfies 1~3 above, then
K
RGO = [ 00 [tor g~ 15 senls/ )] oty
Snfl

where ¢ = \E\ € snt,

Proof. Let K () =

1}) € L', since Q € L'(S"!) by condition 2. Hence

/K —27rzfacdx

and K(f) = lim._, Ke(f) in the sense of distribution, i.e. <K, cp> = lim,_ <I€€, g0>, where p € S(R").

Now

> Q(ZE’) —2milx
K. (&) = _— d
(5) /<|z<1 ‘ v

[

= / / 7% >6_2’”T|5|(I O Ldrdo (') (Let x = 72’ and r = |z]|)
Sn 1

— / Q(.’El) (/g 6—27ri7'|5|(l"§/)dr> dU(l‘/)
Sn—1 € r
1 1
Sn—1 1 T Sgn—1 ¢ r
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and the last sentence uses the fact that (by condition 3)

/Snl e (/1 Cff) do(a') = 0.

= /Sn1 Q(m’)/ (cos(2mir|€|(z" - &) — 1)%da(x’) + /Sn1 Q) /1 cos(—2mir|&|(x" - f'))%da(w’)

—z'/sn_l Q) (/61 sin(—2mir|¢|(x" - §’))?n> do(x)

Hence we may continue

=R —iS..

Note
. , . < ) . ;o dr ,
lim S, = / Q") (hm/ sin(—2mir|&|(z" - € ))) do(z")
e—0 gn—1 e—0 E r

~omirle|-Ja’ € 2 s
= / Q(z") lim/ sin(s - sgn(m'-ﬁ’))? do(z') (Let s = —2mir|¢| - |2’ - &)
Sn—1

=0 —2mirfe]- |2’ €' |e

_ /S o) sen( - €) < /0 N Sin§d8> do(x')

™

=3 /Sn1 Q(z") sgu(z’ - &' )do(a").

On the other hand,

it €| g s — 1 e
lim R, :/ Q(x’)/ Cossdsda(x’)—i—/ Q(x’)/ COSSdst(z'),
e—0 gn—1 0 S gn—1 or|g|-|ar ¢ S

and this implies
amlel g
lim R, = / Q) / 2 ) do(a’)
0 C 2mlg]far-g'] S

/ 1 A
= /Snl Q(x") log FR f,‘da(ﬂv ).

Hence we obtain the result. O

If Q is odd, then
. T

K() = —i§ /Sn1 Q") sgn(a’ - &do(x).

In this case, || K(£)]| < 22 Ly (sn-1). If Q is even, then

But note that this might NOT be bounded!

Definition 20. Define
Llog L(S"™!) = {9 : / lg(z")|log™ |g(2")|do(2) < 00},
S'n.fl

where log* t = max{0, logt}.
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Let Qc(z) = 3(Qx) + Q(—2)) and Qo(z) = 3(Q(z) — Q(—2)). Then Q = Q.(z) + Qo(x), which

implies
Q! Qe (2’ Qo(z’
. (:vn) = e(g;) + p.v. O(i).
|| |z ||
Also,

E

V. Qe(l”) _ .7T/S B Qo(.’IJ/) . Sgn(:r:’ . El)do_(x/) — KOQ

Qo 1
V. (@) _ / Qe(2')log ———-do(z") = K.
gn—1 2" - &

Theorem 23. Suppose ) satisfies 1~3, and Qy € L*(S"!), Q. € Llog L(S"!). Then

/Q\x’
p-v. J(Z'ln) C (”QOHLI(S"*l) + ||Qe||L10gL(S"*1)) .

Proof. || Ko|lse < 2 Jono1 1Q0] < 519 L1 (sn-1). Tt suffices to check the other one. Now let

K. (¢) = 1 N=1
© /{w’esﬂr—l:ﬂe(w’)lgl} (e )Og\ ! §’| do(@) =L

—I—/ Qe(2')log 7———-do(z') = I,.
{z'€S"—1:|Qc(z")|>1} | 5 |

Since

Ig/ log ——— !
o< [ Tor o)

T 1
/ log v m({a sphere in R"~! of radius sin 6})d6
0 0s

™ 1 _
= C’n/ log - (sin0)"2df < C,,.
0 cosf

Exercise 5. Check the last inequality in the preceding deduction.

Also,

o0

=y [
k=0 {z’/eSn—1:2k<|Qe (/)| <2k +1}
> 1
< PAR / log do(z')
; (wresn—tiokci, (@)|<2k+1y T €

(o) k+1 1
< E 2 log —
— {z/€Sn—1:2k <|Q (a')|<2F+1 |2/ -¢/ | >2- 2k} |2 'f|

o0
+ 2’“1/ log ———do(z') =t Iy
Z (o eSn—12k<[Qu(ar)|<2M 1 Jorgr| <228} |2 f’\

do(z")

1
Q. (2|1
902" log 177

do(z') = In
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Note

In <CY k-2"o({a) € §771: 28 < |Qu(2)] < 281}
k=0

<C

k=0

S C- HQeHLlogL(S”*l%

/ 1 (') log™ [0 (a)|do
{z7eSn=1:2k<|Qe (a7)|<2k+1}

and

- 1
Iy < ZQ’C—H/ log FE 5/|alcr(x/)
k=0 {

2/65"71:|x’~§’|§272k}

<C N k+1 e 1 1 do
<C) 2 T 9|
k=0 2

T _ .92k
5 —€2

) .22k
1
=C) 2! / log df
k=0 0

0 €272k
<C) 2 / Giéde
k=0 0

<Oy ook <
k=0

Combine all the estimates above, we get the desired result. O

Corollary 6. Let T,,f(z) = p.v. [ 2e=v) £(1)dy. Suppose that € satisfies 1~3, and Qo € L}(S"1),

lz—y|™

Q. € Llog L(S™'). Then T,, is bounded in L?(R").

Corollary 7. Riesz transform R; is bounded in L? for 1 < p < oo.

Proof. R; is a C-Z singular integral operator, which is weak (1,1). O
Remark 6. 1. K(z,y) = p.v. flzm(f;ﬁ} is NOT a C-Z kernel unless €2 is "smooth” enough.

2. If Q € Llog L(S™™ ') and  satisfies 1~3, then T,, is weak (1,1).

3. Let Q € L'(S" 1) and Q be odd (it satisfies 1~3). We have the following open question: Does

T, define a weak (1,1) operator?
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10 Methods of Rotation

Let T,,,$2 defined as in Chapter a, namely € is characterized by Note E, and

~ v, /
|z — yl"

Then by Corollary B, T,, is bounded in L?*(R"™).

Definition 21. For y € S"7!, define

7T e—0
to be the directional Hilbert transform.

Exercise 6. Prove that ||H,f|, < C,||f|l, for any f € L?, 1 < p < oo.

Theorem 24. Suppose (2 is odd, then T}, is bounded in LP, 1 < p < oo, that is, for any f € S(R"),

1T fllp < Cpll £lp-
Proof. Take f € S(R™). By definition,
. Q(y)
T, f(x) =lim x —y)dy
f(x) =lim e T fl@—y)
= lin% / flxz—ry") —do( " (Substitute y = ry’, where ' € S"71)
€E—> Sn—1 €
1., dr .
= —lim Qy) flx —ry)- —da( " (Q is odd)
220 Jgn—1 Ir|>e
1. dr 1 dr
—slm [ 00) [ (fe-m)-s@) Taow) 5 [ 0w [t Tdot)
2 e—0 gn—1 <|rl<1 r 2 Sn—1 |r|>1 T
1 dr 1 , dr ,
3 [ owtm [ (e - g Taow) 4 [0 [ s ) Tdoty)
2 Jgn— =0 Jeciri<1 r 2 Jgn— Ir|>1 T
1 d
5 [ et [ ) aoty).
2 Jgn €0 Jir|>e r
Thus by definition of directional Hilbert transform, we have
v
T.f@) =5 [ QW) Hf@)oly),
Sn—1
and
T
170l < 5 [ 1961 17y Fldots)
by Minkowski’s inequality (Lemma E) From Exercise B,
1T fllp < Cop / |- fllpdo(y') < ColllLrsn—r) - I fllp-
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Recall the Riesz transform

1

R;f(x) = o P /wi'ﬂlf(x—y)dy-

—

Theorem 25. p.v. lm‘ITJH(g) = —iC, - I%

Proof. We start by a claim.

. "1 ey _ Ca

Proof of Claim B LHS is radial because m% is radial. Also, it is homogeneous of degree -1, i.e.

1 11
WQ\S) = XW(@
Indeed, o - o
1 T 11
Since for g(A€) = A7 1g(€), or Aég(\E) = &£g(€). Let G(€) = £g(&), which implies G(AE) = G(&) and
thus G(|¢]) = G(1). Hence [£|g(¢]) = C. Take g = MCI% and we’re done. O
Note that |xﬁ-’+1 = ﬁa%j (Im’\%)’ we therefore have
-z 1 0 1
po ot © =15 (s () ) ©
1 1
_f 2mig; - | |n,1(f)
. / gj
= —iC, - =,
o

Corollary 8. 1. Ej\f(g) =g - (=iCy) - %f(ﬁ) = —z%f(g)
2. Z;L:l R? = —1I, the identity operator.
From now on, we will use the notation ”"<”, and define A < B if A < C'B for some constant C.

Corollary 9. Let A be the Laplacian, 1 < p < co. For any j, k, we have

82
1532l = 102502l 5 | Aul,
J

Proof. Observe that 0z;0x,u = —R; R (Au) = —R;(R,(Auw)). Note [|0z;0xiul, = [|RjRp(Au)|, S
|All, under the observation. Thus
O;01u(€) = (2mi€;) D ul€)
(2mig;) - (2mige)a(§)
— Am?&;€a ).
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Now from
Om0mu(e) = — ByTuda) = (~if% ) (-1 ) (B
- (8) (6% -rerer
(<) (~iik) - umgace)
= —4r’gEpu(f),
we conclude our observation is true. O

Now let T,,,§2 be given as the beginning of this chapter, and () satisfies the conditions stated in
Note E with the second of them replaced by Q € L9(S"™!), where ¢ > 1. The main part of the chapter

will be the next theorem:

Theorem 26. Let €2 be characterized as the revised conditions as above, and be a even function. Then

for any f € LP, 1 < p < oo, we have || T, fll, S Il

Proof. From Corollary E, T.f = I(T.f) = =3 RX(Tnf) = —>.7_ Rj(R;(T,.f)). To prove the
theorem, we need to show

IR Ta) fllp < Gyl flp-
Note T,,f(z) = K x f(z), where K(x) = p.v. |?|Sf+)1 This implies

Ry (T, f)(€) = — i 2T, f(€)

Claim 10. R, K is an odd kernel and it is homogeneous of degree —n.

Proof of Claim @ Note that K is even since ) is even, then

Yj

R,K(—z) =C,p.v. |y‘n+lK(—x—y)dy
=C,p.v. |y‘yrf+1K(:r+y)dy
=Capv. [ LK = y)dy v~ -)
= — R;K(x).
Similarly, we can show R;K(Ax) = A™"R,; K (x) for any A > 0. O

Apply the method of rotation which we deal with T;, f in Theorem @,

1

(BK)+ 10) =5 [ REW)Hy f(@)inty)

and so

I(RyE) 5 £l < Coll |

Sn

BE()lda(y').
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Claim 11. [y, , [RK(y)|do(y) < CyllQlasn ).

Proof of Claim . We’ve showed in Claim @ that R;K(A\z) = A™"R;K(z). Now by substitution,

/ R K (y')|do(y') =C/ |R; K (x)|dx.
Sn—l

1<|z|<2

Let K (z) = gllg(ﬁ—r/) -x({|z| > €}). Then

/ R K ()| dz < / Ry K () — By K)o (a)|da +/ IRy K o) dr = T+ 1L
1<|z|<2 1<|z|<2

1<|z|<2

Note by Holder’s inequality,

I SCqHRjKl/Q”q
<[ K12llq (By Corollary E)

=, VS 12y (/OO r:qnl dr) da(y’)] "

S Cq,nHQHLq(S"*l)-

So it remains to show the part. Note

Ry (@) = RyEa(o) =Copve [ BB k)1 x({lu] > 3h)dy

|lz—y|>e |I‘ - y|n+1

.’Ifj — yj 1
_Copov. / By ({J2] < 2 })dy
|lz—y|>e |‘T - y' + 2

;i —y; Qy)
:C’np.v./ N . HJ_H — dy,
i<t o —y[m Lyl

|le—y|[>e

and the last step implies |z —y| > |z|—|y| > 3 since 1 < |z| < 2 and |y| < . Since by assumption of 2,

we can subtract ‘wﬁ?’ — ?y(lli) in the integral without affecting anything. Hence from llﬂg‘zg‘l — Ix‘fﬁ <
|J/,C‘,|,L'y+|1, 1<]z] <2, |yl < %, we have
C, 12(y)]
R @) - Riualo) < ot [ Wy
J j 1/ ||+ i< ly[n T
C, al [ ,
- [ 190) ( / dr> do(y)
<Ol (sn1y < Col| Q| Lagsn—y,
since ¢ > 1. Combine I and II, we finish the proof. O

Combine Claim @ and Claim El, we conclude our proof. O
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11 Littlewood-Paley Theorem
Let A; = {z € R: 27 < || < 271}, Define S; by (S;£)(€) = x(A,)F(€).

Theorem 27 (Littlewood-Paley Theorem). Let f € LP(R), 1 < p < 0o. Then there exists positive
constants C, Cy such that for any f € LP,
1/2
(Z |15 f |2>
’ P

~ (11
p

Cr- I flle < < Co- | fllp,

(5 15,02) "

or equivalently, '

Let v € S(R) be non-negative, suppy C {1/2 < |{| < 4} and (&) = 1if 1 < |¢] < 2. Let

— ~

P;(€) = ¥(277€), and S} f(€) = F(&);(€).
(,15,72)"”

Theorem 28. For any f € LP, 1 < p < o0, '

< [l flp-
p

Proof. Let T f(x) = {Sif}; = {811, 84/, }, then LHS = | T f|}2. To show | T |2y = | | T fllill, <
C| fllp- For p =2 case,

1T 7113 = / <;|S§f(x)l2> dz
-3 [ s
=3 [ @rtueras
LG INGIES
<t = Il

where we use the fact that >°, [¢(£)]* < 3 by definition. O

Theorem 29 (Calderén-Zygmund Theorem). Let ?f(x) — K+ f(z), where K = (K1, Ka,--+),
x € R™. Suppose that

L E(@—y) ~ K-yl < S it o —y| > 2y — o] and € > 0.
2. T fllise) < CIlf o
Then |{w € R | K + f@)]le > A}| < §I7 1.
The proof is left to readers. Now suppose K; = @j, and [_(2 is defined similarly as above.

Claim 12. H?(m —y)— [_(>(a; — )l < S=vl i |z — g > 2]y — /| and € > 0.

[a—g1
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Proof. By definition, we know
|Kj(x—y) — K;(z —y)| =z —y) — i (x — o)
AR
where n = 0(x —y) + (1 — 8)(z — ') for some 0 € [0, 1]. Note
Il =lz—y)—0y—y)=lz-y)—1-0)y—y)
e —yl—ly—y[= %Iw—yh
Note also
B =Ky = [ue)emea
— / P(277€)e? T de = 204)(2x).
This implies
105 ()| = [(27)" (27n)| = 2% ()" (27n)]
< Cy - 2%
T (L 2N

__ Oy
T (Ve -y

(By Lemma H)

Hence we have
1/2

1/2
LHS = (Z [y — y) — (@ - y'>|2> < Cy

J

1/2 1/2

) 249y — |2 NS 240y — y|?
(14 27|z —y|)2N — (1422 —y|)?N

J
27 |z —y|<1 27 e —y|>1

» 2% |y — /|
2 /
2 Pyt X Gy

J
27 |z —y|<1 27 |z—y|=>1

N

A

Here we have used the inequality
(X adl) < Dlal

where 0 < r < 1. Thus

ly — | 1 ly — |
< + § .
J

~r—yl? |z —y|N
27 o —y|>1
!
|z — y|?
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Now we go back to probability theory to induce a useful theorem we’ll need later. First recall that
for a random variable X on the probability space €2 with probability measure P, the expectation of X
is defined by

E(X) = / XdP.
Q
We have a famous result:

Lemma 13 (Khinchin’s Inequality). Let {w,})_, be sequence of independent random variables
taking values +1 with equal probability, i.e. P({t: w,(t) =1}) = P({t : w,(t) = —1}) = 3. Then

N P N p/2
E ( Z:lanwn ) ~ (Z:l |an|2> )

where A ~ B if Je¢q,c0 > 0, c;A < B < A, and the constants are independent of N (but might

depend on p).

