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Collection of Homotopy Theory

Final Goal
Get to know the motivic homotopy theory, including examples,
computations, applications, etc.

It is a kind of homotopy theory, or the homotopy theoretic applications
anyway! Natural questions to ask:

What do homotopy theorists care?
What are the techniques?
How to apply these methods to the algebraic geometry?
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Quick reminder of spectra

The overall core problem of the homotopy theory: compute π∗S.

Definition
A spectrum is a collection of spaces {Xi}i∈Λ together with the structure
maps σi ,j : S j−i ∧ Xi → Xj . Here Λ can be natural numbers, integers,
G-universe, etc.

The sphere spectrum S = {(Sn, σ : S1 ∧ Sm → Sm+1)} is the initial object
of the category of spectrum.

Upshot
Spectra, or the category of spectra Sp, is one of the most important things
that algebraic topologists care about.
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What do homotopy theorists care?

Storage and retrieval of information are common throughout all areas of
mathematics.

For example, let A be a ring, algebra over a ring, etc. When we define
this, we actually encapsulate the following information:

Elements of A.
Operations: additions, multiplications, inverses, etc.
Associativity, distributivity, etc.
More properties (commutative, domain, noetherian, artinian, ...)

Similarly for the morphisms!
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What do homotopy theorists care?

Example
Let A = Z[α, β]/(f (α, β)) and g : A → Z. The knowledge of elements and
operations of A, and the knowledge of the morphism g are compressed in
their descriptions and can be completely retrieved from the definitions of A
and g .

Example
Let X be a CW complex. πn(X ) = [Sn, X ] encodes the information about
attaching maps and building blocks (cells) of X up to weak equivalence.
You can completely get the information of X from its homotopy groups,
up to weak equivalence (Whitehead’s theorem).
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What do homotopy theorists care?

In homotopy theory, understanding a spectrum often begins with
computing its homotopy groups, which serve as a kind of “unzip tool” to
extract information from the spectrum. However, ...

Example
Consider π∗S. In the 2-primary component, we have

π1S is generated by η, which is an element corresponding to the Hopf
fibration S3 → S2.
π3S is generated by ν, which is an element corresponding to the Hopf
fibration S7 → S4.
π7S is generated by σ, which is an element corresponding to the Hopf
fibration S15 → S8.

One has ην = νη = 0, but ⟨η, ν, η⟩ = {±σ}. Here ⟨f , g , h⟩ is the Toda
bracket for f : X → Y , g : Y → Z , h : Z → W with fg ≃ 0 ≃ gh, which
is the collection of homotopy classes of maps from ΣX → W .
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What do homotopy theorists care?

Toda brackets (as a secondary operation) measure the obstruction of the
higher associativity in Sp.

In most of cases, the higher associativity is invisible within the framework
of ordinary algebra or ordinary categories. Traditional algebraic ”zip files”
are not enough for us to tackle the real questions — it’s efficient for many
tasks, but lossy.

Result
To understand the higher associativity/commutativity, and actually
retrieve the information of these properties from the new ”zip file”, we
need knowledge of higher algebra. Higher algebra lets us both encode and
decode these layers of structures.
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What do homotopy theorists care?

Like the tensor product in the classical algebra, we would expect a good
monoidal structure (denoted ∧) in the Sp, in the sense of

The multiplicative unit 1 exists, and 1 = Σ∞S0.
There exists a lax monoidal adjunction Σ∞ ⊣ Ω∞.
Let Q = colimn ΩnΣn, then the following diagram commutes:

X Ω∞Σ∞(X )

QX

α

where α is a weak equivalence.

Theorem (Lewis, 1991)
No such good ordinary category exists!

Result
To fulfill all requirements, one needs to work in the ∞-category.
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What does homotopy theorists care?

Upshot
To encode the information in homotopy theory, one needs

To have a good definition of operations (e.g. multiplication), one
needs to work in ∞-categories.
To have a good description of properties (e.g. associativity,
commutativity), one needs the knowledge of An/A∞/En/E∞-algebra.

