Grothendieck topologies and sheaves

Fangji Liu

University of Pennsylvania

Jun 18 2025

Fangji Liu (University of Pennsylvania) Motivic reading seminar summer 25

æ

2/42

< ∃⇒

< 47 ▶

Slogan

Motivic homotopy theory is doing homotopy theory on schemes.

In order to do that, we need to view a scheme X as a **functor**:

The functor of points perspective

For each scheme X, we can define a functor h_X as follows:

$$h_X : \operatorname{Sch}^{op} \to \operatorname{Set}, Y \mapsto \operatorname{Hom}(Y, X)$$

The correspondence $h: \operatorname{Sch} \to \operatorname{Fun}(\operatorname{Sch}^{op}, \operatorname{Set})$ is fully faithful by Yoneda embedding, therefore we can identify X with the functor h_X .

For a scheme X, the underlying space of X is endowed with a topology which we call the **Zariski topology**.

Definition

For an affine scheme X = Spec(R), the (Zariski) open sets of X are of the form $X \setminus V(I)$ where $I \subset R$ is an ideal of R and $V(I) = \{p \in \text{Spec}(R), p \supset I\}.$

- For X = A¹ = Spec(ℂ[x]), the underlying space of X is ℂ, and the nontrivial (Zariski) open sets are of the form ℂ \ {pts}.
- If X is irreducible, the space of X is also irreducible, and in particular not Hausdorff (if X is not a single point).

く 何 ト く ヨ ト く ヨ ト

 h_X is actually a **sheaf** with respect to the Zariski topology.

Proposition (Sheaf property)

Suppose $\{U_i\}$ is a (Zariski) open cover of a scheme Y, and $f_i \in h_X(U_i) = \text{Hom}(U_i, X)$. Suppose $f_i = f_i$ when both restricted to $U_i \cap U_j$ for all *i*, *j*, then there exists a unique $f \in h_X(Y) = \operatorname{Hom}(Y, X)$ such that f restricts to f_i for all i.

However, the Zariski topology is too coarse (has too few open sets) to work with.

Theorem (Grothendieck)

For an irreducible scheme X, $H^r_{Tar}(X; \mathcal{F}) = 0$ for all constant sheaves \mathcal{F} and r > 0.

イロト 不得 トイヨト イヨト

Our respected category of motivic spaces will actually consist of sheaves over smooth schemes with respect to a carefully chosen topology, the **Nisnevich topology**.

Nisnevich topology is closely related to **étale** topology, which plays an essential role in Grothendieck's solution of Weil conjectures.

Proposition (Comparison theorem)

For a smooth complex variety X and a finite abelian group Λ , there is an isomorphism

$$H^r(X(\mathbb{C});\Lambda)\simeq H^r_{ ext{
m \acute{e}t}}(X;\Lambda).$$

2 Étale and Nisnevich morphisms

3 Grothendieck topology

8/42

표 제 표

< 47 ▶

Let k be an algebraically closed field.

Recall that for a variety X over k, the Zariski tangent space at a point $x \in X$ is defined as $T_x X := (\mathfrak{m}_x/\mathfrak{m}_x^2)^{\wedge}$ where \mathfrak{m}_x is the maximal ideal corresponding to x, and $(-)^{\wedge}$ is the dual vector space. We say X is smooth if $\dim_k(T_x X) = \dim X$ for all x.

Definition

Let X, Y be smooth varieties over k. Then a morphism $f: X \to Y$ is called étale if for any $x \in X$, the induced map on tangent spaces $T_x f: T_x X \to T_{f(x)} Y$ is an isomorphism.

Definition (Flat morphisms)

A ring map $A \to B$ is called **flat** if *B* is a flat *A*-module. In other words, the functor $A \operatorname{-mod} \to B \operatorname{-mod}$, $M \mapsto M \otimes_A B$ is exact, i.e. sends exact sequences to exact sequences.

A morphism $f: X \to Y$ between schemes X, Y is called **flat** if for each $x \in X$, the local homomorphism $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is flat.