Proof. Let p > 0. Clearly by independence,

E (et Xn@nen) = (H e“a”“’“) =] E (eroen).

Note by definition,

/ ehanen dP = / ehandP + / e~handp
Q {wn=1} {wn=-1}

)

which implies
(euan + e—uan) < H e3(pan)? _ e% > an
n

DO —

E (e# Ze o) = ]

Let By ={t: ), anw,(t) > A} CQ,

P(EA)Q#A < / et 2 anwn(t) P < 6% >n ‘an‘z’
Q
which gives
P(By) < et Zalnl
A2 22

Let p = Z# then P(E)) < e 2Zalen®. Similarly, P({t : >, apwn(t) < —A}) < e 2Zalenl®

nlan|*?
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P({|>>, anwn| > A}) < 2e 2Talen® . Now
p

E _ /

Q

p / Alp
0

2p/ NP le” 22n\an\2d)\

0

IN

p/2
Cp (Z Ianl2>

2
E AnWnp
n

Since

Dol =
n

<z

g ApWn,
Q n

p\ 1/p
> .]E

>A}>dA

2p (Z an|2> (/ /\p_16_>‘2/2d)\>
n 0

(=)

we have 3 |a,|? <E(|Y,, anwn|P)Y? - Cy(132, anwn|?)?, and therefore

1/2
<Z |an|2> < C,E (

P) 1/p

§ aTL wTL
n

. Zanwn dP

45

(let A — (3, lan|?)/2N)

(Holder)

Theorem 30. Suppose T is a linear operator s.t. for any f € LP, 1 < p < o0,

ITfllp» < Cp

then
1/2

[

N £l

()

Proof. From Khinchin’s inequality (Lemma @), we know

S

)

> Tfiw;
j
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where {w;} is a sequence of random variables taking values £1 with equal probability. Therefore,

= /X <Z |Tfj|2> " du

J

P

()

~ [ ST dpa

= T(ijwj) dPdy (u is o-finite)
x Jo r

_ / ( (Y fw) )dP, (Fubini)
o \Jx 5

hence we obtain

1/2||P P 1/2|P
H (Z Tfj|2> < / (/ (> fiw;) ) dpP < (Z |fj|2>
j , QX J J ,
O
Lemma 14. Define m(f) = f(&) - x({€ : a < € < b}). Recall M, f(x) = e>™ f(z), then
Slap) = %(MGHM,a — MyHM ),
where H is Hilbert transform.
Proof. Note 5(M,HM , — MyHM ) f(€) = £(M,HM o f(€) — MyHM 4 f(€)), by the fact HF(€) =
—isgn(&)f(€), and we're done. O

Proof of Theorem @ Recall that (/SJT)(@ = X(A;)f(€), and 1;x(A;) = x(A,)1);, we have S]/(b%f) =
S;/(Sj\f) From Lemma @, we know

S; = %(ngHM_gj — Mossr HM 1) + %(M_QJ-HHMZM — M_g HMy,).

It suffices to show
1/2
<Z |M2jHM_2j5;f2) S A

J
P

Notice that

1/2
LHS = <Z|H 2 S} f) |>

p

1/2 1/2
S (ZIszséfF) = ‘(ZS;W)

Sl (Theorem @)

p
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On the other hand,

J

/X Z&f@dw = (51,59

= [ fa={f.9)=(s9).

R

Since || f, = SUD gc1 = |(f,q)|, where 1/p+1/q = 1, we have

/1l

IN

IN

A

N

sup
geLd
llgllg=1

1/2 1/2
sup /<Z|ij2> <Z|Sjg|2>
1/2
<Z|Sj9|2)

J
1/2
sup (Z |ij|2> Nlgllq

[ 25150

llgllg=1

1/2
(o)

geLd

llgllg=1
a q

J

llgllg=1

(er)

p

P

47

(Cauchy-Schwarz)

(Holder)
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12 Littlewood-Paley Theorem in R"

We’ve learnt Littlewood-Paley Theorem in Lecture @, it is natural to ask for higher dimensional
generalization. In this lecture, we will give a generalization to R”.
Let ¢ € S(R™) with ¢(0) = 0. For j € Z, we define S; by

S7(6) = w(2776) f(€),

where £ € R" and f € LP for 1 < p < co. This operator can be extended over L? by usual limit process

as we did for Fourier transform.

Theorem 31 (Littlewood-Paley Theorem). For 1 < p < oo, there is a constant C), which depends
on p and 1, such that for any f € L?,

OIS

JEZ

< Cpl| fllp-

p

Moreover, suppose C'= >, [¢(277¢)[> > 0 for all £ # 0, then

1flls < Gy || Q1834152

JEZ

P

Remark 7. Such % in the special case of the theorem does exist. Indeed, let ¢ € S(R™) be non-negative
and radial, and ¢(¢) = 1 for €] < 1/2 and ¢(£) = 0 for [£] > 1. Define (¢(€))? = ¢(£/2) — ¢(€) for any
¢ € R™. Easy to see RHS is non-negative, and

S @R =D [p(277 1) — 92798 = ¢(0) = 1.

jEZ JEZ

From definition of S, one can represent S; f(x) = K * f(z), where
Ki(o) = [ o igemsndg = i (-2a),
We define the vector-valued operator ? by

T f(@) = {S; f}ien = K * f(2),

where K = {K;},ez. Hence first part of the theorem @ becomes H?f”LP(lz) = H H?f”p

< Cpl| £llp-
p

Proof of Theorem . First to estimate for p = 2, i.e. ||?f||L2(lz) < || f]|2- By Plancherel Theorem

(Theorem @),
1Tl = 3 [ 1507 = [1FQF T oz )de,

which reduces to the verification of

> weror<c.
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Note that
BRI = [H(277€) — BO)F < [V 7ER < Cr2 e,

where the constant C; depends on . On the other hand, since v is a Schwartz function, we see that

—; Cn

for any non-negative integer IV, and C depends on . It follows that
Z |¢ _]5 |2 S Zmln{ |2 j£|) _2j|€|2}7

and one can check RHS is controlled by a constant.

To obtain the L? estimate, we need to verify ? is a C-Z kernel.

Exercise 7. Check that & is a C-Z kernel, and in particular for |x — y| > 2|y — /|,

IR —y) - Rle—y)le < SU—Y1L

|z —y|"*!

After we check this, it follows immediately that ||7f||Lp(lz) < Gyl fllp- Now it suffices to check the
case when C' =", |(277€)|%. This is from the part we proved and a standard duality argument.

Note
[ S ss9= [ S weE9ri©i© - cir.g).

By Cauchy-Schwartz inequality,

Ny, |</Z|Sf| 1/QZ|59\ 12,

which is bounded by
H(Z IR H(Z |S591%)"/2
j p I

by Hélder inequality and the part proved. By duality, we’re done the proof. O

2)1/2

p’ p

Remark 8. supp may not be compact. Theorem @ is still valid when (277¢) is replaced by non-
smooth cut-off, say the indicate function of the annulus {{£ € R" : 27 < [¢] < 277!} when n = 1.
However, it is not true for n > 2 unless p = 2, because of Fefferman’s shocking result, which tells us
LP-unboundedness (p # 2) of S} if n > 2, where §J’\f(£) =x({€ e R : 27 < |¢] < 27H1}) - f(€).
However in the Remark E, if we replace the annuli {£ € R™ : 27 < [¢] < 2/F1} by disjoint dyadic
rectangular boxes, one can have the non-smooth cut-off version of Littlewood-Paley Theorem. We’ll

state the two-dimensional case, which can be extended to higher dimension by induction.
Recall Aj = {z € R: 2/ <|z| < 27*'}, we define S} by

ST, &) = Xa, (€)F (6, €2),
where (&1,&) € R?, and define S7 by

STF(€1,6) = xa, (&) F(€1,&).
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Theorem 32. There exist positive constants ¢, and C), such that

1/2
el flly < (ZIS}S£f|2> < Gy £lly-
7.k

P

50
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13 Multipliers

Let m be a measurable function on R™. Define T' by

TF(€) = m(©)().
for any £ € R" and any f € L? N L?. Here p is a given number in [1, co].

Definition 22. The function m is called a multiplier and T is called a multiplier operator. The
multiplier m is called a LP-multiplier if T is bounded on L?, i.e. | Tf|, < C,||fl|, for all f € LP N L>.

Remark 9. When 1 < p < oo holds, T' can be extended uniquely to an operator which is bounded on
LP. We will abuse the same notation 7' is denote the extension operator.
Remark 10. There are two questions arise naturally from the definition:

1. Given m, does T define a bounded operator on LP?

2. How to characterize LP-multiplier?

Both of them can be answered in L?. The first question is easy, and is dependent on m. For
example, if m is a smooth bump function on a unit cube, then the multiplier operator T' is bounded
on L? for any p € [1,00]. The second one is extremely challenging for p # 2. However, we can do
it for p = 2, and moreover the Hormander multiplier theorem, which characterize LP-multiplier for

“smooth-enough” multiplier. We start with a easy characterization.
Theorem 33. m is an L2-multiplier iff m € L°°.
Proof. By Plancherel’s Theorem (Theorem E), we get the “if” part:

ITfll2 = 1T Fllp = lImfll2 < lImllsll Fll2 = [l flsollF ]2

Now assume m is an L?-multiplier. Define the norm of T to be

1T £l
|T[| = sup :
feL? HfHZ
F#0

WLOG, suppose [|T|| # 0. We will show ||m||o < 2||T|| under the condition ||T|| > 0. For any k € Z,
set By = {£ € R" : 28 < [¢] < 2FHL |m(€)| > 2|T||}. Denote |E| to be the Lebesgue measure of E. It

is clear that
YTIPIE < [ Im(©)F e, ©)Pde = mxe 3,
by Chebyshev’ s inequality. On the other hand, by Plancherel’s Theorem,
Imxe |3 = 1TxEN: < ITI?- Ixez = 1T - |El.
It follows that
AT Ex| < TN - |Exl,

which implies
A Ei| < |E],

since || T|| # 0. So |Ex| = 0, which gives |m(§)| < 2||T|| a.e. O
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Definition 23. Let a be a real number. Define the first Sobolev spaces
LL(R™) = {f: (1 + [¢[)*/*f(¢) € L*}

and the Sobolev norm by

I = ([ 1+ |€\2)"|f(£)l2d€>1/2.

Note 3. For a > 0, the Sobolev space L? is a collection of all measurable functions f : R® — R
obeying that both f and D®f lie in L?, where the differential operator D can be defined in terms of

— A~
«

Fourier transform by D@ f(§) = (2mi&)® f(€). One can check it is indeed a multiplier.

Lemma 15. Let o > n/2 and f € L2(R"). Then f € L'(R"). In particular, f is continuous and
bounded.

Proof. By Cauchy-Schwartz inequality, we get

P 1 1/2 2\a| £ 2 1/2
s ([ asiemede) ([ a+isiforde) <ol <.

By inverse Fourier theorem, we have
fla)= [ fle)e*m=ede,
Rﬂ.

since f € L' and f € L2. Hence f is continuous (uniformly) and bounded. O
Theorem 34. Let m € L? with a > n/2. Then m is an LP-multiplier for any p € [1, 00].

Proof. Let T be operator associated to m. Let K(x) = m(—z), then
K(©) = [ inl-a)e s,
because 7 € L' by Lemma @ Changing the variable —x — x, we have
K(©) = [ ifa)erm<ds = in(e) = m(©)

Hence we can represent T'f(x) = K * f(x), since 1/“}" = Kf = mf. Moreover, we see that the kernel
K € L' because 7 € L'. Then

IT Al = 1K * £l < / / K@) f(z — y)ldedy < K|l - /],

and
1T flloo < NE M1 - [ floo-

By interpolation theorem we’re done. O
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Lemma 16. Let m € L2(R") with @ > n/2 and X > 0. Define Ty by

T f(€) = m(AE) f(€).

Then
| ms@Pu@s < ¢ [ 17@EMutds

where u is any non-negative measurable function, and C' is a constant independent of u, A and f, M is

Hardy-Littlewood maximal function.

Proof. Let K(x) = m(—=x). Since m € L' by Theorem @, we see in proof of Theorem @ that Ty = Kxf.

It is clear that
1/2
([1@Ra-+Ial)de) - = lmis.

By dilation, we see easily that T\ f(z) = Ky * f(z), where K)(z) = A""K(A~'z). We have

T —y 2[yar/2
s = [ K+ foPutario = [ | [T B

2

u(z)dz.

By Cauchy-Schwartz inequality,

s < [ ([0 @-mpa s ne-hea) ([ oo ) uws
=[|m|lzz // +|)\"|fxy_)|;2|) dy - u(z)dz
—ImIILg/Iﬂy)I2 </ (1+|;1(Z(i)y)2|)adx> dy. (Fubini)

The second factor in the integrand can be controlled by Mu (up to constant) since o > n/2. Hence

we're done. m

We're ready to state the main theorem for the lecture:

Theorem 35 (Hormander). Let ¢» € C™ be a radial function supported on 1/2 < [£| < 2 such that

Yo lWEIEP =1

jET
for all £ # 0 € R™. Suppose that m € L* is a measurable function obeying, for some « > n/2,

sup [|m(27-)]| 2, < oo.
JEZ

Then m is an LP-multiplier for any p € (1, 00).

Proof. We only need to prove m is an LP-multiplier for p > 2, while the other part follows from the

duality. We will build up L? estimate for the operator T

Define S; by S, f(€) = 1(279€) f(€). By Littlewood-Paley Theorem in R" (Theorem B1l), we have

(Z |ij|2> ~ 11l

jEZ
I P
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Let ¢ € S(R™) with ¢'(§) = 1 when 1/2 < |£| < 2 and it is supported in annulus {£ € R™ : 1/4 < [¢] <
4}. We define S} by
SiF(©) =¥ (279)(),
then by Fourier transform,
S;T = S;TS;.

Apply Littlewood-Paley Theorem, with f replaced by T'f, we get

ITfl, < (Z |Sst;f|2>

JEL
P

From the definitions of 7" and S;, we obtain for any f € LP, gT\f(f) = (2776)m(€) f(€). So from the

condition of m, we use the Lemma @ to obtain
[ 1srs@Pu@ds < ¢ [ (5@ u@ds 1)
Rn Rn

where C' depends on sup;ey [|m(27-)9|z2, but is independent of u, f, S; and T. Denote S}f = g;.

Then by duality,
/(E |Sjng|2> = (/E |Sjng|2h> ;
j J

JET
for some h with ||kl 2 = 1. Use (1) with f = g; and u = |h|, we obtain

S

Wl
(NS

(Z |Sjng|2>

jEZL
J p

<Z |Sjng|2) < / > @ Mn(a)d )
JEL
P
By Holder’s inequality, we have
RHS < C (Z |gj|2> N Ml S e - 1l S 11
J
P

Here we use Littlewood-Paley Theorem and the L®/2" boundedness of Hardy-Littlewood maximal

function M, which implies the LP estimate of T" combining the results before. O

Theorem 36. Denote Ny to be the set of non-negative integers. Let m : R™ — C be an L*° function

which lies in C* away from the origin for k = L%J + 1. Suppose that m satisfies
1 1/2
s 9 ([ ptmioPie) <o ®
R>0 R<|¢|<2R

for any multi-index 8 = (81, ,,) € Ny with |8| =1+ -8, < k and D? = 8?11 . 8?; Then m is
an LP-multiplier for 1 < p < oo.
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Proof. Suffice to verify

sup [ m(27-)] 12 < oc. (3)
JEZL

Change the variable £ — R¢, (2) becomes
1/2
o ([ iDmn(era) < (@
r>0 \J1<¢|<2

where mg(§) = m(RE). Let ¢ be the smooth cut-off function given as in Theorem @
Now to check (3). For any two multi-index 8 = (81, ,8,) and v = (71, -+, Vn), both in Nf, we
say v < pif y; < B, for all j =1,--- ,n. Furthermore, we define for v < j3,

()-11(%)

For any multi-index 8, we denote 5! := H?:l B;!. By this new notation, we can represent

(5) =55

D) = 3 (7)0rma @0 w(e),

By Leibniz’s law, we have

where my; (€) = m(27¢€).