We need the higher algebra!
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Comparison with Ordinary Algebra

We can draw an analogy between ordinary algebra and higher algebra as
follows:

Ordinary Algebra Higher Algebra

Z S
rings E1-ring

commutative rings E∞-ring
modules over Z modules over S

tensor products ⊗Z wedge products ∧S

abelian categories stable ∞-categories
Hochschild homology topological Hochschild homology
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What are the techniques?

Problem
Now we’ve packed with the knowledge of the higher algebra, how to
extract the information from a ”higher algebraic object”?

Unzip tool: homotopy groups.
Compute the homotopy groups of spectra!
Atiyah-Hirzebruch SS, Adams SS, Adams-Novikov SS, slice SS,
Bockstein SS, algebraic slice SS, etc. (in details in the later lectures)
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How to apply these methods to the algebraic geometry?

Schemes are bad, but sheaves are good.

Slogan
Motivic homotopy theory = encoding/decoding the information of
schemes via sheaves of spaces or spectra (i.e. the functor-of-points
viewpoint), within the framework of higher algebra.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 14 / 47



How to apply these methods to the algebraic geometry?

Schemes are bad, but sheaves are good.

Slogan
Motivic homotopy theory = encoding/decoding the information of
schemes via sheaves of spaces or spectra (i.e. the functor-of-points
viewpoint), within the framework of higher algebra.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 14 / 47



How to apply these methods to the algebraic geometry?

Schemes are bad, but sheaves are good.

Slogan
Motivic homotopy theory = encoding/decoding the information of
schemes via sheaves of spaces or spectra (i.e. the functor-of-points
viewpoint), within the framework of higher algebra.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 14 / 47



How to apply these methods to the algebraic geometry?

Here’s the checklist:
Setting the workspace: background knowledge in the higher algebra.
(We are here!)
Encoding the data: motivic spaces and spectra, cohomological
classes.
Decoding the data: computational results, spectral sequences.
Other applications or intersections: Milnor(-Witt) K-theory, norm
residue theorem, Lichtenbaum-Quillen conjecture, etc.
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Comparison (for homotopy theorists ONLY)

We can draw an analogy between ordinary homotopy theory and motivic
homotopy theory as follows: (suggested by J.D. Quigley)

Ordinary Homotopy Theory Motivic Homotopy Theory

topological spaces motivic spaces

Sn = (S1)∧n Sp,q = (S1,0)∧(p−q) ∧ (S1,1)∧q

S1,0 = simplicial circle
S1,1 = Gm

spectra Sp
motivic spectra over a field k,
SH(k)

πm(X ) = HomSp(Σ∞Sm, X )
πm,n(X ) = HomSH(k)(Σ∞Sm, X )

Em(X ) = πm(E ∧ X )
Em,n(X ) = πm,n(E ∧ X )

Em(X ) = HomSp(Σ−mX , E )
Em,n(X ) =
HomSH(k)(Σ−m,−nX , E )
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Comparison (for homotopy theorists ONLY), continued

Ordinary Homotopy Theory Motivic Homotopy Theory

KU, KO ≃ KUhC2 KGL, KQ ≃ KGLhC2

Steenrod algebra HZ/2∗HZ/2 =
F2⟨Sqi : i ≥ 1⟩/ ∼

motivic Steenrod algebra MZ/2∗MZ/2 =
M2⟨Sqi : i ≥ 1⟩/ ∼

Adams SS
motivic Adams SS
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Outline

1 Motivation: why do we need the language of higher algebra?

2 Simplical Sets

3 A very brief introduction to infinity categories
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Simplicial Objects

Let ∆ be a category, whose objects consist of sets [n] = {0, 1, · · · , n} with
a finite total order for any n ∈ N≥0, and morphisms are order-preserving
maps between sets.

Definition
Let C be an ordinary category. A simplicial object in C is a contravariant
functor X : ∆op → C. Write Fun(∆op, C) = sC.