A flat morphism $f: X \to Y$ is the algebraic geometric analogue of a continuous family of manifolds $X_y = f^{-1}(y)$. In fact if f is flat, we have

$$\dim f^{-1}(y) = \dim X - \dim Y$$

provided that $f^{-1}(x)$ is nonempty.

Definition (Unramified morphisms)

A local homomorphism $f: A \to B$ of local rings is called **unramified** if $B/f(\mathfrak{m}_A)B$ is a finite seperable field extension of A/\mathfrak{m}_A . A morphism $f: X \to Y$ between schemes is called **unramified** if for each $x \in X$, the local homomorphism $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is unramified.

Unramified morphisms are generalizations of seperable extensions. There is another characterization of unramified morphisms:

Proposition

Let $f: X \to Y$ be a map between schemes of finite type. Then f is unramified if and only if the sheaf of differentials $\Omega_{Y/X} = 0$.

< 回 > < 三 > < 三 > -

11/42

Definition (Étale morphisms)

We say a morphism $f: X \to Y$ between schemes is **étale** if it is flat and unramified.

An Étale morphisms is the algebraic geometric analogue of a local isomorphism for manifolds. For smooth varieties X, Y, if $f: X \to Y$ is étale then all the fibers $f^{-1}(x)$ are either empty or disjoint single points (of multiplicity 1).

Proposition (local description)

A finite type morphism $f: X \to Y$ of schemes is étale if and only if there are open covers $\{U_i\}, \{V_i\}$ of X, Y with $f: U_i \to V_i$, such that $f: U_i \to V_i$ is isomorphic to $\operatorname{Spec}(B[x]_h/(g)) \to \operatorname{Spec}(B)$ for some ring Band $g, h \in B[x]$, with g monic and g' invertible in $B[x]_h/(g)$.

イロト イヨト イヨト イヨト

- An open immersion is étale.
- The composition of two étale morphisms is étale.
- A base change of an étale morphism is étale.
- An étale map is open.
- A finite étale map is the analogue of a covering map in topology. We can define the étale fundamental group of a scheme from the category of finite étale maps, similar to the covering space theory in topology. For a complex varietie X, the étale fundamental group of X is the profinite completion of π₁(X).

13/42

Definition (Nisnevich morphism)

A morphism $f: X \to Y$ is called **Nisnevich**, if it is étale, and for each $y \in Y$, there exists $x \in f^{-1}(y)$, such that the induced map on residue fields $k(y) \to k(x)$ is an isomorphism.

Étale morphisms are not necessarily Nisnevich. For fields $k \subset L$, the map $\operatorname{Spec}(L) \to \operatorname{Spec}(k)$ is étale if and only if L is a finite separable extension of k, but it is Nisnevich if and only if L = k.

14 / 42

Local rings

Definition

Let X be a scheme and $x \in X$. An **étale neighborhood** of x is an étale map $(U, u) \rightarrow (X, x)$. The connected affine étale neighborhoods forms a directed set by setting $(U, u) \leq (U', u')$ if there exists a map $(U, u) \rightarrow (U', u')$. Then we define the **local ring at** x **for étale topology** as

$$\mathcal{O}_{X,x}^{\acute{e}t} = \lim_{\longleftarrow} \Gamma(U, \mathcal{O}_U)$$

Note that if we replace "étale" by "Zariski" in the above definition, we will get the usual local ring $\mathcal{O}_{X,x}$ of $x \in X$. We can also replace "étale" by "Nisnevich" and obtain the Nisnevich local ring $\mathcal{O}_{X,x}^{\text{Nis}}$.

Since every open immersion is Nisnevich, and every Nisnevich map is étale, we have maps

$$\mathcal{O}_{X,x} o \mathcal{O}_{X,x}^{\mathrm{Nis}} o \mathcal{O}_{X,x}^{\mathrm{\acute{e}t}}.$$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Definition (Henselian rings)

A local ring (R, \mathfrak{m}) is called **Henselian** if Hensel's lemma holds. This means if $p \in R[x]$, then any factorization of its image in $R/\mathfrak{m}[x]$ into a product of coprime monic polynomials can be lifted to a factorization in R[x]. It is called **strict Henselian** if it is Henselian and the residue field R/\mathfrak{m} is separably closed.