Exercise 8. For any integer @ > 0,

Ifllzz < Ca Y 1D fll2,
B

n
ENg
[Bl<a

where C, is a constant only depending on a.

From the above Exercise, there is a constant C (depending only on k) s.t.

sup Im(27 )¢z <C > 1D (m(27)9)]5
J

|BI<k

> @ (/ Do (9] |D5—W(€)|2>1/2.

7<B
k

<Ci
181<

Since % is a nice function supported in {1/2 < |¢| < 2}, we have

D7 (€)| < C(k),
for any (3,~) with v < 8 and || < k, and C(k) is a constant depending on k and . We also are able

to control those (f ) ’s by a constant depending on k. Therefore, we obtain

1/2
sup [m(29- )] 2 < max sup ( / |Dvm2j<5>|2d§) <0,
JEL 1<lél<2

[v<k 4
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from (4), where the implicit constant hidden in < is
B
GOk 3_ (1)
HEL

which is a constant relying on k. O

Corollary 10 (Mikhlin Multiplier Theorem). Let k = | 2| +1. Suppose that m € L>(R") satisfies

that there is a constant C' s.t.

D m(&)| < Cle| !
for any g € Ny with |8| < k, and for all £ # 0 € R™. Then m is an LP-multiplier for 1 < p < occ.

Exercise 9. Prove Mikhlin Multiplier Theorem.
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14 Fractional Integrals

For any f € S(R"), we have
(=Af)() =4[/ (©),

where A is Laplacian. One can extend the definition of —A to (—A)®/2 for a € R. In fact, one can
define the operator (—A)*/2 in S(R") first by

(A)72£)(€) = (2] F(©).

Then we can extend this operator to more general case. We abuse the same notation to denote the
extension. When « > 0, the operator (—A)®/? is essentially a-order differential operator. When a < 0,
we use I_,, to denote (—A)®/2) which can be viewed as (—a)-order integration operator.

One can define for o > 0,
L.f(&) = @2le) (&),

and one can view it as a a-order integration operator.
Definition 24. When 0 < a < n, I, is called a fractional integral.

Remark 11. I, is a multiplier operator, so it can be represented by I, f = K * f for some kernel K.
Next lemma is devoted to find such K.

Proposition 3. We have the following properties:

1. Indg =Ioayp, for 0 < o, B <nand a+ B <n.

2. Al,=—-1, s for2<a<n.

3. (AL, =1, gfor0<a<fB<n.

4. I, is the fundamental solution of —A, that is, u = —I5 f is the solution of Au = f.
Exercise 10. Check these properties.

Lemma 17. Let 0 < a < n,

then
lz[*=(€) = Crnalé]™

in the sense of distribution, i.e. for all ¢ € S(R™),
[ el = oo [l w(ede
RTL n
Proof. Recall that -l T (&) = 6~/2¢=71E*/5 For any ¥ € S(R™),

/ e () da = / eI (€)g(€)dE = 572 / eIy 6) e,
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by Exercise m Let g = #5%, multiplying both sides by 0%~1 and then integrating in 6 from 0 to oo,

g e ™) (2)dads = [ (&) R de. (1)
L] (] )

Note that the left hand side of equation (m) is

LHS = / () ( /0 h 5[3—16—7“”'2615) dz = ==°T(p) / ()" d )

On the other hand, the right hand of equation (m) is

Rits = [ u(© ( / mége"'f'”é‘ff) e = [ (e ( / Oop%”epif’) (rlél®) 2 de,

by letting p = m|€]?/6. Hence we have

revealing

RES = 1(5)nF [ u(e)lg e (3)
Comparing equations (E) and (E), we obtain the desired result. O

Corollary 11. For any f € S(R"™), we have

I f(@) = C(n.0) [

R

1

z -yl

f(y)dy,

= 2_“77"/2%. Hence I, f(x) = K * f(x), where K(z) = C(n,a)|x|*™.

where C'(n, «)

This can be extended to f € L? with 1 < p < 2. To see that, we partition K(z) into K;(z) =
K(x) - x({|z| <1}) and Ks(z) = K(x) - x({|z| > 1}). Notice that K; is an integrable function because
0 < a < n, and thus ||Ky = f||, < [[Ki|l1-||fll, by Young’s inequality. Hence K * f converges absolutely
»IIfllp- When p satisfies the

condition, K, € L? since (n — a)p’ > n. Hence I,f = K * f for f € L? is well-defined.

a.e. since it belongs to LP. By Holder’s inequality, |Ks x f| < || K,

Our next goal is to find for what pairs of p and ¢, we have the inequality

Haflla < Cllfll (4)

for f € S(R™). Now for any § > 0, let

fs(x) = o™P f(0z).

From the Corollary El, we have I, f5(x/8) = 6 "% I, f(x). On the other hand,

1
Hafslla = 57 Hafo(5) -

So using equation H for f = f5, we see that

||Iozf5||q = 5_a+%_%||jaf||q < C||f5||p = CHpr-

This can be true only if
—a+ 2T (5)
p q

Two special cases arise when (p,q) = (1, -2-) and (p, q) = (%,00).
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Lemma 18. In either case, the presumed inequality (H) does not hold.

_n_
' n—a

the result is valid, we can replace f by a sequence { f;} of positive integrable functions whose common

Proof. Tt suffices to show for the case (p,q) = (1 ). The other is dual to this case. If in this case

integral is 1 and whose supports converge to the origin, or an approximation to the identity. Denote

B, ={z € R": e < |z| <1/e}. For n sufficiently large and x € B,, we have

hﬁ@0=CMA)/w—ywwmmxx—wﬁwM%

because fj is supported in {y : |y| < €/4} when n is large. Let K. = K - x(B,/2), which is integrable.
From || I, f|| = < C| |1, it follows that

Ve il ) = el s, < CllI = C.

n—a

We know
. o o —n+a
kh—EEO | Ke * fl Lnta (B.) HKEHLﬁ(BE) =C(n,a) H |- HLnﬁa(Be) <G,
which implies by letting ¢ — 0,
/ |z|~"dx < oo,
and this leads to a contradiction! O

Example 9. We give a counterexample to demonstrate (4) is not valid for (p,q) = (n/a, 00). Let

0 < a<mn,and € > 0 small. Let f: R"™ — R be given by

i (log o

0, |z|>1.

(1)
) Ja] <

1
2

fz) =

One can check that f € L"*(R") and I,f ¢ L™ as long as a/n(1 +¢) < 1. (Exercise)

It turns out that after removing the two special cases, the equation (E) is also a sufficient condition
of (p,q) to make (@) holds for all f € L?. We can therefore formulate Hardy-Littlewood-Sobolev

Theorem of fractional integrals.

Theorem 37 (Hardy-Littlewood-Sobolev Theorem). Let 0 < o < n, 1 < p < ¢ < 0o and
é = % — 2. Then

1. If p > 1, then there exists a constant C' such that for any f € L?, ||Iof]lq < C| fll,-

2. There exists a constant C' such that for any A\ > 0 and any f € L!,

CILAIY
Y

{z e R" : [Iaf(2)] > A} <

Proof. Notice p satisfies 1 < p < n/«, and thus Corollary @ is valid for representing I, for f € LP.
We can show first that, for any real number R > 0,

Lo f ()] S R*Mf(2) + R4\ f]. (6)
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Split the kernel K into K;(z) = K(z) - x({|z| < R}) and Ks(z) = K(x) - x({|z| > R}). The first part
K can be divided further into >~ K - x({27" 'R < |z| < 27FR}). Then it is not difficult to prove

|Ky o f2)] S RM f(x).
On the other hand, apply the Holder’s inequality, we have
K # ()] S BT £l

Now (B) follows. Choosing R~™/P = Aﬁ;ﬁx)’ we then obtain

L f @) S I flly - (Mf ()P,

For p > 1, we see that
ap P %J’_%
o fllg S WA - IMf @) S U S 1Al

(7)

since M is bounded on L” and S%+£2 = 1. For the case p = 1, it follows from (H) and weak (1,1)-estimate

of M that .
£

o € R ¢ |Lf(2)] > M} < [{o s M[(2) > CaullfIlT ™ AT} S VI



15 LITTLEWOOD-PALEY THEOREM IN CONTINUOUS VERSION 61

15 Littlewood-Paley Theorem in Continuous Version

Let v be a radial and real-valued Schwartz function, obeying fw Y(x)dz = 0. Tt is not difficult to
show 1) is real-valued and radial too. Since 1 is radial, for £ € R", 1&(5) = 1[)(|£ |) and it gives a function
defined on R.

Let
bi(z) ="t ),
for any ¢ > 0, and

Quf (@) = b+ f(x).

| wwrs = [T iops <o (1)

t

To see why this is true, we split the integral in the left side into

[ wort+ [Ciopd.

The first term is clearly finite because ¢ € S(R™). The second term equals to

We shall notice that

[ 10w -d0r% < [ vitred <.,

Here we used (0) = J 1 =0 and the mean value theorem. Hence we obtain (1).

We can normalize 1 so that
. dt
| Gwrg -1 2)
0

t
We now state the Calderén reproducing formula, which allows us to represent f € L? in terms of the

operator Q.

Lemma 19. Suppose that ¢ satisfies (2). Then for any f € L?,

| @@ =@

in L? dense, that is,

[ 3)
as € — 0, R — co. Here Q7 is given by Q?f = Qt(Qtf) = wt * 1y x f.
Proof. For f € S(R"), we have
/ Qf / C,jt\ dt (Plancherel)

(Definition of Q)

NI
f(/ﬁ_| w(t))t—l)

By DCT, we see that the very right side tends to 0 as € — 0 and R — oo due to (2).

2
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€, Rf / Qt
For any f,g € L%, we see that

Tt = [ [@swa@at = [ [Goer@sioioet

which is bounded by, after using Fubini theorem and changing of variables,

R
[1#©a1 [ 1owEds <171z gl

By duality, we can conclude that for any f € L2

Now let

ITerfll2 < [ fl2-

We are able to use the uniform L? boundedness of T, r to extend the identity (3) from S to L?. (This
is a standard trick in analysis.) Indeed, because S(R™) is dense in L?*(R"), for any f € L?, there is a
Schwartz function ¢ such that || f — ¢|| < e. Then by triangle inequality and result above, we see

ITerf = Fllz < Terf = Terellz + 1T re = ¢lla + llo = fll2 < 2[le = fll2 + [Te re = ¢ll2;

which is bounded by
2¢ + | Te.re — ¢ll2-

Letting ¢ — 0 and R — oo, we end up with 0, and so

lim |Terf — fll2 = 0.

R—o0

Definition 25. We define Littlewood-Paley g-function by

o = ([ asert)

We now aim to build up Littlewood-Paley theorem for the g-function, say, ||g(f)|l, ~ [/f|l, for
€ (1,00). It is not difficult to make L? theory.

Theorem 38. Let f € L?. Then
lg(H)ll2 = 11 fl2-

Proof. By Plancherel Theorem (Theorem @), we get for f € L2,

o= [ [T 1au@ps = [1er ([ 1oeer ) as =1
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In some old book, one may see the definition of g-function via Poisson kernel. We now summarize
the old but very classical versions of g-function here. Let ¢ > 0, then the Poisson kernel P, on R" is
defined by (for z € R™)

Pt(x) — / 6727”.%5672””5‘(15.

—27t|-|

In other words, P; is Fourier transform of e It is well-known that

cpt
Pr) = —F—,

M) = ot
where ¢, = T'((n +1)/2)/x("+1)/2,

Exercise 11. This exercise aims to prove (4). We shall follow the steps:

1. Show that for § > 0,
/ ef7r6|§|2672ﬂ'iz~§dé- — 5*”/26*7"@‘2/‘5‘

2. For any v > 0,

1 X eTu 2
e = — e /Mgy,
VT /0 Vu

Hint: Write e™ = 2 [ <" dz, and express the factor ﬁ as fooo e~(F2))ugy then evaluate

—0oo0 1422

the integral.
3. Use 1 and 2 to prove (4).
The Poisson integral is defined by
u(z,t) = P * f(x)
for f € L?, which in terms of Fourier transform, can be represented as

u(,t) = | f)e e g,
R™

The function e~27¢l is rapidly decreasing in |¢| since ¢ > 0. This yields the absolute convergence of
the integral. For the same reason, the integral above can be differentiated with respect to x and ¢t any

number of times by carrying out the operation for the integral. Hence we see that for ¢ > 0,

" 0%u Q%
Au = — =0.
b o2 | ot
j=1 J

Therefore, the Poisson kernel P, can be used to describe the fundamental solution of the Laplacian on

the upper half plane.

The classical g-function is given by

1/2

s () = ([ wute )
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where Vu = (0,,u, -+ - , 0y, u, Oyu). Moreover, we define
1/2
. | ou ?
41 (7)) = ( [ |G tdt)
1/2

i) = ([T 9w

where V,u = (0z,u, -+, 0z, u). It follows immediately from the definitions that

and

g (f) = V(g (N)? + (g:(f))>.

One can check that Littlewood-Paley theorem holds for ¢g*, g; and g*. Now let us state the L? result

as follows:

Theorem 39. We have

Yy =
g™ ()l = ﬁllfllz

and

191 (N2 = gz (Hll2 = %llng.

Exercise 12. Prove Theorem @ Hint: Plancherel Theorem.

Now we're ready to state Littlewood-Paley theory for g-function. For the time being, we assume
1 to be radial and R-valued Schwartz function, satisfying fooo(zﬁ(t))z% =1

Theorem 40 (Littlewood-Paley Theorem). For any 1 < p < oo, there are constants ¢, and C,
such that

llflle < Ng(H)llp < Coll Flp,

for any f € LP.

The proof relies on vector-valued Calderén-Zygmund theory. For any ¢ > 0, let K; € S'(R"). K,
is a C-valued function on {€ R™ : x # 0}. When z is fixed, K;(x) can be considered as a function of
t > 0, denoted by h,. We assume the function h, belongs to H when x is fixed. We use the || - || to

denote the norm generated by the inner product of H. We now define an H-valued function K by
K(z) = {Ki(2)}e>0,
and its norm, for any given z, by
1K (@) lz = [[hall(= [ (2)]])-

An H-valued kernel K is called a Calderén-Zygmund kernel if it satisfies for some € € (0, 1],

1K ()|l < |j (5)
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for any x € R™ with x # 0, and

Cle — 2|
e (6)

1K (z) — K(2)[la <
if |z > 2]z — /.
We define T; by
Tif(z) = Ky  f(2),

and a vector-valued operator Tf = K x f = {K; * f};~0. In addition, we set

1/p
1T ) = ( / ITf|ﬁ> |

where | T f|lu = [|[Ki*f(z)]], exactly as how we define | K(z)|lg above. We will employ the vector-valued

Calderén-Zygmund theory for convolution type operator, which is stated as follows:

Theorem 41. Let K be a vector-valued Calderén-Zygmund kernel satisfying (5) and (6). Suppose
that

ITf 22y S Clifll2,
for any f € L2. Then for any 1 < p < oo,

ITfllze @y < CllF s
for any f € LP.

The proof can be prove by Calderén-Zygmund decomposition as we did in Lecture H So we will

omit the proof of the theorem. We shall now find a suitable Hilbert space for us to represent the

g-function. The Hilbert space we need to select is L*(R,, 4t) "which is a collection of h : R, — C such

t
t
that
1/2

o dt
Il = ([ 10OPY) <.
0

Now the vector-valued kernel K is given by

K(z) = {t(2) }i0.

Then to prove [[g(f)|l, < | fllp, it is equivalent to show

1Kl 1z 07y S 1 ™)

because ||g(f)|l, = ||K * f||Lp(L2(R+’ﬁ)). From Theorem @, it is sufficient to verify the kernel K is a
Calderén-Zygmund kernel satisfying (5) and (6).