If C = Set, then a simplicial object X in C is called a simplicial set. The
category of simplicial sets is denoted sSet.
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Face and Degeneracy

There are two collections of morphisms in ∆, called face maps and
degeneracy maps, defined as follows:

Definition
Let 0 ≤ i , j ≤ n.

1 Face maps d i : [n − 1] ↪→ [n] sends k to k when k < i , and sends k
to k + 1 when k ≥ i . In other words, d i skips i .

2 Degeneracy maps s j : [n + 1] → [n] sends k to k when k ≤ j , and
sends k to k − 1 when k > j . In other words, s j doubles j .
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Face and Degeneracy

Let X : ∆op → Set be a simplicial set. Denote Xn = X ([n]), di = X (d i),
sj = X (s j).

Proposition
The face maps and degeneracy maps satisfy

didj = dj−1di , i < j ; (1)
sjsi = si+1sj , j ≤ i ; (2)

disj =


sj−1di i < j ;
id i = j , j + 1;
sjdi−1 i > j + 1.

(3)
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Face and Degeneracy

Theorem
For any f ∈ Hom∆([n], [m]), f can be uniquely decomposed into
f = d i1 · · · d ir s j1 · · · s js , where m = n − s + r , i1 < · · · < ir , j1 < · · · < js ,
up to linear order.

Example
For example, if we write f : [4] → [2]. Then f = s0 ◦ s2 because s0

doubles 0 and s2 doubles 2.

Similarly, for any simplicial set X , any morphism from Xn → Xm can be
uniquely decomposed into the face maps di and the degeneracy maps sj .
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Example: Standard n-simplex

The most important example of simplicial sets is the standard simplices.

Definition
By Yoneda embedding, any [n] ∈ ∆ associates to Hom∆(−, [n]). Write
∆[n] = Hom∆(−, [n]) ∈ sSet, with ∆[n]k = Hom∆([k], [n]). This is called
a standard n-simplex.

By Yoneda lemma, any simplicial set X associates to HomsSet(−, X ). In
particular,

HomsSet(∆[n], X ) ∼= X ([n]) = Xn.

So standard n-simplices recover the information of the simplicial sets.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 23 / 47



Example: Standard n-simplex

The most important example of simplicial sets is the standard simplices.

Definition
By Yoneda embedding, any [n] ∈ ∆ associates to Hom∆(−, [n]). Write
∆[n] = Hom∆(−, [n]) ∈ sSet, with ∆[n]k = Hom∆([k], [n]). This is called
a standard n-simplex.

By Yoneda lemma, any simplicial set X associates to HomsSet(−, X ). In
particular,

HomsSet(∆[n], X ) ∼= X ([n]) = Xn.

So standard n-simplices recover the information of the simplicial sets.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 23 / 47



Example: Standard n-simplex

The most important example of simplicial sets is the standard simplices.

Definition
By Yoneda embedding, any [n] ∈ ∆ associates to Hom∆(−, [n]). Write
∆[n] = Hom∆(−, [n]) ∈ sSet, with ∆[n]k = Hom∆([k], [n]). This is called
a standard n-simplex.

By Yoneda lemma, any simplicial set X associates to HomsSet(−, X ). In
particular,

HomsSet(∆[n], X ) ∼= X ([n]) = Xn.

So standard n-simplices recover the information of the simplicial sets.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 23 / 47



Example: Standard n-simplex

The most important example of simplicial sets is the standard simplices.

Definition
By Yoneda embedding, any [n] ∈ ∆ associates to Hom∆(−, [n]). Write
∆[n] = Hom∆(−, [n]) ∈ sSet, with ∆[n]k = Hom∆([k], [n]). This is called
a standard n-simplex.

By Yoneda lemma, any simplicial set X associates to HomsSet(−, X ). In
particular,

HomsSet(∆[n], X ) ∼= X ([n]) = Xn.

So standard n-simplices recover the information of the simplicial sets.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 23 / 47



Example: Standard n-simplex

The most important example of simplicial sets is the standard simplices.