In particular, fields are Henselian, separably closed fields are strict Henselian.

Proposition (Henselization)

Let (R, \mathfrak{m}) be a local ring. Then there exists a unique Hensel ring R^h together with a map $R \to R^h$, such that any local map $R \to B$ where B is Henselian can be uniquely extended to R^h . We call R^h the **Henselization** of the ring R.

Similarly, there exists a unique strict Hensel ring R^{sh} together with a map $R \to R^{sh}$, such that any local map $R \to B$ where B is strict Henselian can be extended to R^{sh} , which is unique up to an automorphism of R^{sh}/\mathfrak{m}^{sh} . We call R^{sh} the **strict Henselization** of the ring R.

Proposition

 $\mathcal{O}_{X,x}^{\mathrm{Nis}}$ is the Henselization of the local ring $\mathcal{O}_{X,x}$, and $\mathcal{O}_{X,x}^{\mathrm{\acute{e}t}}$ is the strict Henselization of the local ring $\mathcal{O}_{X,x}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Étale and Nisnevich morphisms

Grothendieck topology

⇒ ▶

< 1 k

Definition

The étale/Nisnevich topology we will define is not a topology on a space, but rather a topology on **category**, which we call the Grothendieck topology.

Definition (Grothendieck topology)

Let *C* be a category with pullbacks. Then a **Grothendieck topology** τ on *C* is a collection of families of morphisms $\{U_i \rightarrow U\}_{i \in I}$ called *coverings*, which satisfy the following conditions:

- (1) Closed under pullback. If $\{U_i \to X\}_{i \in I}$ is a covering and $Y \to X$ is a morphism, then $\{U_i \times_X Y \to Y\}_{i \in I}$ is also a covering.
- (2) Closed under refinement. If $\{U_i \to X\}$ is a covering, and $\{V_{ij} \to U_i\}$ are coverings of U_i , then the composition $\{V_{ij} \to U_i \to X\}_{i,j}$ is also a covering.
- (3) *Isomorphisms*. Any isomorphism $\{U \xrightarrow{\sim} X\}$ is a covering.

A category C equipped with a Grothendieck topology is called a **site**.

イロト 不得 トイヨト イヨト

- Let X be a topological space. Then we can define a site X_{top} whose objects are open subsets of X and morphisms are inclusions. The coverings are {V_i → V}_{i∈I} where ⋃_i V_i = V.
- Let G be a group. We can define a site T_G whose underlying category is the category of G-sets and G-maps, and coverings are $\{S_i \xrightarrow{f_i} S\}_{i \in I}$ such that $\bigcup_i f_i(S_i) = S$.
- Let C be the category of n-dimensional polytopes in ℝⁿ, whose morphisms are inclusions. We say {P_i → P} is a covering if U_i P_i = P. Then all the coverings form a Grothendieck topology on C.

We say that a family of maps $\{U_i \rightarrow U\}_{i \in I}$ is *jointly surjective* if the disjoint union $\bigsqcup_i U_i \rightarrow U$ is surjective.

3

Now let X be a scheme.

- **The Zariski site**. The site X_{Zar} is the site associated to the (Zariski) topological space X.
- The small étale site. The site X_{ét} has the underlying category Ét/X, whose objects are étale maps U → X and morphisms are X-morphisms. The coverings are étale morphisms {U_i → U} that are jointly surjective.
- The big étale site. The site X_{Ét} has the underlying category Sch/X, whose objects are maps Y → X and morphisms are X-morphisms. The coverings are jointly surjective étale morphisms.

- The small Nisnevich site. The site X_{nis} has the underlying category Ét/X, whose coverings are {U_i → U} such that ⊔_i U_i → U is Nisnevich and surjective.
- The big Nisnevich site. The site X_{Nis} has the underlying category Sch/X, whose coverings are $\{U_i \rightarrow U\}$ such that $\bigsqcup_i U_i \rightarrow U$ is Nisnevich and surjective.
- The fppf site. The site X_{fppf} has the underlying category Sch/X, whose covering are jointly surjective morphisms $\{U_i \xrightarrow{f_i} U\}$ such that each f_i is flat and locally of finite presentation.
- The fpqc site. The site X_{fpqc} has the underlying category Sch/X, whose covering are jointly surjective morphisms $\{U_i \xrightarrow{f_i} U\}$ such that $\bigsqcup_i f_i$ is faithfully flat and quasi compact.