Proof of Theorem @ First, we have

o A\
K@ e, = ([ WPy )
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which is bounded by

</°° Cnt=2" dt>1/2 _ (/ 1 dt>1/2+ (/ tN dt)“ _ 1
o (L4 [z/thN t ~ \ Ui 211 o<t<|z| 22N ~aln

Here we use the fact that ¢ € S and the number N can be chosen to be greater than 2n + 1. Hence
we obtain (5) for the kernel K.

On the other hand, note that

K (o) = K, = ([ lonlo) - wt(x’)IQit)l/Q,

([ e - vt

Using the mean value theorem for 1, we get

o 2 1/2
/ —on n dt
||K<x>—K<x>||L2<R+,%s</O 2 | vy (1) t) ,

where n = (1 — 0)x + 02’ = — 0(x — 2’) for some 0 € [0, 1]. Since z, 2’ satisfy |z| > 2|z — 2’|, we get

which equals to

2

v
t

ol "N |z
In| > |z| — |z — 2| 5
from which it follows that
1/
> 1 z—a|? dt
K(z) — K22 0y < {2 =
1K ()~ K" e, ) S ( | |5 t)

1/2 (N—2n—3 1/2
< / dt) |x$'|+(/ dt) S — 2|
( t>|x |t2n+3 t<|z| 2|
|z — |
S T
Henceforth, we get (6). As a consequence of Theorem @ ) follows. Therefore we see g-function is

bounded on LP.

Finally the reverse inequality can be prove by duality.

Exercise 13. For any f € L? N LP, we have

I, = sup | [ Fontaras

h <1
kil <

Use the Exercise above, with Lemma @, we can represent, for f € L2 N L? and h € S(R"),

ez = | [ [ Q2 nas| .
/ [ ey

Interchanging integrals by Fubini’s Theorem, we see that the right side of (8) can be written as

[ fatsomonst = [ fasioamoct - [ fasiantic

(8)
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which is controlled by Cauchy-Schwarz inequality and then Holder inequality,

/g(f)(w)g(h)(x)dx < lg(Hllp - llg(P)lp < 1lg (-

Here in the last step, we applied that g-function is bounded on LY. Again we shall rely on that
LP N L? is dense in LP. Indeed, for any f € LP, we can find a sequence {f} in L? N L? such that
limy o0 || fx — fllp = 0. Then

£l = Jim ([ filly S lim {lg(fo)ll, S Jim llg(fi = Pllp + la(Hllp

S Jim (5=l + I9(Dlls S lg()l

Hence, the reverse inequality ||f|l, < [lg(f)]l, holds for any f € LP. Now we finish the proof of the

theorem. O

The g-function in the proof is modern. The classical way to define the g-function is based on
Poisson integrals. For instance, g*, g7, g5 defined before. Littlewood-Paley estimates for those classical

functions can be established too. More precisely, we have

Theorem 42. For 1 < p < co and any function f € LP,

lg™(Plp ~ gt (Pllp ~ gz (Pllp ~ 1115

Exercise 14. Prove Theorem @ This can be done in a similar way as Theorem @, via a use of

Calderén-Zygmund theory.
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16 71 Theorem in a Simple Version

In this lecture, we aim to solve the question arose in Lecture B Remark @ For now we will only
present a simple version to the question, or known as 17 Theorem. We will prove the whole part after

we learn the BMO space.

Recall that in Lecture H, we have the following definition: (Here we let K € 8'(R" x R™) and K
is a C-valued function in R™ x R™"\{(z,y) € R" x R" : = y})

Definition 26. Let 7' : § — &’ be continuous in § and linear. T is called a singular integral

operator, or SIQ, if T is associated with K, that is,
where ¢ ® ¥(z,y) = p(2)¥(y) for any R* x R", ¢, € S(R") and Tp(z) = [p. K(z,y)e(y)dy.
Definition 27. For T defined above, say T satisfies weak boundedness property, or WBP, if

(e, T) | < CR™ ([lelloe + RIVelloe) ([[9]lo0 + IV

for any ¢, € S(R™) that are supported in a ball in R™ of radius R, and C' is a constant independent
of ¢, and R.

Lemma 20. Suppose that T’ can be extended to a bounded operator on L?*(R"), then T satisfies WBP.

Proof. Let ¢,1 € S(R™) be supported in a ball in R™ of radius R. By Schwartz inequality and L?

boundedness, we have

[, TY) [ < el T2 S llell2ll¥llz S B llloo [[]loc

since both of them are supported in a ball. O

Definition 28. The adjoint operator of 7" is defined to be a SIO associated to the kernel K*(z,y) =
K(y,x) for z # y. That is,
(T"p, ) = (K" p@9) .

Note 4. We have
(T, ) = (o, T*Y).

Denote So(R™) = {¢ € C*(R") : [ ¢ = 0}. Let T be a Calderén-Zygmund SIO.

Definition 29. We define a linear functional 7'1 on Sy(R™) as follow: for any ¢ € So(R™), there is a
ball B in R™ such that ¢ takes value 0 outside B and n € C*(R") with n(z) = 1 for « € 3B. Define

<T1) ¢> = <T777 ¢> + <1 -1, T*¢> :
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Note 5. We need to verify the well-definedness. (T, ¢) is well-defined since both 1 and ¢ are Schwartz

functions. But 1—7 is not a Schwartz function, so we need to check the well-definedness of (1 — 7, T™*¢).

(=10 = [(=n@ [ Fenoti) .

Denote r(B) to be the radius of B and xy to be the center of B. When z € supp (1 —7n) and y € B,
(note supp (1 — n) Nsupp ¢ = @)

Express

[z =yl = [z — 2ol =y — wo| >3r(B) —r(B) = 2r(B) = 2|y — x|

Hence for 0 < € <1, K Calderén-Zygmund kernel,

ly — 0|
K(y,z) — K(zg,2)| < ———«—.
K () = Kl )| < 1 1=

On the other hand, since f ¢ = 0, we have

‘/Km)(ﬁ(y)dy'_'/g{(yv z) — K(z0,7))d(y dy)~”¢”°°/ |"“

hence using boundedness of 7,
(1 =0,T*0)| ||¢||OO/B / o |2|+€d 0z < [¢lloe - (B)" < oo,

where we use a fact left as an exercise:

Exercise 15. Let ¢(B) be the center of the ball B, then

/ 7@ o(B)| dydz < r(B)".
3B)

|I — y‘n—i-e
One can also easily check the independence of choice of 1. Hence T'1 is well-defined.

Theorem 43 (T'1 Theorem, simple version). Let T be a SIO associated with a Calderén-Zygmund
kernel K. Suppose that T satisfies WBP and T1 = T*1 = 0, where 0 stands for the zero functional in
So(R™). Then T extended to a bounded operator on L?(R").

Before we prove this theorem, we need some convolution type operator. Choose ¢ € C°(R™)
radial and [, ¢ = 1. From 8;0(€) = —2mi [ d(x)x ;e ¢ dy for any 1 < j < n with z = (21, , ),
we have

Vp(0) = 0.
Define for any f € S(R"),
P f(z) = ¢u = f(2),
where ¢y(x) =t "¢(t"'z) for any z € R™.
Lemma 21. Suppose T satisfies WBP. For any ¢, ¢ € C°(R"™),
(T, v) = lim (P{TP @, 1)),

where Pt2 = PtPt-
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Proof. Suppose supp ¢ and supp ¢ are both in a ball of radius R. We can take ¢ small enough so that
P?p and Py are supported in a ball of radius 2R. For any function f € C' supported in a ball of
radius 2R, we set

11 =11fllec + RIV flloc-

Observe that
[(PITP}p, ) — (Tp, )| = (TP}, Piyp) — (T, )],
which is bounded by
(T(PFo — @), Piv)| + [(Te, Piy — )| S R* (IPFe — ¢l - P70l + Il - [PFy — ) .

By definition, we can see ||[P7¢|| < [|¢|| since [ ¢, = [ ¢ = 1. On the other hand, by Hausdorff-Young

inequality, we have

IP7e — ol < [[P2p - 90||1+RZH@ (PZp — 9)(©)Ih-

j=1
Note that

(PFe — 9)(&) = ((9(t)* - 1) $(&),
from which, we see

tim [PF = gl = [t |((o(2€))* ~1)| - e(6)las = o

by DCT and ¢(0) = 1. Similarly,

lim H&;( 7o — 9Ol =0.

] 1
Hence, it follows that
. 2 _ —
lim [[PF — 1] = 0,

and this holds if we replace ¢ by 1. So we’'ve shown
. . 22 _
lim \(T'p, ) — lim <PtTPt<p,¢>’ =0,
which conclude the proof. O
Lemma 22. Suppose T satisfies WBP. For any ¢, ¢ € C°(R"™),
lim (P;TP}p, 1) = 0.
t—o0

The proof is similar to the previous one, so we will omit the details here. Now back to proof of
Theorem @ From Lemma @ and Lemma @, we see for any ¢, ¢ € C°,

(Tip, p) = lim (P2TP2p — P, TP% ), 1))
To prove T extends to a bounded operator on L2, it is sufficient to prove

lim [PZTPZp — PY, TPY 0]z S [l
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for any ¢ € C¢°. By fundamental theorem of calculus, we can write

€

1/e
PITPp — P%/eTP%/JP = / 0:(PITP}p)dt.

Define 9,(P3) by
0 (PY) f(x) = 0i(¢r * 1) * f(x)

for any f € L?. By product rule,
0, (P{TP}p) = 0,(P}) TP + P70,(TP)p. (1)

One can check two operators appear in the right side of (1) are adjoint to each other. Thus we only

need to check the first term. It remains to prove for any ¢ € C2°,

S llella- (2)
2

lim
e—0

1/e
[ oot

Define for any f € L2,
Qi f(x) = tat(Qf)f(x)‘

Using such definition, (2) becomes

S llell 3)
2

lim
e—0

1/e dt
| Qe

for any ¢ € C¢°. By Fourier transform, we have for £ € R,

Q1) = 10.(P)(€)) = to:(*(6) f(€)) = 2d(t€)¢ - (V) (t6) - F(€).
Define the vector-valued functions
(@) = L (V) (),

U (2) = —2mit "p(t ') -

18

For any vector-valued function F = (fy,- -, fn), we define its Fourier transform by

then with this definition, we have

v (¢) = 2td(t6)e,
P (€) = (Vo) (te).

It is clear @/ (€) = WP (€)W (€)f(€). Denote
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[vo= [zow) =0

then by Littlewood-Paley Theorem in continuous version, we have for any f € L?,

OO @) 2@ 12
H(/ Q7P

since LHS is a vector-valued Littlewood-Paley g-function, j =1 or 2.

Recall that we have

S A2
2

For two vector-valued functions F' and G, we define

n

(F,G) :Z<fj>gj>'

=1

Then for f,g € L?, one can check that

(Qf.9) = (Q71.Qf"g).

To estimate (3), we consider for any ¢, € C,

1/e dt 1/e dt
([ atretetfoo) - [ cairic

using Fubini’s Theorem since T satisfies WBP. Therefore,
1/e dt 1/e dt
< QTP w> ~ [ (@PrPioqiv) 7.

and by Cauchy-Schwartz inequality, we can control it by

1/6 dt
- < / |Q§2)TP?%’\27
€ 2

1/e dt
1),,2%
| 1aees

[l
2

2

<

1/e dt
T

Henceforth, we can reduce T'1 theorem to the following lemma:

Lemma 23. There is a constant C' independent of choice of € such that

1/e dt
[ [ 1ePreieptlis < clels,

for any ¢ € C°(R™).
In order to do this, we need some technical tools. Define L; = QEQ)TP,,

Lemma 24. The operator L; is a SIO associated to a kernel L;, which is a vector-valued function.
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Proof. We need to find such L;. Introduce the notation

<F?g> = (<f1;g>v 7<fn)g>)a

where F' = (f1,---, fn) is a vector-valued function and ¢ is any function. Then one can express for any
¢, ¥ € C°(R™),
Lot} = [ Lie.)eo)ila)dody
R xR"”

On the other hand,
L) = (QPTPipv) = (TP Q) = [ Klap)Pio)QPv(a)dady. (4
Define the notations
¢} (2) = ez — y),
V() = 00 (2 — @),

then one can check we can represent (4) by

[ (761,927 )) ot)ota)dad,
R™ xRn®
via changing of variables and Fubini’s Theorem. Hence we end up with a representation of L; by

Li(w,y) = (To}(), ¥ (2)).

Now we will show that this kernel L; is bounded function for any ¢ € (e, 1/¢).

Lemma 25. There is a real number o € (0, 1] such that for any x,y € R",

cte

L xZ, < )
| t( y>| — (t+|$—y‘)n+a

where C is a constant independent of x,y and t.

Proof. WLOG, we assume ¢ is supported in a unit ball, centered at the origin. Then by definition,
¢y and \Ilgz) are supported in a ball, centered at the origin with radius ¢t. We consider the two cases
|x —y| < 10t and |z — y| > 10¢. In the first case, or |z — y| < 10¢, we apply WBP to obtain

L)l = (Tt (2), ¥ (=)
SE (100 + RIV6ll) (19671 + RITE )

The translation factors x,y won’t affect the norms, thus we can remove them. On the other hand, note
that

2),x —-n
max{ [ {77 |oo, |67 [|oc} S 7,

2), —n—
max{||[ VI | o, [Vl o} S0
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Therefore, we get
tO'

L@y St < — 0
Lol y)l + e =y

We now turn to the second case when |z — y| > 10¢. By representation of L;, we can write

Li(x,y) = /Rn . K (u,v)pe(v — ) ¥ (u — z)dudv.

The singular points occur when u = v, but we will see that in the second case, this can be excluded
for free. From the supports of ¢; and \111(52), we can confine u,v to |u — x| <t and |v — y| <t, and from

which and the triangle inequality, we get
lu—vf =[(u—2)+(—-y)+({y—v)
2z —yl—lu—z|=|v—yl=|r -yl -2t
> 10t — 2t = 8t > 8lu — x|.

Hence we can constraint to this part, and K is bounded in this case since it is a C-Z kernel. Henceforth,

we can apply Fubini’s Theorem to get

Lo(w,y) = / n ( [ Kw0p? - x)du) 64(v — y)dv. (5)

Observe that

JR G (©
since z¢p(z) is “odd”. From which we know \IIEQ) € So(R™). So we can write (5) into

Lol =| [ ( [ 1K) - Ko o)pw?(u - x)du> bulv — y)du.

By property of C-Z kernel,
u—x|”
|K(u7 U) - K(l‘v U) 5 |U — U|n+0_ :

So we obtain

menls [ ([ T - o) 160 - plao
a1 |u— 1
< [ [ L e o et - )

We use Bgr(z) to denote a ball centered at z of radius R. Since ¢ is a Schwartz function supported in

B;(0), we can further dominate the integral in the last expression by

B.(y) JBi(x |u—v|”+‘7 Ak t (]_+ |“*1|>N tm (]__|_ lu— y\)
u— x|t 1 1
tz”“ /B ) /B (@) |u - U|”+" Wy (g
t t t t
. / / |u - ’ ) ! dudv
t2n+1 tnto B.() B{(T) |lu— v\ n+o (1+|u7;'£|>N (1+@)N

</ / |u—x|1+" . 1 ‘ 1 dud
T S S (L e (14 BEE)N (14 )N
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Here in the last step, we use |u — v| > 8t > 8|u — x|, which allows us to add 1 to |u — v|/t. We take

N > n + o and employ elementary inequality

1 1 1

Axja) ) ST1t]a"p

to get
]‘ 140
| Li(z,y)| S —y lu — x| "7 dudv
3n+1+o (1 4 Ir;y\) Bi(y) J Bi(w)
< 1 1+o
~ |m7y\ n+o : t ’Bt(l‘)‘ : |Bt(y)|
t3n+1+¢7 (1 + . )
< 1
~ o=y )"
tn (1 o= )
hence we’re done with the proof. O

Corollary 12. The integral

converges absolutely.

Let f € S(R™), we can represent

L) = [ Liw.)f(0)dy,

and the Schwartz function f can be extended to bounded function, say f = 1 identically. Indeed, L;1

can be defined as

L(z) = /n Li(z,y)dy.