Definition
By Yoneda embedding, any [n] ∈ ∆ associates to Hom∆(−, [n]). Write
∆[n] = Hom∆(−, [n]) ∈ sSet, with ∆[n]k = Hom∆([k], [n]). This is called
a standard n-simplex.

By Yoneda lemma, any simplicial set X associates to HomsSet(−, X ). In
particular,

HomsSet(∆[n], X ) ∼= X ([n]) = Xn.

So standard n-simplices recover the information of the simplicial sets.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 23 / 47



Example: ∆-complexes

Recall that in classical algebraic topology,

∆n = {(x0, · · · , xn) ∈ Rn+1
≥0 :

∑
xi = 1}.

In our setting, the ∆-complex ∆∗ builds a cosimplicial set ∆ → sSet.
That is, it is a covariant functor ∆∗ : ∆ → Set with coface maps and
codegeneracy maps defined dually.
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Kan Extensions

Let F : C → D and G : C → E be functors.

Definition
A left Kan extension of F along G is a functor LanGF : E → D together
with a natural transformation η : F =⇒ LanGF ◦ G that is universal from F
to LanGF ◦ G . That is, for any η′ : F =⇒ S ◦ G , there exist a unique
natural transformation φ : LanGF =⇒ S making the diagram commute:

F S ◦ G

LanGF ◦ G

η′

η
φ◦

Dually, one can define the right Kan extension.
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Kan Extensions

Intuitively, a left Kan extension is a map such that the diagram commutes
at each object and morphism:

C D

E

G

F
LanG F

The importance of the Kan extensions is revealed in the definition of
geometric realization.
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Geometric Realization

Definition
Let Y : ∆ → sSet be the Yoneda embedding sending [n] to ∆[n], and
∆∗ : ∆ → Top be the ∆-complex functor sending [n] to ∆n. The left Kan
extension of ∆∗ along Y is then called the geometric realization,
denoted by | − | := LanY ∆∗. One can visualize it as the following diagram:

∆ sSet

Top

Y

∆∗
LanY ∆∗=|−|
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Geometric Realization

Classically, there are multiple ways to define a geometric realization
functor. We present one that is used frequently.

For X∗ a simplicial set,

|X∗| =

 ⊔
n≥0

Xn × ∆n

 / ∼,

where (f∗(x), t) ∼ (x , f ∗(t)) for any x ∈ Xn, t ∈ ∆n, and f∗ = X∗(f ),
f ∗ = ∆∗(f ) are induced by f : [m] → [n] in ∆.
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Outline

1 Motivation: why do we need the language of higher algebra?

2 Simplical Sets

3 A very brief introduction to infinity categories
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Horns

There are many models for the infinity categories, e.g. (Joyal’s)
quasi-category, complete Segal spaces, etc. We are using the
quasi-category model.

Definition
Let n ≥ 1 and 0 ≤ j ≤ n.

A horn is a simplicial subset Λn
j ⊆ ∆[n] of the standard n-simplex

∆[n], where

(Λn
j )k = {f : [k] → [n] : ([n]\[k]) ̸⊆ f ([k])}.

In other words, Λn
j =

⋃
i ̸=j ∆[i ].

Intuitively, a horn Λn
j is the union of all faces of ∆[n] except the j-th one.
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Horns

Horns Λ2
j for j = 0, 1, 2:

Consider Λn
j .

If 0 < j < n, It is called an inner horn.
If j > 0, it is called an right horn.
If j < n, it is called an left horn.
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Nerves

Let C be an ordinary category.

Definition
The nerve of C, denoted NC, is a simplicial set with

NC0 = Obj C,

NC1 = Mor C,

NC2 = {composable morphisms c0 → c1 → c2},

· · ·
NCn = {composable morphisms c0 → c1 → · · · → cn},

In other words,
NCn = HomCat([n], C).

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 32 / 47



Nerves

Let C be an ordinary category.

Definition
The nerve of C, denoted NC, is a simplicial set with

NC0 = Obj C,

NC1 = Mor C,

NC2 = {composable morphisms c0 → c1 → c2},

· · ·
NCn = {composable morphisms c0 → c1 → · · · → cn},

In other words,
NCn = HomCat([n], C).