For a category C and two topologies τ and σ on C, we say that $\tau \leq \sigma$ if every τ -cover is a σ -cover. In this case, we say that σ is finer than τ (or τ is coarser than σ).

Topologies on Sch/X

An extended picture: Belmans: topologies comparison.

The difference between small and big sites ($X_{\acute{e}t}$ and $X_{\acute{E}t}$ with different underlying categories: $\acute{\mathrm{Et}}/X$ and Sch/X):

- Small sites are easier to describe.
- In terms of computing sheaf cohomology, they are the same.
- But if we want to view schemes as sheaves over corresponding sites, it is necessary to use big sites. For example, if Z → X is a closed immersion, then Hom_X(-, Z) is the empty sheaf on the small site Ét/X.

Therefore, in our setting for motivic homotopy theory, we mainly use the big sites. (Or Sm/X, the category of smooth schemes over X)

Let k be a field, X = Spec(k).

- X_{Zar} consists of two objects \emptyset , $\operatorname{Spec}(k)$. (X is a single point)
- X_{nis} consists of objects \emptyset , $\bigsqcup \operatorname{Spec}(k)$.
- $X_{\text{\acute{e}t}}$ consists of \emptyset , and objects of the form $\bigsqcup_i \operatorname{Spec}(k_i)$ where k_i/k is a finite separable extension.

2 Étale and Nisnevich morphisms

3 Grothendieck topology

∃ →

< 1 k

Definition (Presheaf)

Let C be a site. Then a **presheaf** on C is a functor $C^{op} \to \text{Set}/\text{Ab}$.

When $C = X_{top}$ for a topological space X, this definition obviously coincide with our classical definition of a presheaf.

Sheaf condition

In the classical case, we say a presheaf \mathcal{F} on a space X is a sheaf if for any open cover $\{U_i\}_{i\in I}$ of an open subset $U \subset X$ and $x_i \in \mathcal{F}(U_i)$ such that $x_i|_{U_i \cap U_j} = x_j|_{U_i \cap U_j}$ for all i, j, there exists a unique $x \in \mathcal{F}(U)$ such that $x|_{U_i} = x_i$. A categorical way to describe this condition is that for any covering $\{U_i\}_{i\in I}$ of $U \subset X$, the diagram

$$\mathcal{F}(U)
ightarrow \prod_i \mathcal{F}(U_i)
ightarrow \prod_{i,j} \mathcal{F}(U_i \cap U_j)$$

is a equalizer.

Definition (Sheaf)

Let C be a site. Then a sheaf \mathcal{F} on C is a presheaf which satisfies the following sheaf condition: for any covering $\{U_i \rightarrow U\}_{i \in I}$, the diagram

$$\mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \rightrightarrows \prod_{i,j} \mathcal{F}(U_i imes_U U_j)$$

is a equalizer.

Proposition (A criterion)

In order for a presheaf \mathcal{F} to be a sheaf in the étale (Nisnevich) topology, it suffices to check the sheaf condition for Zariski open coverings and for étale (Nisnevich) coverings $V \to U$ where both V and U are affine.

イロト イヨト イヨト イヨト

Let X be a scheme.

• **Structure sheaf**. Similar to the structure sheaf \mathcal{O}_X in the Zariski case, we can define structure sheaves on different topologies. For example, for étale topology, we can define the structure sheaf \mathcal{O}_X by setting

$$\mathcal{O}_X(U) = \Gamma(U, \mathcal{O}_U).$$

- **Corepresentable sheaf**. let *S* be a scheme, *X* be an *S*-scheme. Then $h_X := \operatorname{Hom}_S(-, X)$ is a sheaf on X_{Zar} , X_{Nis} , $X_{\operatorname{\acute{E}t}}$, etc.
- **Constant sheaf**. Let Λ be a ring. For each étale map $U \to X$, we define

$$\mathcal{F}_{\Lambda}(U) = \Lambda^{\pi_0(U)}$$

then \mathcal{F}_{Λ} is a sheaf on $X_{\text{ét}}$ (X_{nis}), called the constant sheaf. It is the sheaf corepresented by $X \times \Lambda$.