For any ¢ € S(R"),
(Lo,v) = (QPTPL, ) = (T1,Q %),

where we use the fact that P,1 =1 since [ ¢ = 1. Hence by (6), we have
(@) dw = /‘I’?) * )(x)dr = (/ ¢da:> /\Ifgz)(m)da: =0,
R'VL

which yields that each component of the vector-valued function QEQ)Q/}(ZE) lies in Sp(R™). As assumed
in Theorem @, T'1 = 0, which gives <T1, Q§2)w> = 0, leading to

<Lt17 (P> =0
for any ¢ € S(R™). Therefore, for a.e. =, we have
L) = [ L)y =0 @
R’n

We’re now ready to prove Lemma @
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Proof of Lemma @ Suffice to show for any ¢ € C(R"),

1/e th
[ [ mewrs <clels

where C is a constant independent of choice of €. From (7), we see

s [ [

By Lemma @, it follows that RHS is controlled by

/x/l/e (/ t+ |mtjy|)n+a Pip(y) —th(fﬂ)Idyycitdx,

which can be dominated by using Cauchy-Schwartz inequality,

2

Li(z,) (Pop(y) — Pog(x)) dy %dx.

/n/ (/ (t+ o Uy)’”"dy) (/W'PW@)_PM(%”%@ %dx'

Observe that by changing of variables, we have

t7 1
—dy — / 7dy = Cn,oa
/(H- |z —y[)r+o re (L4 [y[)nte

which is a constant independent of € and ¢. Hence (9) becomes

N & 5 . dt
Cno —— |P - P A d.
’ /" /O / (t + |x — y|)n+o' | t‘P(y) t(,o(x)\ y : T

Changing variables * — u 4 y, we have

o0 to ., dt
o P -P du—dy.

Use Fubini’s Theorem, it becomes

e s\ dt
([P ~-P = da.
Cho //0 T ) </| 1p(y) — Pro(u+y))| dy) T du

By Plancherel Theorem, one can represent the inner integral as

/ Puoly) — Prp(u+ )| dy = / 2T 121G (0 - |p(€) 2.

So we see (8) is dominated by

A~ 2 OOL 2miug 2. n 2@ >
On,g/lso(i)l <//0 el le L - 16(t8) P —du ) d.

76

(8)

(9)

(10)

To finish the proof, it suffices to prove the integral in the parenthesis in (10) is bounded by a constant

independent of £. This is true by the following lemma, and we’re done!
All we need is to prove the following lemma:

Lemma 26. There is a constant C' independent of ¢ s.t.

0o to -
//o W'|€2m§ 17 - ()] du<C

O



16 T1 THEOREM IN A SIMPLE VERSION 7

Proof. Assume £ # 0. Otherwise it is trivial because e*™™% — 1 = 0. Let 0 < § < o, for instance, § can

be chosen as 0/2 because o € (0, 1]. Recall the elementary inequality
e — 1] < 2[0]°

for any 6 € R™ and any € € [0,1]. Using the inequality with e = §/2, we bounded LHS by

T OOL 52 2@
: //0 (t + [ul)n+e [u-€° - o(t)" - du. )

Since ¢ is radial, ¢(t&) = G(t[€]), (11) can be estimated by

o t7 5 5 12 S dt
S . e 2d
s+ i ul - €17 - 1B(1El) P

- dt
5 5, 5. 2,n %Y .
—Sﬂ/n/ (t—|— t| e tul® - 1€1° - |o(t|E]) |7t " du (change variables u — tu)
([ e / (1) (elel) P2 (Pubini)
a (1+ IUI)”+5 t b
8mu’ 5174000t .

- (/R (1“‘|U|)"+5du> </0 t’lo(t)| t) (change variables t — t/[€|)
=Csn.

This finishes the proof. O

So far, the proof of T'1 Theorem in simple version (Theorem @), is completed.
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17 BMO (Bounded Mean Oscillation) and Sharp Function
Let f € L}, .(R") and @ be a cube in R™. Denote

loc
fo= g1 | )
Q= T~ xr)ax.
@l Jq
Definition 30. The BMO (Bounded Mean Oscillation) space is the collection of local integrable
functions of bounded mean oscillation, that is,
BMO(R") = {f € Li,.(R") : || f]l. < oo},

loc

where the BMO-norm || f||. (or || f||smo) is defined by
1
191 =sup o [ 1f(a@) = folde.
e 1QlJg

Note 6. It is clear that L>*(R") ¢ BMO(R"). If f is constant, then || f|. = 0. One can view BMO
space as the quotient of the BM O space by the space of constant functions. Moreover, using triangle

inequality, it is not difficult to show
1
11 ~supint 2 [ [7(2) el
Q ceC |Q| Q

Theorem 44 (John-Nirenberg). There exists positive constants C; and Cs depending only on the
dimension 7, such that for any f € BMO(R"), any cube @ in R, and any A > 0,

{z € Q:[f(2) = fol > N} < Crem M WI|Q).
In order to prove the theorem, we need a few lemmas.

Lemma 27. Let Q be a cube and A > 0. Suppose that f € L'(Q) and

1
Q|/Qf(a:)|d3:<)\.

Then there exists a sequence {Q;} of pairwise disjoint subcubes of @ such that
L. |f(x)] < Xa.e. on Q\(U;Q;),
2.0 < ‘Q—ljl fQj |f(z)|dz < 2"\ for any subcubes Q);.

This lemma can be proved in a similar way as we did in the proof of Calderén-Zygmund decom-

position (Lemma Ilj) From this lemma, we can derive a handy result for BMO functions.
Lemma 28. Suppose that f € BMO(R") with ||f||, = 1. Let @ be any cube in R™. There exists a
sequence {Q;} of pairwise disjoint subcubes of @ such that
@)~ fol < 1)
a.e. on Q\(Y,Q,), and
Slel< el )
J

and also
1

Q]

/Q (@) — folde <327, (3)



17 BMO (BOUNDED MEAN OSCILLATION) AND SHARP FUNCTION 79

Proof. Note that

l\D\C«O

|Q|/|f(rc foldz < |[f]l. =

so we can apply Lemma @ for A = 3/2 to function f(x) — fo. Then we get a disjoint subcubes Q;
satisfying (1), and for any @Q;,
1

3
— fild Z.on
;1 ), 1)~ Jolds < 5 -2

3
2~ 2

which leads to (3). Plus,
@1 < 5 [ 170)~ folde

Summing up all j, we end up with

2 2
Sl g [ 156~ folte < 01171 = 5l
which yields (2). O

Proof of Theorem . By rescaling A in Theorem @, we can assume || f||. = 1. It suffices to prove
for any A > 0,

{z € Q:|f(x) — fol > A} < Cre” Q).
Applying Lemma @ for the given ), we get a sequence {Q;l)} of subcubes of @ s.t. |f(z) — fo| < %
for a.e. x € Q\(Uj@§l)), >, |Q§-1)| < 2|Q| and |Q(1)| fQ;m |f(z) — foldr < 3-2""1. Let QY be the set

of all cubes in the sequence {Q;l)}.

Now, we apply Lemma @ to each cube Qé.l) in QM. Then again we obtain a sequence {Q§2)} of
subcubes QW s.t. |f(z) — fow| < 2 for ae. z € Q(l)\(UjEJ(Qu))Q;-?)), where J(QW) = {j : Q;z) C
Q(l)}a and Zjej(Q(l)) |Q§2)‘ < %‘Q(1)| and ﬁ fQ;z) |f(5L’) — fQ<1)|dLL‘ < 3.7 1

We consider all cubes generated in the second stage. Set
@ _ @)
Ue’=-U U @&
J QW jeg(QW)

and

Z RVI=>" > QY.

QMW jeg(QM)
For z € j € J(QW), we see that, from setting if z ¢ Q*), then

3
[f(@) = fal <5
If x € j € J(QW), and z belongs to some Q™) from the first stage,
1
[f (@) = fol <1f(@) = fowl+ fow = fol <1f(@) = fow| + |Q(1)|/Q(1) |f = fal,

which leads to 3
[f(z) = fol < 5 +3-2"7"
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a.e. on Q\(Uij)). On the other hand, we have
2 2\
2
Siefi< v <(3) e
j Qm

Iterating the process described above, at N-th stage, we get a collection {Q§-N)}, each of which is a
subcube of @), such that

3
(@) = fol €5 +3(N —1)- 21 <3N 27

for a.e. x € Q\(UjQEN)), and also
o\ N
SieMi=(3) e
J

For any A > 3-2"~! there exists N € N such that 3N - 277! < X < 3(N + 1) -2"~!. Thus we see that
for A >3.2n71,

[z € Q: |f(x) = fol > M| = e € U;Q)™ : |f(@) = fol > A}

< i< (2) g < e
<TiaI<(5) 1@< al

log —
where Cy = 39227 For A < 3-2"7!, we have

{z € Q: If(2) — fal > A} < 1Q] = ¥ e PNQ| < &2 "N Q).
Let C; = 3/2, we complete the proof of the theorem. O

Corollary 13. For any 1 < p < o0, let

1 ) 1/p
11 = 51 <m /Q (@) — fol dx) |

Then the norm || - ||, , on BMO is a norm equivalent to || - ..

Proof. By Holder’s inequality, it suffices to check ||f|., < C,||f|l« for f € BMO(R"). By John-
Nirenberg Theorem (Theorem @), we get

1 00
|Q|/Q|f($>_f62|pdx:|g|/o /\p71|{x cqQ: |f<$)—fQ| S )\}|d/\

<0, /°° \P=Lo=CaM I fl g
0

_ G
3

7p01]-—‘(p) P

||f||f:/0 PUBETIY (change variables A — || f|[.A/C2)

We now turn to the sharp function.
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Definition 31. For any f € L} _(R"), we define the sharp function of f by

loc
# 1
f7(w) =sup = [ |f(y) = foldy,
e 1QlJqg
where the sup is taken over all cubes containing .

By definition, it is clear that sharp function is closely related to the BMO space. In fact, it is easy
to verify || f|l« = || f#]l. Also it is clear that for 1 < p < oo, ||f#||, < Cpl|fll,, simply following from
f#(z) S M f(x), and Hardy-Littlewood maximal function is bounded on LP. We will also see that if
FeLP |\fll, <Cllf#|l,. To see that, we need a good-\ inequality of the sharp function.

Definition 32. Let
Dy = {H[Q‘knj,2_k(nj +1)) :each n; € Z} ,

j=1
which is a family of cubes, open on the right, whose vertices are adjacent points of the lattice (27*Z)".
A cube in Ugez Dy, = D is called a dyadic cube. The family of all dyadic cubes, D, satisfies so-called

grid structure, that is, any two dyadic cubes are either disjoint or one is contained in the other.

Define the dyadic maximal function M;f of f by
1
Maf (o) = sup o [ 10)ld
Qep Q| Jg

where the sup is taken over all dyadic cubes containing z. We shall note that M,f(z) < C f#(z) does

not hold pointwise.

Lemma 29 (Good-) Inequality). For f € L} (R"), and for any v > 0 and any A > 0,
{z € R : Myf(x) > 2, f7(2) <AA} < 2%y|{z € R™ : Myf(x) > A}

Proof. When v > 27", the result is trivial. Suppose 7 is small. By Calderén—Zygmund decomposition
of f at level A, the set {x : Myf(xz) > A} can be represented as a union of disjoint maximal dyadic

cubes. Thus it suffices to show

{o € Q: Maf(z) > 2X, f#(z) < yA} < 2%y Q)] (4)

for any maximal dyadic cube @ in {z : Myf(z) > A}. For such a cube Q, if x € Q and Myf(x) > 2),
then

Ma(fxq)(x) > 2.

Exercise 16. Check this inequality.
Use Q* to denote the unique dyadic cube containing (), whose side length is twice as much as that
of (). The cube Q* is called the parent of ). By maximality of (), we have

1
Q%

/lﬂwuxsx
N
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Henceforth, we see :
Ma(fq - xo)(@) < / F(@)ldz < A,
Q| Jo-
since Ma(xq) < 1 and Exercise @ By triangle inequality, we get

Ma((f — x@-)x@) = Ma(fxq) — Ma(fo- - X@) = Ma(fxq) — A > A

From the discussion above,

{z e Q: Myf(x)>2X f#(x) <yA} C{z € Q: Mu(fg - xq)(x) = A}.

It is not difficult to see that for any f € L' and A > 0, from C-Z decomposition,
Hx € R" : Myf(x) > A} < @

Using weak (1,1) estimate, we have

f—Je
Hz e Q: My((f — xo)xo)(x) > A} < fQ)\Q|
vl 1
< A |Q*|/Q* |f fQ*|
< 2"Q)| zlean f#(z) < %;engf#(x)

82

Assume that {z € Q : f#(z) < YA} # &, otherwise the result is trivial. Under the assumption, we

have
H{z € Q: Ma((f — xq-)xq@)(z) > A} < 2"y -|Q].

Now (4) follows from (5) and (6) immediately, hence the lemma follows.

(6)
O

Remark 12. This lemma is a special case of Cotlar-Stein Lemma, which we will present in Lecture

bd.

Theorem 45. Let 1 < p < oo. Suppose that f € LP° for some py € [1,p]. Then there exists a constant

C,,» independent of f such that
IMaflly < Cpull £#]l,-

Proof. For any N > 0, let
N
In = / pAP |z € R : Myf(z) > A}dA.
0

For f € LP°, we have

Po

N
Iy < pN”po/ PoX U {z € R™ : Myf(z) > AMdA < pﬁN”*p”Hngg < 0.
0 0



17 BMO (BOUNDED MEAN OSCILLATION) AND SHARP FUNCTION 83

Thus Iy is a real number. Furthermore,
N/2
Iy = 2”/ PP {x € R™ : Myf(x) > 2A}|dA (Change variables A — 2))
0
N/2
< 2p/ PN {z € R" : Maf(2) > 2), f#(2) < 7A}dA
0
N/2
- 21’/ PN H{z € R™: f#(z) > yA}dA
0
N/2 2p o0
§2p+"’y/ pAPH{xz € R™ : Myf(x) > A} d\ + 'yp/ pAP T H{z € R™ : f#(z) > A}|dA
0 0
+n 2P #
<2yl + $||f 15,

which implies )
P

_ 9ptn Z || £# P

(1=29) 1y < ZIFHIE.

We can take v satisfying 1 — 2P*"~y = 1/2. Then we obtain

Iy <o+t 2ol g,

Letting N — oo we obtained the desired result. O

One can obtain an interpolation result from Theorem @, from which we see that BMO space is a

good substitute for L> space.

Theorem 46. Let T be a linear operator which is bounded on LP° for some py € (1,00). Suppose that
T is also bounded from L* to BMO. Then for any p € (pg,o0), T is bounded on LP.

Proof. Define T# by
T#f(x) = (Tf)* ().

Then T# is a sublinear operator. For any f € L, we have, by || f#|, < Cp|lfll»,

||T#f||po = H(Tf>#HPo S CPoHTfHPo S HfHPov

which shows that T# is bounded on LP°. On the other hand, since T is bounded from L> to BMO,
we get
1T# flloo = 1T ) lloo = 1Tl S 1 lloos

which yields the L>-boundedness of T#. By Marcinkiewicz Interpolation Theorem (Theorem E), we
see that T# is bounded on LP for any p € (pg,c0). Henceforth, for any f € LP with p € (pg, >0), as a

consequence of Theorem @, it follows that

1T £l < ITH S N -

Therefore the proof is finished. O
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18 Carlesen Measures

Let Rﬁ“ be the upper half plane {(z,t) € R" xR : ¢ > 0}. Let u be a non-negative Borel measure
on ]R’}fl, and for any cube @), we define the Carlesen box of ) by

Q={(z,t) eRT" :2€Q,0<t<I(Q)},
where (@) is the side length of Q.

Definition 33. If the measure p satisfying that for any cube @ C R",

wQ) < clal,

where C is an absolute constant independent of @), then p is called a Carlesen measure. For any

such measure, we denote its norm by

(%))
IIMH—Sgp o

Definition 34. Denote I'(x) = {(y,t) € R" : |y — 2| < t} be a cone in R’}. We define that for any

measurable function f on R, the non-tangential maximal function by

N f(x)= sup |f(y,t)l,

(y,1) €T (w)

where x € R™.
We begin with a well-known theorem for Carlesen measure:

Theorem 47. Let f be a continuous function on R}, and p be a Carlesen measure. Then for any

J

This can also be represented as

0 < p < oo, we have
|f (@, t)Pdp < CHM”/ V" f ()P d. (1)
R'Il

1
£l ze @y S Nl PIN fl o).