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 32 / 47



Nerves

Let C be an ordinary category.

Definition
The nerve of C, denoted NC, is a simplicial set with

NC0 = Obj C,

NC1 = Mor C,

NC2 = {composable morphisms c0 → c1 → c2},

· · ·
NCn = {composable morphisms c0 → c1 → · · · → cn},

In other words,
NCn = HomCat([n], C).

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 32 / 47



Nerves

Let C be an ordinary category.

Definition
The nerve of C, denoted NC, is a simplicial set with

NC0 = Obj C,

NC1 = Mor C,

NC2 = {composable morphisms c0 → c1 → c2},

· · ·
NCn = {composable morphisms c0 → c1 → · · · → cn},

In other words,
NCn = HomCat([n], C).

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 32 / 47



Nerves

The nerve of C, as a simplicial set, comes with face maps

di : [c0 → · · · → cn] 7→ [c0 → · · · → ci−1 → ĉi → ci+1 → · · · → cn]

and degeneracy maps

sj : [c0 → · · · → cn] 7→ [c0 → · · · → cj → cj → · · · → cn].

Theorem
The nerve functor N : Cat → sSet is fully faithful, i.e.

HomCat(C, D) ∼= HomsSet(NC, ND).
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∞-categories

Definition
Let C be a simplicial set. It is an ∞-category (or more precisely,
(∞, 1)-category), if it satisfies the inner horn extension property. That
is, for n ≥ 2, every inner horn f : Λn

j → C admits a lift f , such that the
following diagram commutes:

Λn
j C

∆[n]

f

incl f

An ∞-category is a simplicial set, not a category in the usual sense!
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∞-categories

Let C be a simplicial set.

Theorem
C is isomorphic to the nerve of a category iff it has the unique inner horn
extension property. In particular, C is an ∞-category.

Suppose C is an ∞-category isomorphic to the nerve of an ordinary
category, then it contains the following data:

objects, which are the 0-simplices C0.
morphisms, which are the 1-simplices C1.
morphisms of morphisms, which are the 2-simplices C2.
......
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Functors between ∞-categories

Let C, D be two ∞-categories.

Definition
A functor F : C → D is just a morphism of simplicial sets. Explicitly, it is a
natural transformation between C, D : ∆op → sSet such that it is
compatible with face maps and degeneracy maps.

Definition
A natural transformation η : F0 =⇒ F1 between F0, F1 : C → D is the map

η : C × ∆[1] → D

in sSet such that η |C×[i]= Fi .
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Sub-∞-categories

Let C be an ∞-category.

Definition
Let C′ ⊆ C be a subcomplex. It is a sub-∞-category if for n ≥ 2,
0 < j < n, every f : ∆[n] → C such that f (Λn

j ) ⊆ C′ satisfies f (∆[n]) ⊆ C′.

A sub-∞-category C′ ⊆ C is full, if for all n and
x = (x0 → x1 → · · · → xn) ∈ Cn, one has x ∈ C′

n iff xi ∈ C′
0 for all

0 ≤ i ≤ n.
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Kan Complexes

Let K be an ∞-category.

Definition
K is a Kan complex, if for all 0 ≤ j ≤ n, n ≥ 1, the map

HomsSet(∆[n], K ) → HomsSet(Λn
j , K )

is surjective.

Just a reminder: in the definition of ∞-categories, we only require the
inner horns satisfy the extension property. In the Kan complex, we require
all horns satisfy the extension property.
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Kan Complexes

Definition
An ∞-groupoid is an ∞-category such that every morphism is an
equivalence.

Theorem (Joyal)
Every Kan complex is an ∞-groupoid, and vice versa.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 39 / 47



Kan Complexes

Definition
An ∞-groupoid is an ∞-category such that every morphism is an
equivalence.

Theorem (Joyal)
Every Kan complex is an ∞-groupoid, and vice versa.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 39 / 47



Kan Complexes

Definition
An ∞-groupoid is an ∞-category such that every morphism is an
equivalence.