- Sheaf of units. Let O[×]_X(U) = Γ(U, O_U)[×], then O[×]_X is the sheaf of units on X_{ét}. It is corepresented by A¹ \ 0.
- Sheaf of O_X-modules. A sheaf F is called a sheaf of O_X-modules if for each U ∈ C, F(U) is an O_X(U)-module and restriction maps are compatible with module structures. Similar to the Zariski case, if X = SpecR is affine, every R-module M gives rise to an étale sheaf of O_X-modules by setting

$$\mathcal{F}_M(U) = \Gamma(U, f^*M)$$

for $f: U \to X$.

Sheaves over fields. Let X = Spec(k) for a field k. Then an étale sheaf F over X is determined by the sets F(Spec(k')) where k'/k is a finite separable extension, and satisfies that

 $\mathcal{F}(\operatorname{Spec}(k')) \cong \mathcal{F}(\operatorname{Spec}(K))^{\operatorname{Gal}(K/k')}$

for any finite Galois extension K/k'.

Let $G = \operatorname{Gal}(k^{\operatorname{sep}}/k)$. For each sheaf \mathcal{F} over $\operatorname{Spec}(k)_{\operatorname{\acute{e}t}}$, define $M_{\mathcal{F}} = \varinjlim_{\longrightarrow} \mathcal{F}(k')$. Then $M_{\mathcal{F}}$ is a discrete *G*-module. We can show that this correspondence gives an equivalence between the category of étale sheaves on $\operatorname{Spec}(k)$ and the category of discrete *G*-modules.

Definition

Let X be a scheme, $x \in X$, and \mathcal{F} be a sheaf on $X_{\text{ét}}(X_{\text{nis}}, \text{ etc.})$. We define the **stalk** at x of \mathcal{F} as

$$\mathcal{F}_x := \lim_{x \in U} \mathcal{F}(U).$$

- For the structure sheaf \$\mathcal{O}_X\$, the stalks are the local rings we defined in the previous sections: for Nisnevich topology \$\mathcal{O}_{X,x}^{nis} = \mathcal{O}_{X,x}^h\$, and for étale topology \$\mathcal{O}_{X,x}^{\mathcal{e}t} = \mathcal{O}_{X,x}^{sh}\$.
- The stalk of a corepentable sheaf h_X on Sch/S at $x \in S$ is $Hom_S(\mathcal{O}_{X,x}, X)$.
- The stalk of an étale sheaf *F* on Spec(k) is the Gal(k^{sep}/k)-module M_F we defined.

Sheaf cohomology

Let C be a site, we denote by PSh(C) the category of presheaves, and Sh(C) the category of sheaves.

Proposition

Sh(*C*) is an abelian category with enough injectives. The global section functor Γ is defined by $\Gamma(\mathcal{F}) := \operatorname{Hom}_{\operatorname{Sh}(C)}(\underline{\mathrm{pt}}, \mathcal{F})$, where $\underline{\mathrm{pt}}$ is the sheaf that assigns each object *U* the point set pt. For the sites $\overline{C} = X_{\tau}$, it is the usual global section functor $\Gamma(\mathcal{F}) = \mathcal{F}(X)$. It is a left exact functor.

Definition (Sheaf cohomology)

For a sheaf \mathcal{F} on C, define the **sheaf cohomology** of \mathcal{F} by

$$H^i(C;\mathcal{F})=R\Gamma^i(\mathcal{F}).$$

In particular, if X is a scheme and \mathcal{F} is a sheaf on X for the topology τ (could be Zar, Nis, ét, etc.), we have the sheaf cohomology $H^i_{\tau}(X; \mathcal{F}) = H^i(X_{\tau}; \mathcal{F}).$ Let k be a field, $G = \operatorname{Gal}(k^{\operatorname{sep}}/k)$ be the absolute Galois group. We have seen that there is an equivalence between étale sheaves over $\operatorname{Spec}(k)$ and *G*-modules.