To prove this theorem, we need the following theorem:

Theorem 48 (Whitney decomposition). Let 2 be an open set in R”. Suppose that the complement

Q¢ is not empty. Then there is a non-overlapping collection of cubes {Q,} such that
o={Ja,
J

and
C1l(Q;) < dist (@, Q%) < Cal(Q;),

where C; and () are constants independent of @Q;.
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Proof. Recall that for any k € Z,
Dy = {H[2knj, 27%(n; +1)) : each n; € Z}
j=1

gives a collection of all dyadic cubes of side length 27*. For given k € Z, we set
Q= {r e Q:ayn-27t < dist (2,2 <3y -2},
Let Qi be defined by
Q. ={QeD: QN # 2},
and

Q=]JQu
k
We shall see that ) can be represented as a union of those cubes in Q, that is,
o=@
QEQ

Indeed, from the definition of Qy, it follows that ) € D; touching €2, does not contain any point of
Q¢, and thus such a dyadic cube @ is contained in 2. Henceforth, every ) € Q is contained in 2, i.e.

Jecea
QeQ
On the other hand, Q = U, and € is covered by those Q’s in Qy,, that is,
o-Uncl Ue-Ue
k k QeQk QeEQ

Then the claim follows. Now prove the other part of theorem. For any Q € Q of side length 27%, from
the definition of Qy, we get that there is a point x € @ satisfying

3v/n - 27% < dist (z, Q%) < 3y/n - 270

which implies
2vn - (Q) < dist (Q, Q) < 6vn - U(Q). (2)

Here we use the triangle inequality dist (z, Q¢) < diam (Q) + dist (@, Q2°). Notice that those cubes in
Q may not be mutually disjoint. We let Q* denote the collection of maximal dyadic cubes in Q. Then

o= J @

QeEQ*

write

which leads to a Whitney decomposition because Q* is a family of disjoint dyadic cubes and hence the

desired inequality follows from (2). O
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Return to Theorem @ Let
By = {(2,t) € RI: |f(w,1)] > AL,
and
El={zeR" : N*f(z) > A}
Observe that Theorem @ follows from
P(EN) S Nl - [ E5]- 3)

In fact, notice that
/+ f(a:,t)lpduzp/ AP (B )dA
n+1 0
T

Slull-p [ 2 |Ef A
0
Slell | WV f(a)Pde,
RTL
which is exactly the inequality (1). So it suffices to prove (3), when p is a Carlesen measure. To do

that, we can assume that the open set E} has a finite Lebesgue measure so that its complement is not

empty. Then we can apply Whitney decomposition to represent
EY = U;Q;,
where @;’s are mutually disjoint dyadic cubes in R", satisfying
Cil(Q;) < dist (Qy, (ER)) < C2l(Qy)- (4)
We need a technical lemma to finish the proof:

Lemma 30. There is an absolute constant « such that
E)\ C U OéQj,
J
where a); stands for a dilation of @); by the constant .

Proof. For any ball (or cube) B in R", a tent based on B is given by T(B) = {(y,t) € R} : B(y,t) C
B}, where B(y,t) stands for a ball in R" centered at y € R™ and of radius ¢. Let (y,t) € E\. We claim
that B(y,t) C E5. To see why this claim is true, we observe first that for any x € B(y,t), (y,t) € I'(z).

This is because by definition of cone, |y — x| < t. Hence

N7 f(x)=sup [f(y,0) > |f(y,t)] > A

(v, t)eT (z)

This means that any point in the ball B(y,t) belongs to E%, which leads to the claim.

Let aw = 100C5, where C5 is the constant in (4). We prove that

E\C UT(an>’ ()
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from which the Lemma follows. From the fact B(y,t) C E} and Whitney decomposition for EY, we see
that for any (y,t) € Ey,

5.0 < U, (®

where (), satisfies (4). Hence there exists a dyadic cube @, such that @, N B(y,t) # @ and Q; satisfies
(4). We shall consider the magnitude of those @);’s, which touch B(y,t), comparing the size of the
ball B(y,t). Then we run into only two cases: every Q); touching B(y,t) is of side length smaller than
4t/ov or at least one of @;’s touching B(y,t) has its side length > 4¢/a. We will see that the first case
cannot occur since « is much larger than C5. The last claim can be proved by contradiction. Assume
that 1(Q;) < 4t/a for every Q; obeying Q; N B(y,t) # @. Then (6) and the assumption yields that y,
the center of the ball B(y,t), is contained in a dyadic cube @; C R™ whose side length 1(Q;) < 4t/a.

Thus we see that
8C2Q; € Bly.b). (7)
On the other hand, (4) tells that
dist (Q;, (E3)°) < C2l(Q;),
which, combined with (7), yields
B(y,t) N EY) # &,

which contradicts to the fact B(y,t) C Ef since EY)° N E}) = @. Hence, the second case must occur,
i.e. there exists a dyadic cube Q; such that Q; N B(y,t) # @ and I(Q;) > 4t/a. Thus we have

B(yv t) - anv
which implies that for any (y,t) € Ej,
(y,t) € T(B(y,1)) C T(aQ;).
Therefore, we obtain (5), and the lemma follows. O

Proof of Theorem @ Given Lemma @, we get

n(Ex) < p(U;aQ;) < > p(aQy) S Nl D105l S llull - B3],
J J

hence the proof is done. O

The other part of the lecture is to construct a Carlesen measure. We can use a BMO function to
generate one. Let b € BMO(R™) and

Qib(x) = Yy * b(x),

where 9, (x) = t~"¢(x:/t) and ¢ is a radial function obeying [+ = 0 with

c

[(@)| + [V (z)| < A+ )

for some € > 0. For any Lebesgue measurable set £ C Ri“, we define a measure p by

mm=wawwﬁf
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Theorem 49. Let i be the measure given as above for any given b € BMO. Then p is a Carlesen

measure whose norm satisfies
[l < [IBI12-

This can be rephrased by
d:ﬁdt
= [9e b ——

Proof. For aby cube Q C R", we aim to show
w@) S IIb)2 - Q-
We write
b= (b — bQQ)XQQ + (b — b2Q)X(2Q)C + bQQ =0b; + by + bg.

Notice that
Wy x by(x) = bag /wt(m)dm = ng/w(x)dx =

Thus by triangle inequality, we can dominate
A dxdt dxdt
Q) S / |1y * bl‘Qi +/ |9y * b2|27 =5+ L.
Q t Q t

The first term I; can be estimated by using Littlewood-Paley Theorem.

Exercise 17. Prove that for radial function ¢ with [;, 1 =0 and (8), we have

dxd
| oo F@PSE < 071

+
for any f € L*(R"™).

Now use the Exercise above, we obtain

dzdt
I, < / |7/’t*b1|27
RPF! t

+

< / by (2)Pde < / b bao[?dz < [l - Q).
R™ 20Q

It remains to control the second term I,. Since by is supported outside 2¢), we majorize

W’t * 52

<o [+ b2 ()l dy
Si/( |b(y)—b2Q|

1+t —y|)nte

t[b(y) —
(2q) (t+ |z —y|)"te

When (z,t) € Q and y ¢ 2Q, we have

o=l 2y — (@) |z — (@) 2 3y~ (Q)],
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since © € Q and y ¢ 2Q), where ¢(Q) stands for the center of the cube (. Using this observation, we
can further control [¢); * by(z)| by

b(y) — bao
ce [ S
oy (+ o~y ok

if (x,t) € Q. (Exercise) Now we dominate the second term I, by

dzdt Q) g2et
/|wt*b2|2<|| ||2// g dtds < b2 1Q)

as desired. Hence we obtain x(Q) < ||b]|2 - |Q|, and the theorem follows. O
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19 71 Theorem in Full Version

We now present the full version of T'1 theorem.

Theorem 50 (71 Theorem, David and Journé). Suppose that T is a singular integral operator
associated to a Calderén—Zygmund kernel. Then T extends to a bounded operator on L? iff T satisfies
the WBP, Tl € BMO and T*1 € BMO.

Remark 13. We know in Lecture @, T'1 is defined as a linear functional on Sy(R™). So T'1 € BMO
means that there is a function b € BM O such that for any ¢ € Sy(R"),

(T1,4) = (b, 9),
where the right side is the usual inner product in L*(R"), i.e., [ b(z)¢(z)dz. Of course, T*1 € BMO

has a similar meaning.

First we deal with the necessity part. We have seen in Lecture @ that W BP is a necessary
condition. Let T be an L?-extendable SIO associated with to a C-Z kernel. It now remains to show
T1 € BMO and T*1 € BMO can be treated in a similar manner.

Lemma 31. Let T be an L?-extendable SIO associated with to a C-Z kernel. Suppose that f is a
bounded function of compact support. Then T'f € BMO and

ITflls S N1 lloc- (1)
The implicit constant C' in < is independent of f.

Proof. When f is a bounded function supported in a compact set, it belongs to L?. Thus T f makes
sense and it belongs to L? because T can be extended to L2 Of course in the Tf, the operator T'
means the extension operator of the SIO T. We still use T' to denote the extension. Hence we aim to
prove the function T'f obeys (1). For any cube @ C R™, let
ag = | K(c(Q),9)f¥)xce-W)dy =T(fxeee)(c(Q)),
R‘n,
where ¢(Q) stands for the center of ). We estimate via the triangle inequality,
1 1 1
o [ 1@ — aclde < & [ [T(xear)@lds + 1o [ [T xear)(@) - aglda.
QI Jo QI Jo 1Rl Jo

The first term in RHS can be controlled by
1/2

L rvsen@lis) < (= [ k) <1l
1 Jo QU Jsa

Here we used Cauchy-Schwartz first, then the L?-boundedness of T. The second term in the RHS is
majored by

1
1Ql /Q /@Q)c K (2,y) = K(c(Q),9)| - | (w)|dydz

1 _ €
Shflleo - =7 lz = Q) dydzx (By smoothness condition of K)
_ n—+
Q1 Jo Jisye 12—yl

€

S lee-
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Combining very last inequality with previous estimate, we obtain
1
sup &1 [ [T4(0) - aglds < |l
e 1QlJqg

By knowledge in BMO space (see Lecture @), we know ||Tf]ls < ||fllo, which prove the desired
result. O

Lemma 32. Let T be an L?-extendable SIO associated to a C-Z kernel. Then T extends to a bounded
operator from L*>° to BMO.

Proof. For any j € Z, let B; = B(0,27), a ball centered at the origin, of radius 2. When T is
L?-extendable, we can define T'f for any f € L*> by for any B; with j > 0 and z € B,

Tf(x) = T(fxs8,)(@) + / (K (z,9) — K(0,9)] (1) X5,y (1) dy.

n

Let x S BJ g BJ/ Then

by (0) = b, () =T(Pxom, = Prom, o)+ [ [KC9) = KO,0) S

_ /(53, () = KO.9)) f)dy

- / K(0.9)f(s)dy = Cs, 5.,
5B;/\5B;

where the constant Cp, B, is independent of x. Recall that two functions that differ by a constant
are treated as the same function in BMO. Thus in the BMO space, T'f(x) is well-defined and it is

independent of the choices of B;’s. Using Lemma @, we have

IT(fxs)lle < Cllflloos

where C' is a constant independent of f and B;. On the other hand, for x € Bj,

/n [K(7,y) — K(0,y)] f(y)x<53j>c(y)dy‘ < IfIOOC/ |K (2, y) — K(0,y)|dy < C||flloo>

(5B;)°

since the C-Z kernel satisfies the Hormander’s condition. Combining the results above, we get

ITfll < 11 flloo
for any f € L, as desired. O
We now return to prove 71 € BMO. We aim to find a BMO function b such that (T'1, ) = (b, ¢)

for all 1p € So(R™) holds. We let b be defined by

b(z) = T(xsm, ) () + / K (2,y) — K(0,9)] xo (4)dy.

n

for any z € B;. By Lemma @, b € BMO(R™). Then for any ¢ € Sy(R™) supported in B, for some

positive integer J, we see that

<T17 711) = <T(X5BJ)’ ¢> + <XgBJ’T*w> .
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Since [ =0, we get

(65, °0) = [ i, 0| [0 - KOGy

which, by Fubini’s Theorem, equals to (g,), where

mm—/wmm—Km@u@@@.

Henceforth, we end up
<T171/)> = <T(X5BJ)7’¢> + <gv1/)> = <b7¢> .

Therefore, we obtain T1 € BMO and similarly T*1 € BMO. We finish the proof of “only if” part of
Theorem @

We now turn to the proof of “if” part. Let ¢, be radial Schwartz functions on R™ such that

¢(z)dr =1,
Rn

[ vz =0,
R’IL

o Ldt
JRECIE

In addition, we assume that 1 is R-valued. Recall that

P, f(x) = ¢u * f(x),
Qif(x) =y * f(2),

where ¢;(z) = t7"¢(x/t) and ¢, (x) = t~™p(x/t). All those convolution operators are well-defined for
f € LP with p € [1,00] and t > 0. For any b € BMO and any € > 0, we define a paraproduct by

: dt
. f2) = [ QuQuP)) .
Define a SIO II; by
<Hb807 ¢> - l% <Hb,e<;07 1/}> )
for any ¢, € S(R™). For any b € BMO(R"), II,1 is a linear functional on Sy(R™), defined by
<Hb17 90> = lim <Hb,€17 (P> )
e—0
for any ¢ € So(R™).
Lemma 33. As a linear functional on Sy(R"), II,1 = b.

Proof. First we have

1) = " QP = [T Q@@ .
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since P;1(x) = 1. Moreover, it follows from Fubini’s Theorem that

: d : d
W10) = [ <b,@3w>f—<b, / Qf¢f>.

By Calderén reproducing formula, wee see that

lim (IT, .1, @) = (b, ) ,
e—0
because

=0.
Hl

lim | (T, 1 = b, ) | = Bl hmH/ Qtsof—so

Here H' is the dual space of BMO and || - ||z is the norm of H'. We used a generalized Calderén

reproducing formula (see below) in H! space or equivalently,

dt
_lﬂ%/ Q@

as a linear functional on Sy(R™). The proof to this is left to readers. O

- [ e,
0

in a non-rigorous way, say, by taking Fourier transform for both sides to see that

b€ = [ BEnPHOT =06 [ HOPS = b6

Remark 14. Formally, one can derive

Exercise 18. In this exercise, we aim to prove the generalized Calderén reproducing formula. Let

€ (1,00), f € LP. Prove that
[or

Here Q; is defined by Q:f = i, * f with R-valued radial Schwartz function v satisfying 1&(0) =0 and
Joo b @PeE = 1.

Hint: First prove that there exists a function n € S(R™) with 7(0) = 1 and

:O.

hm
R*}oo

—t0p(me * f) = e x Py x f = Q7 f. (2)

The function 7 can be defined simply by setting

A@:l/;i/?(taz

Such a function is a Schwartz function because its Fourier transform belongs to S. The key observation
is that /(t€) = [ 1(s€)?< since 1) is radial, which implies 0, (7(t¢)) = —t~'(¢,)%(€). The last equality
gives the identity (2), from which it follows that

| @@F =~ [ ot D@yt =5 5l) e < flo).
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Note that by DCT (why?),
Jim [l £l = || Jim g £ll, = 0.

Verify this in details. Thus combining what have been proved, one can reach

lim

e—0
R— o0

R dt ,
j Qtf? p:g%Hﬁe*pr:Hpr’

since {n.} is an approximation to the identity. One can also show the pointwise convergence (prove
this).

From the definition of II, ., the adjoint operator of 1I, . is

. Lt
0. f(o) = [ PH@bQ; )T
where Py and @); are adjoint to P, and (), respectively. Then the adjoint operator II} of the SIO II,
is given by
(L0, ) = lim (1T} 0. )

for any ¢, 9 € S(R™). We then have

;1 =0,
because
, ‘ dt
1= [T PQuQ@) T
o dt
- [" P (by Q;1=0)
=0. (by P;0 =0)

We will see that, when b € BMO, II,, extends to an operator bounded on L?(R™). First we verify the
L?-boundedness of II,.