Theorem (Joyal)
Every Kan complex is an ∞-groupoid, and vice versa.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 39 / 47



∞-category of spaces

In the classical category theory, every category C is enriched over sets.
That is, for all X , Y ∈ C, we might regard HomC(X , Y ) as an object in Set.

In the ∞-category theory, the proper analogue of Set is the ∞-category of
spaces, denoted S.

Definition
Let Kan be the full subcategory of sSet spanned by the collection of Kan
complexes. The ∞-category of spaces is then defined to be

S := N(Kan).

There are other ways to define a suitable notion of the ∞-category of
spaces. However, we will end up with some new ∞-category which is
equivalent to S = N(Kan).
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Stable ∞-categories

The proper analogue of abelian categories in the classical sense, is the
notion of stable ∞-categories.

Definition
Let C be a pointed ∞-category (i.e. it has a zero object 0). Let
f : X → Y be a morphism in C, i.e. f ∈ C1.

A fiber of f is of the following pullback square

fib(f ) X

0 Y

f
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Stable ∞-categories

Definition (continued)
Let C be a pointed ∞-category (i.e. it has a zero object 0). Let
f : X → Y be a morphism in C, i.e. f ∈ C1.

1 A cofiber of f is of the following pushout square

X Y

0 cofib(f )

f

fiber = kernel.
cofiber = cokernel.
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Stable ∞-categories

Consider the diagram
X 0

0 X ′

If this is a pushout diagram, then X ′ = ΣX . This is how we define
the suspension functor Σ.
If this is a pullback diagram, then X = ΩX ′. This is how we define
the loop functor Ω.
Σ ⊣ Ω.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 43 / 47



Stable ∞-categories

Consider the diagram
X 0

0 X ′

If this is a pushout diagram, then X ′ = ΣX . This is how we define
the suspension functor Σ.
If this is a pullback diagram, then X = ΩX ′. This is how we define
the loop functor Ω.
Σ ⊣ Ω.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 43 / 47



Stable ∞-categories

Consider the diagram
X 0

0 X ′

If this is a pushout diagram, then X ′ = ΣX . This is how we define
the suspension functor Σ.

If this is a pullback diagram, then X = ΩX ′. This is how we define
the loop functor Ω.
Σ ⊣ Ω.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 43 / 47



Stable ∞-categories

Consider the diagram
X 0

0 X ′

If this is a pushout diagram, then X ′ = ΣX . This is how we define
the suspension functor Σ.
If this is a pullback diagram, then X = ΩX ′. This is how we define
the loop functor Ω.

Σ ⊣ Ω.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 43 / 47



Stable ∞-categories

Consider the diagram
X 0

0 X ′

If this is a pushout diagram, then X ′ = ΣX . This is how we define
the suspension functor Σ.
If this is a pullback diagram, then X = ΩX ′. This is how we define
the loop functor Ω.
Σ ⊣ Ω.

Albert Jinghui Yang (UPenn) Practical Higher Algebra Jun 2025 43 / 47



Stable ∞-categories

Definition
Let C be a pointed ∞-category. It is stable if

1 every morphism f : X → Y , its fibers and cofibers exist;
2 Every fiber sequence is a cofiber sequence, and vice versa.

Example
Let C be a pointed ∞-category with finite limits. Its stabilization,
denoted Sp(C), is the homotopy inverse limit of the tower

· · · Ω−→ C Ω−→ C Ω−→ C.

Sp(C) is guaranteed to be stable, no matter C is or not.
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∞-category of spectra

Let C be a pointed ∞-category with finite limits, and Sp(C) be its
stabilization.

Definition
If C = S, the ∞-category of spaces, then Sp(S) is the ∞-category of
spectra, the core category of the modern homotopy theory. Write
Sp := Sp(S).

Suspension spectrum functor Σ∞ : S → Sp.
Infinite loop space functor Ω∞ : Sp → S.
Σ∞ ⊣ Ω∞.
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Thank you!
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