Lemma 34. Let b € BMO. Then II, extends to an operator bounded on L?(R").

Proof. 1t suffices to show that for any f € L?,

Lo, fll 2 ny S [ Flo-

Here the hidden constant in < is independent of f and e. For any f,g € L?, we control

dzdt

|<Hb,efag>|: t

| [ a@pp@e@ =

1

|| anapu@ai@ S

t

(] ) (] )
([ [ e ||Qt<>|2) gl
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Here we used Cauchy-Schwartz and the L?-boundedness of ([ |Q;g(x)[>9)"/2, which is a consequence
of Plancherel theorem as Theorem @ By Theorem @, we know that the measure dy = |Q;b(z)|? 2%
is a Carlesen measure since b € BMO. We can employ Carlesen inequality in Theorem @ to estimate

the double integral in the last expression, so that we obtain

|<Hb,sf,g>|§</]R sup Ptf(y)lzdx> 19ll2,

™ (y,t)el(z)

which can be further bounded by < ||M fll2llgllz < |If]l2llgll2, from which the L?-boundedness of 1T,
follows. O

To conclude that II, extends to an L?-bounded operator, by Calderén-Zygmund theory, we only
need to prove that II, is a SIO associated to a C-Z kernel.

Lemma 35. Let b € BMO. Then II, is a SIO associated to a C-Z kernel.

Proof. We represent

QQIP (@) = | Kilw)f )i

where K, is given by
xT—z,,,2—Y

5o

.fa) = [ l [ m(w)ﬂ Fw)dy.

Thus we see that the SIO II, is associated to the kernel, in the sense of distribution,

Kilwy) = 3z [ 0t Qb(2)iz

Then

N dt
11_136 . Kt(xvy)T_KCEvy)

To finish the proof, it remains to show the kernel K is a C-Z kernel. The proof relies on the following
two inequalities on @b,

1Qeblloc < C|b|. 3)

and

IVoQebllos < 1B, (4)

where the constant C is independent of b and ¢. To see why (3) is true, we write

Qib(x) = . iz = y)[b(y) = boe.nldy,

where Q(z,t) is a cube centered at x and of side length ¢, and bg(,¢) is the average of b over Q(z,t) as
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usual. Inserting the absolute value into the integrand in the last integral, we further control

1
Qub(a)| < / L b(y) — bondy
Rn tn(1_|_ | ty|)n+1

t
< —_|b(y) — boes|dy
/QQM (t+ |z — y[)n+t QL

t
+/ T W) —baeldy
(2@ (t+ [z —y[)H! 0
1

b b
+/ 1b(y) — fﬁ’”‘dy
Q) Y — ]

t
S bl + 1ol < Cllbll..

— bQ ) |dy

which yields (3). To verify (4), we write V,Q.;b(x), in terms of convolution, as

V.Qb(o) = [ e =iy = [ Ve by = 1) a),

/ (Vi)e(x)dz = / Vi (x)de =

by integration by parts and [ = 0, and for any N € N,

Notice that

1

S —
|(V¢)t(l’)|~ n (1_’_%)]\]

We see that (Vi)); behaves like 1);. Repeat the method we used for the proof of (3) and then we are

able to obtain (4).
Now we will see how the Lemma @ follows from (3) and (4). Indeed, from (3), we get
1 1 1
Ko )] £ 1@ - [ - &
~ g2n o] =]
t n (L4 22OV (14 N

1 1
Sholls — ———
t (1_|_\ ty|>N

Henceforth,

|K(x,y)|5/0 K () If S l1oll« / e \T E=TRY

which implies

Similarly, (4) yields
IVK(z,y)| <

Hence we’ve shown that K is a C-Z kernel. O
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Finally we turn the proof of sufficiency condition of 7T'1 theorem. We need to show that T' extends
to an L2?-bounded operator if T satisfies the WBP, T1 € BMO and T*1 € BMO. In the proof, the
paraproduct II, plays a role of translation, making a BMO function to a zero function. To see that,
we set T'1 = by and T2 = by in the sense of distribution, where by, by € BMO. Define a SIO by

To =T —1I, —1I;,.
By Lemma @ and 1I;1 = 0, we have

Tol =T1 -1l 1 =1} ,1 = b; — by =0,
Tol=T"1-1I; 1 —1II;,1 = by — by = 0.
By Theorem @, the simple version of T'1 theorem, Tj can be extended to an bounded operator on L2

Therefore from T' = Ty + 1L, + 11}, is L?-extendable and T'1 theorem, the full version of T'1 theorem,
or Theorem @ is established.
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20 Cotlar-Stein Lemma

When analyzing an operator T', very often we decompose it into T =Y , where T}’s usually

jez T
are well-localized in some sense and they satisfy

Sgpllijll < Ol (1)

However, this is not enough to characterize the L2-boundedness of T'. But if we have some orthogonality
conditions from T’s, say

1,15, =TT, = 0
for any j; # jo, and T is the adjoint of T'. then we are able to conclude T is bounded on L? by (1).
This is a special case of Cotlar-Stein lemma, and the orthogonality conditions can also be replaced by

weak orthogonality conditions, which we will discuss below.

Lemma 36. For any operator T" and any k € N, we have
T = ()" |2,

Recall that the norm is given by
p T2

f€L2 1£1l2

Exercise 19. Check that |T'|| = | 77| and | ThT%|| < || T1] - || 2]

1T =

Proof. By the preceding exercise, we see that

1/2k

T ) 728 < (ITIET)*) ™ = 1T

Now to show the reverse. First note that ||T'|| < ||77*||*/2. This is true because by duality,

TT™ TT*

HTT*H = sup || ”2 _ sup < f7 >
rerr Il e ser 1£112lgll2
F#0 F#0

(T"f, T"g) (T, T"g)
= sup sup > Sup ——5——
rerz gerz | fl2llglla = jere (113

f#0 f#0
IIT*fH .
= sup 2o = T*1* =T
feL? ||f||2
F#0

It suffices to show for any k£ € N,
[(TT)H2 < [Ty /20,
Since TT™* is self-adjoint operator, this is a consequence of the following strong result:
[UR[|H* < ([Uk+t |/ ), (2)

where U is self-adjoint. We prove it by induction. The base step when £ = 1 is a consequence of
|T|| < [|TT*||*/? with T replaced by U. Let k > 2. Assume for any integer m with 1 <m <k — 1,

[T < e,
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Observe that ||U*||?> < [[U*=Y|| - ||[U**1]||. This is true because by self-adjoint property of U, we notice
that
[U*Fl3 = (UEF,URf) = (UL UR ) < U O - (-

Using the inductive hypothesis with m = k£ — 1, we obtain
|T* 1> < ¥ = o,
so we prove (2), and we’re done. O

Lemma 37 (Cotlar-Stein Lemma). Let {T}};cz be a sequence of operators satisfying (1). Suppose
that

T3, T, || < a(j1 — ja)
177, Ty, || < a(jr — j2),
where a is a non-negative function on R. Then

1,

JEZ

< Z 1/2

JEZ

Here ZjeZTj = limy_oo Z?{:_N T;
Proof. Let S = Z;V:_ ~ I;. It is sufficient to show that
IS <> a()"?.
JEZ
By Lemma @, we know for any k € N, ||S]| = [|(SS*)¥||'/?*. Expand (S5*)* to get
(S = > LT T T,
—N<j1,j2,,J2e <N

There are two ways that we can estimate the norm of each single term in RHS. First we see

k
||T]1T;; J2k 1 jng < ||T11T7*2|| ” J2k—1 ;;k H .721 1 _]22
Second we see
T3, Ty, - Ty T | < WD - T Tyl - - N T, Ty o - 1T

which is bounded by

1/2 <H || J2i 72;+1||) 1/2 Ha Joi — ]2z+1

Taking geometric mean of both bounds, we end up with

2k—1

1(SS*)*|| <a(0)? Z H a(jai — jair1)'/?

—N<ji, 2k SN i=1

Za(j)”zl :

J

<a(0)2(2N +1)
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Combine with ||S| = |[|(SS5*)¥||*/?#, we see that for any k € N,

2k—1

Za@%}

J

IS < a(0)3F (2N + 1)*

Let k£ — oo, we obtain the result. O

Now we provide an application of Cotlar-Stein lemma to Hilbert transform. Hilbert transform H

H=>T,

=

can be partitioned into

where T is defined by
dt
L= [ -0
27 <[¢|<29+1

It is easy to see that there is a constant independent of j of such that Tj f(z) < CM f(z), from which

we get the uniform L2-estimates for 7}’s, namely,
sup 175 fll2 < Cll £ 12
Notice that T = —Tj. To obtain the weak orthogonality, we need to verify
1Ty, T || S 270, 3)

for any j1,j2. By Cotlar-Stein lemma, we get the L?-boundedness of Hilbert transform H. This leads

to an alternative proof for Hilbert transform without using Fourier transform.

We now turn to the proof (3), the almost orthogonality of T;’s. WLOG, we can assume that

J1 < J2
We aim to show
1T, Tyl S 279270 (4)
For any j € Z, let
K () = X2,

where A; = {z € R: 27 < |z| < 277!}, Then it is clear that
T;f(z) = K; x f(z).
Henceforth we get for any f € L2,
T3, Tj, fllo = 1B, * Ky * flla < B, Ko [[1 [l f |-

We shall analyze K;, * K;, more carefully. We write

1 1
Kjl * sz (.%’) = /tXAjl (t) . EXAJ.Q (37 — t)dt.
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By the support conditions of xa, and xa,,, we can localize

20 < |t < 2t

272 < |z —t| < 27>,
Using triangle inequality and the last constraints for ¢ and « — ¢, we see the range of x as follows:
272 9Nl <y — | — |t| < |z| < | —t] + [t] < 272 4 20

We only need to focus on those x obeying 272 — 2111 < |g| < 2721 4 201+ "gince K, * K, (x) vanishes

otherwise. We further break the range of x into three parts:

27 — 97 < [af < 272 4100 - 27, (5)
272 410027 < [z < 27271 — 100 - 2771, (6)
9i2+1 _ 1 . 2i1+1 < |:C| < |IE| < izl | 9iitl (7)

When |z| obeying (5) or (7), we see that such z’s only occupy a set E whose measure is at most 500-271.
We then see that
[ 1 B < 1, K- B S 27070,
B

because ||Kj, * Kj,||o < 2772, When z satisfies (6), notice that for t € A,

|z —t| > |x| — |t| > 272 4100 - 27+ — 2711 > 272

and
2 —t] < |z| 4 |t] < 2721 —100 - 21 +! 4 2+l < 9d2 1

Thus when z lies in the case (6), x — ¢ € A;, provided that t € Aj,. Thus we get, for x obeying (6),

|G, + K, ()] = /1XA,-1 )~ 1_ tdt‘
- /1“]‘1() (xl—t_al:> dt‘
= /XAjl(t) (x_lt)xdt'gwl—%.

Integrating in all such z, we have

) . —(j2—71)
/_ _ v , |Kj, * K, (z)|de S 2 .
2724100-271 Sll"<272+17100-271+1

Combine previous results, we see that
”Kjl * Kj2 ||1 5 2_(j2_j1)-

Hence we show (4), and we’re done!
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21 The Besicovitch Set

A needle is moved continuously in a plane to its opposite direction. What is the least area required
to make such a movement? This is so called Kakeya needle problem, posted in 1927. It sounds plausible
that the least area could be related to m. However, astonishingly the least area can be as small as
possible. The solution to Kakeya needle problem relies on a fundamental construction of Besicovitch
which yields a set of measure zero that contains line segments in all possible directions. Such a set
plays a significant role in modern analysis. For example, it shows that Lebesgue differentiation theorem

can not be extended to higher dimensional spaces arbitrarily. More precisely, let us consider

. 1
dia%j(r}%ﬁo @ /Rf<x - y)dy, (1)
ER

where R is a family of rectangles. It is natural to ask whether the limit in (1) converges to f(x) a.e. if
f € LP with 1 < p < co. Of course, we have learnt the convergence holds when R is a family of cubes
or balls, by Lebesgue differentiation theorem. However, the convergence property relies on how many
directions pointed by rectangles and the boundedness of eccentricity of rectangles. Closely related to

the pointwise convergence is the problem of LP-boundedness of the corresponding maximal operator
My, defined by

1
M (@) = sup o /R @ — y)ldy.

There are different ways to produce the Besicovitch set, for instance, Kahane’s construction by Cantor
sets. In this section, we present the Besicovitch set in terms of a union of a large number of congruent
thin rectangles in the plane with a high degree of overlap. Let IV be a sufficiently large number. We
use Ry to denote a family of rectangles of side lengths 1 and 2=V. For any R € Ry, R denotes the

rectangle obtained by translating R two units in the positive direction (see Figure m below).

=1

Postive direction

Figure 1: R, a translation of R
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Theorem 51. Given any € > 0, there exists an integer N and 2V many rectangles Ry, -+, Ryvn € Ry
such that

2N

U Rj <€,

j=1
and the R;’s are pairwise disjoint for j = 1,---,2V, and so |U; R;| = 1. Here R; denotes the two-unit

translation of R;, as defined above.

A family of Ry, -, Rov in Theorem a can be made by cutting an initial triangle into a large
number of subtriangles, obtained by equally by dividing the base of the original triangle, and then shift
those subtriangles to make them overlap significantly so that their union has small measure. We will

describe these in details now.

Start with a triangle T'. Suppose T is the triangle AABC, with the base AB. The middle point
M of the base yields two subtriangles, the “left” triangle AAMC and the “right” triangle AM BC'. Let

a € (1/2,1) be a constant of proportionality. We shift AM BC' leftward such that ”g,lél,l‘ = % = Q.

We end up with a overlapping figure, call ®(7"). See Figure E below:

T — ®(T) Q R

Figure 2: Bisecting T and shifting subtriangles

AAB'P is similar to the triangle AABC with ratio . We call AAB'P the “heart” of ®(T),
denoted by ®,(T). The remaining part of ®(T) is called the “arms” of ®(T'), denoted by ®,(T),
consisting of two small triangles AQPC’ and APRC in Figure E See Figure E below.

Because the ratio between two triangles ®,(T") and T is «, we see that
|@4(T)| = o?|T]. (2)

Now to evaluate the area of the arm ®,(7T'), we draw a line segment E'F, parallel to the base AB’, and
passing through the intersection point P.

We use ~ to mean the similar triangles, and = to mean the congruent triangles from now on. It
is clear AEPC’ ~ AM'B’C’ with ratio 1 — . By reflection, it is easy to see that AEPC' =2 APFR.



21 THE BESICOVITCH SET 104

heart h

arms

Figure 3: The arms and the heart of ®(7")

Figure 4: The arms ®,(7T)

Similiarly, APFC ~ ANAMC, with ratio 1 — «, and it is congruent to the APFEQ. Henceforth, we get
|2.(T)] = 2(1 - a)?|T|. (3)
Combine (2) and (3), we obtain

|2(T)| = (o +2(1 — )*)|T]. (4)

We will iterate the above basic process sufficiently many times to obtain Theorem a Let’s start
with a large integer n and a triangle, say AABC. We subdivide the base AB into 2" equal subintervals,
with division points A = Ay, A1,--- ,Asn = B. In this way, we divide the original triangle AABC
into many smaller triangles. We are in particular interested in those 2"~! many smaller triangles
AsjAs;2C, where 0 < j < 2"~ !, The base of such a triangle has midpoint As; 1.

Now for fixed @ € (1/2,1), we preform the basic process, described in Figure E below, for each
triangle As; As;12C’s to get a figure ®(Ag;Azj42C'), for j € [0,2"71). In this way, we then obtain 2!
“hearts” and also 2"~ ! pairs of “arms”. By this construction, the right side of the heart O (AzjA2420)
is parallel to the side C'Ayj;o, which is parallel to the left side of heart ®,(As;ji242;44C). Here
0<j<2n 1.



21 THE BESICOVITCH SET 105
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Figure 5: Divide AABC' into subtriangles As;As;42C’s

Hence, we can translate ®(As;2A42;44C) leftwards so that the left side of ®(Asj12A45;44C) coin-
cides with the right side of ®j(A2;A2;+2C) (see Figure H below, in the right part of which, the point
Ao coincides with Ayjio.)

We shall carry out such a translation for all triangles AAy;A5;10,C, 0 < j < 2"~1. Then we can
incorporate each of these 2"~! hearts ), (A2 A2;42C) into one heart, which is similar to AABC. So
far, we have shifted the 2" subtriangles of AABC, forming a figure that we call ¥4 (ABC'). This figure
contains a heart, namely the disjoint union of the translates of the hearts @), (Ag;As;12C), 0 < j < 2771,

It is easy to see that

|@n(¥1(ABC))| = o*| AABC. ()

because @5, (V,(ABC)) ~ AABC with ratio a. The rest of ¥;(ABC) consists of the union of the
translated arms ®,(As;As;42C), called the arms of ¥, (ABC), or ®,(V,(ABC)). It is clear that
o~
[@a(V1(ABO)| < Y [@a(AzjAzj420))| = 2(1 — a)*| AABC. (6)
=0
Here we used (3) and |AAg;AzjoC| = 27" AABC|. There can be considerable overlap among these
translated arms, although we did not take advantage of this in the estimate (6). Putting (5) and (6)

together, we obtain
|U, (ABC)| < (@ +2(1 — a)?)|AABC|. (7)

We have seen that the heart of ¥(ABC') is a union of 2"~ triangles (for translated hearts), which
we will not further break into smaller triangles in order to maintain the original 2" triangles A;A;,,C,
0 < j < 2" —1. The final figure we aim to create will be made of a union of translated A;A;,,C’s.

In addition, we shall choose the proportionality constant « near 1 so that 1 — « is very tiny. In such
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Azw Af."’ Al_l +l A—’i" A’.’;'-’ Ai.i*-‘ Al_nj Al_i + Az_i ‘\3.\11 Az_\ +1 AJ!'3 Az_m Az_i-s "\g,H

Figure 7 Shlftmg (I)(Agj+2A2j+4C) leftwards to (P(AngQjJ’_QC)

a way, we can see that the contribution, in terms of the area, from those “arms” is insignificant since
it is bounded by a continuous function of 1 — a. Thus we focus on the main contribution, the heart
U, (ABC'). The above algorithm for AABC with 2" + 1 many division points in its base, can be carries
out on the heart of ¥;(ABC), a triangle with 2"~! + 1 many division points in the base. Here n in the
first stage is replaced by n — 1 in the second stage. When shifting those 2"~! translated “hearts” in the
heart of U (ABC), we move the corresponding attached arms in the same way. When the process is
completed, we end up a figure, called ¥5(ABC') and containing a heart and some arms as ¥, (ABC).
Keep in mind that the translated triangles A;A;,,C can NOT be broken into pieces. The picture
made by those shifted arms may become messy due to the high degree of overlap. But we will see the
contribution from those arms, even treated as they are disjoint mutually, is insignificant because we
choose « near 1. To see this, notice that the arms of the figure U5(ABC') consists of two parts, the
arms in ¥, (ABC) and the additional arms made by the algorithm acted on the heart of ¥;(ABC). As

we did in the first stage, we see that the area if the additional arms contributes at most

2(1 — a)?|®, (¥, (ABC))| = 2(1 — a)?*a®|AABC|.
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Henceforth, the area of arms of Uy(ABC) is controlled by
Bu(U2(ABC))| +2(1 — el AABC] = (2(1 — a)%a? +2(1 — )?)|AABC], (3)
which is small when « is near 1. Meanwhile, the heart of U5(ABC) has its area
a?|®, (¥, (ABC))| = a®a?|AABC|,

which gets smaller since a € (1/2,1), compared to the contribution of the heart of Uy(ABC). Com-
bining this with (8) yields

Wy (ABC)| < (@®a® +2(1 — a)® + 2(1 — a)*a?)|AABC. 9)

The process can be iterated and finally we obtain ¥,,(ABC'), where the algorithm terminates. It follows

from (9) and induction that
|0, (ABC)| < (®" +2(1 — a)* +2(1 — a)?’a® + -+ +2(1 — a)*a® ?)|AABC)|. (10)

The arms of ¥,,(ABC') contributes at most
2(1-a)’ +2(1-a)’a®+--- +2(1-a)’a™ > <2(1-a)*) a¥ <2(1-a).
j=0

Therefore we have
|V, (ABC)| < (®™ +2(1 — a))|ANABC|. (11)

The set ¥,,(ABC) is essentially the Besicovitch set we are looking for, because its area can be made

as small as we wish when « is near 1 and n is sufficiently large.

To finish the proof of Theorem EI, we make a crucial geometrical observation now. We had already
seen that ¥, (ABC) is a union of translated triangles A;A;,C’s. Let us denote the triangle A;4;,,C
by Tj for j =0,1,---,2" —1. Those T}’s share a common vertex C. We use Tj’ to denote the shifted 7}
that comprises ¥,,(ABC). Let C; denote the vertex of corresponding to the common vertex C. T} is
used to denote the triangle obtained by reflecting the 77 through C;. While the triangles 7’s overlap
to a very high degree, the reflected triangle 77'’s are mutually disjoint.

In fact, if 7, was originally to the right Tj,, then by the algorithm 7}, was moved leftwards to

1

Ty, , so the vertex Cj, is to the left of Cj,. The relative positions of the reflected triangles T and 77,

are then described as in Figure E, from which the disjointness of the reflected triangles is clear.

Finally we pass from the triangles above to rectangles. We choose the original triangle ABC to be
an equilateral triangle whose height is 2. For any triangles T} that makes up ¥,,(ABC), we draw a line
from its vertex C; to the midpoint M; of its base, marking off the points P; and @); on it at distance
1/2 and 3/2 from the vertex C;. We let R; denote the rectangle whose major axis is P;@;, whose side
lengths are 1 and 2. Here N = n + L, where L is a fixed large integer (see Figure E below). Since
the angle of TJ' at the vertex C; is larger than ¢; - 27", for some small positive constant c;, we can

always choose L large enough so that R; C T]f .
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Figure 8: Reflected subtriangles are disjoint

We now have 2" many rectangles R;’s of dimension 1 x 27V, To get 2V = 22" many such
rectangles, notice that both ¥,,(ABC) = U,T} and its reflection, given by U; T}, are covered by a 5 x 5
cube. By taking 2 disjoint copies of ¥, (ABC) and its reflection, we obtain 2V rectangles with side

lengths 1 and 2. Those rectangles are contained in a set of measure at most
2L (0™ 4+ 2(1 — a))|AABC|,

which can be made smaller than arbitrary given € > 0 if we take n large enough and « sufficiently close

to 1. Henceforth, there is an integer N depending on ¢, such that
N
U &
j=1

Finally we verify the mutual disjointness of the translations Rj’s. According to the way how we select

<e.

R; in Figure E, we see that R; is the reflection of R; through C;. The disjointness of R; follows from
the crucial geometrical observation in Figure B, as shown in Figure @ below. Therefore we complete

the proof of Theorem @

Remark 15. The existence of the Besicovitch set is really a striking phenomenon in analysis, go-
ing beyond common sense and usual imaginations. It indicates the significant difference between
1-dimensional analysis and higher dimensional analysis. Very often the main obstacle arises from the
Besicovitch set in many analysis problems, for instance, the well-known Bochner-Riesz conjecture, re-
striction conjecture, and Kakeya conjecture, etc. To close the section, let us state another famous

problem in analysis, a conjecture of Zygmund.

Let v : R? — S! be a vector field in R?, consisting of unit vectors. Zygmund posed a question

asking if

e—0 2¢

hml[ Fz — to(@)dt = f(z)
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Figure 9: The rectangle R;

T* T

W/

70

Figure 10: The disjointness of ]%j’s

for a.e. © € R%, where v is a Lipschitz vector field and f € L2. In other words, he asked whether any
L? function is differentiable along Lipschitz directions. This is a longstanding problem and it turns
out to be extremely challenging. It is even unknown for the C*> vector fields. The real enemy again
is caused by the Besicovitch set. Some known positive results on the real analytic vector fields were
proved by Bourgain, who was able to show that the Besicovitch set can not occur in the real analytic

vector field case.
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22 LP (p # 2) Unboundedness of Disc Multipliers

We are interested in the disc multiplier operator, given by

Tsf(€) = x5()f(€),

for f € L*(R?). Here B is a ball in R?. It is easy to see, by Plancherel theorem, that T is bounded
on L?. Tt was proved by C. Fefferman in his Ph.D. thesis that Tz can not be bounded on any L? if
p # 2. Let D denote the unit ball in R?, centered at the origin. By a standard translation and dilation
argument, it is easy to see that the LP-boundedness of Ty is equivalent to that of Tp. More precisely,

suppose that
HTDf”p < Cp”f”p (1)

for all f € L?. Then
HTBf”p < Cp”f“p (2>

for all f € LP. Conversely, (2) implies (1). Hence, we see that the LP-norm of Tp (if exists) is

independent of the location and the magnitude of B.
Theorem 52. The disc multiplier T’z is unbounded on LP(R?) provided p # 2.

Remark 16. This theorem is still valid in the higher dimensional R" case. The unboundedness result
follows from a surprising application of the Besicovitch set, discussed in Lecture @ It reinforces
what we said in the last lecture, there is a significant difference between 1-dimensional and higher-
dimensional one. In the 1-dimensional case, the interval multiplier is an LP-multiplier for all p € (1, c0)
because it can be represented as linear combinations in terms of the Hilbert transform. However, the

LP-boundedness if the ball multiplier operator turns out to be false in the higher dimensional R™.
We need some background before we give a proof to the theorem.

Definition 35. For any unit vector u € R?, we define
Suf(.’IJ) — / f(f)e%rixfdé,
&-u>0

which is the multiplier operator whose multiplier is the characteristic function of the half plane {¢ :
&-u>0}.

We will see some relation between the disc multiplier T and the operator S“.

Lemma 38. Given p € [1,00), let uy, -+ ,uxy be unit vectors in R? and f,--- , fx € L>NLP. Suppose
that the disc multiplier T is bounded on LP. Then

N 1/2 N
(Z |Sujfj|2> <Gy (Z |fj|2>
=

j=1

1/2

Here C), is an absolute constant depending on p but independent of N, u; and f;’s.
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Proof. Let us recall a result in Lecture El, following from Khinchin’s inequality (Lemma @) Any
LP-bounded linear operator T satisfies the following vector-valued inequality,

N 1/2 N 1/2
<Z ITfj|2) <G, (Z |ij2> , (3)
j=1 j=1
p p
where C), is independent of N and f;’s. We will use this inequality in the proof.

For any unit vector u € R?, let BY denote a ball of radius R, centered at Ru (See Figure @ below).
As R — oo, the BY tends to the half plane {£ € R? : £ - u > 0}.

)

Figure 11: The ball B% and its limit

From the definition of B} and T}, it is clear that
Tpy f(x) = 7T, (fe72m 0 (2), (4)

where Bpg is a ball, of radius R, centered at the origin. Because of the LP-boundedness of Tp, there

exists a constant C), such that
HTDf”p < Cp”f”lo
for all f € L?. By the equivalence of (1) and (2), we get for any f € L?,

1Tsr fllp < Coll flp-

From (4), we also obtain
|TB}%fj| = |TBR(f]‘627riRuj‘(.))|7

so that we can apply (3) to the operator T, and the functions fje2”R“J"(')’s, and then end up with

N 1/2 N 1/2
(Smasr) | <af(Sur) |- ®
j=1 j=1
p P
Observe that, since the ball B} increases to fill up the half plane {£ - u > 0}, DCT yields
lim |[Tpy f—S“fll2=0
R—o00

whenever f € L?. We see that T, f; converges to S" f; in L?, and consequently an appropriate
R

subsequence converges to S* f; a.e. Therefore the lemma follows from (5) by Fatou’s Lemma. O
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Definition 36. For f € L*(R"), ¢ > 0, we define ST and S, by
ST1() = X000 ()£ (),
S F(€) = X0.00) (E)e 2T ().
By Fourier inversion theorem, S, can be written as
S.f@) = [ flgemeraag,
0
Moreover, by Plancherel theorem, we see that for any f € L?,
STf(x) = lim S.f(z) = lim f(€)emieHiot ge, (6)
e—0t e—=0t Jj
where € R and the limits are taken in the L? sense.

Lemma 39. There is a positive constant C' such that for any |z| > 1,

|S+X(71/2,1/2) (l‘)
Proof. Notice that for any f € L' N L? and any € > 0,

<z 2mi(x+ie)€ _ * —2miyé 2mi(z+ie)é
/0 F(©)e ¢ /O (/R F(y)e dy)e de

_ /f(y) </ 6—2wzy§€2w1(m+le)d£> dy _ / f(y) : dy
R 0 21 J_ oy —x — 1€
Here we used the Fourier transform of L' functions and Fubini’s theorem, which is valid because of the
integrability of the integrand. By (6), we can represent

| > —.
|z

S+X(—1/2,1/2) (x) = klim f(g)e%i(xﬂ&k)d&
— 00 0

where {¢,} is some positive sequence whose limit is 0. Employing this fact and the representation of
S.f we just derived, we see that

1

2 1
1Y =T e
O

Lemma 40. Let u be a unit vector and R denotes a thin rectangle of dimensions 1 x 27, which is

. 1
‘S+X(,1/2’1/2)($>| 2 hIIl —

c
k—oo 27T

x|’

>

since |z| > 1.

parallel to the vector u. R represents the translation of R along u direction by two units. Then

19xr(2)| = Oxp().

Here C is an absolute constant independent of u, R and =x.

Proof. Since the inequality in invariant under translation and rotation, we can set up an appropriate
coordinate axes so that u is in the x;-direction and

1 1
R = {(%7%2) : ) <z < 57_Q—N—l <y < 2—N—1}7
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X2
A
R R
-,
2 2 1

Figure 12: The rectangle R and R in the new coordinate axes

and

S“Xr(z1,72) :/ Xr (&1, &)™ et m2)de dg,.

1>0
Since now we have xg(z1,22) = X(_1§/271/2)(x1)X(_2N172N1)("L'2), the Fourier transform of xr
can be represented as
XAR(§17§2) = X(fu;/z) (51))%(72—1\[—1,2—1\’—1)(62)7
from which we get
S*Xr(w1,22) = STX(“1/2.1/2) (T1)X(—2- N1 281 (22).
When z = (21,%3) € R, |21| > 1 and 25 € (=27¥-1,27¥-1). Consequently, for = € R,
C

SUxr(z)| > — > C,
| XR( >|_|.Z‘1|_

following from Lemma @ and the fact that |z1| is bounded above by 5/2 when (z1,#;) € R. The

desired estimate then follows. O

Proof of Theorem @ We're ready to give the proof to our main result. By equivalence of (1) and
(2), it suffices to show LP-unboundedness of T, where D is the unit ball (disc) centered at the origin.
We can also assume 1 < p < 2 since p > 2 case follows by duality and the case p = 1 is a consequence of
the complex interpolation. We prove the main result by contradiction. Assume that there is a number

1 < p < 2 such that Tp is bounded on LP. We aim to derive a contradiction under the assumption.

The main tool is Besicovitch set, discussed in Lecture @ By Theorem a, the Besicovitch con-
struction, for any € > 0, we can take a collection of rectangles R;,---, Ry~ such that each of those

rectangles has side length 1 x 2=,
2N
U Rj < €,
j=1

and R;’s are mutually disjoint so that | U; R;| = 1. Let u; be the unit vector in the positive direction
of the longest side of R;. Then Lemma @ yields

15" xR, (2)] = Oxg, (@),
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from which we see that

o 1/2 o 1/2 1/p
> 18" xr, >C D Ixa, >Cc|JR,| =c
=1 =1 j
p
On the other hand, by Lemma @, we obtain for 1 < p < 2,
oN 1/2 N 1/2
> 18" xR, ? <G || D Ixn,l?
j=1 j=1
P P
oN 1/2 N %7%
<Gl Y Ixm, P U R (Holder)
j=1 j=1
2

1_1
P 2

1/2 oN
Cy (Z Rj|> U R
7 =1

Putting this upper bound together with the lower bound above, we get

N

C < Cher s,

By letting € — 0, it is clear that this is impossible since C' is positive. Therefore, the LP-unboundedness
of the disc multiplier, or Theorem @, is established. O
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