In fact, in this case the sheaf cohomology recovers Galois cohomology:

Proposition

For each i, there is an isomorphism

$$H^i_{ ext{ét}}(\operatorname{Spec}(k);\mathcal{F})\cong H^i(G;M_{\mathcal{F}})$$

On the other hand, the Zariski and Nisnevich cohomology of sheaves are trivial (vanishes above degree 0).

Let $\mathcal{U} = \{U_i \rightarrow X\}$ be an étale covering of X, \mathcal{F} be an étale sheaf on X. Define

$$C^{r}(\mathcal{U},\mathcal{F}) = \prod_{i_{0},i_{1},...,i_{r}} \mathcal{F}(U_{i_{0}...i_{r}}), \text{ where } U_{i_{0}...i_{r}} = U_{i_{0}} \times_{X} \times \cdots \times_{X} U_{i_{r}}.$$

For $s = (s_{i_0...i_r}) \in C^r(\mathcal{U}; \mathcal{F})$, we define $d^r s \in C^{r+1}(\mathcal{U}; \mathcal{F})$ by

$$(d^r s)_{i_0 \dots i_{r+1}} = \sum_{j=0}^{r+1} (-1)^j s_{i_0 \dots i_{j-1} i_{j+1} \dots i_{r+1}} |_{U_{i_0 \dots i_{r+1}}}.$$

We can verify that

$$C^0(\mathcal{U};\mathcal{F})
ightarrow C^1(\mathcal{U};\mathcal{F})
ightarrow \cdots$$

is a chain complex, which we call the Čech complex.

Definition (Čech cohomology)

We define the **Čech cohomology** with respect to the cover \mathcal{U} as $\check{H}^i(\mathcal{U}; \mathcal{F}) = H^i(C(\mathcal{U}; \mathcal{F}))$, and the Čech cohomology of the scheme X as

$$\check{H}^{i}(X;\mathcal{F}) = \lim_{\longleftarrow} \check{H}^{i}(\mathcal{U};\mathcal{F})$$

where the inverse limit is taken for all open coverings of X.

Proposition

For
$$r = 0$$
 or 1, $\check{H}^r(X; \mathcal{F}) = H^r(X; \mathcal{F})$.

For étale topology, Čech cohomology and sheaf cohomology coincide in many cases.

Proposition

Let X be a scheme. Suppose that every finite subset of X is contained in an open affine and X is quasi-compact (for example, X is a quasi-projective variety). Then

$$\check{H}^{r}(\mathcal{U};\mathcal{F})=H^{r}(X;\mathcal{F})$$

for all r and sheaf \mathcal{F} for étale topology.

Theorem (The comparison theorem)

Let X be a smooth complex variety, $X(\mathbb{C})$ be the corresponding compact analytic space, Λ be an finite abelian group. Then we have an isomorphism

 $H^r_{\mathrm{\acute{e}t}}(X;\Lambda)\cong H^r(X(\mathbb{C});\Lambda).$

for $r \ge 0$.

Corollary

Let X be a smooth variety over \mathbb{C} , σ be a field automorphism of \mathbb{C} . Then $H^i(X(\mathbb{C}); \mathbb{Q}) \cong H^i(\sigma X(\mathbb{C}); \mathbb{Q})$ for $i \ge 0$.

Note that in general σ can be not continuous, and the topology of X and σX could be very different.

For the sheaf of units $\mathcal{O}^{\times},$ the first cohomology groups recovers Picard groups:

Proposition

There are isomorphisms

$$\begin{split} \check{H}^{1}(X;\mathcal{O}_{X}^{\times}) &\cong H^{1}_{\mathrm{Zar}}(X;\mathcal{O}_{X}^{\times}) \cong H^{1}_{\mathrm{Nis}}(X;\mathcal{O}_{X}^{\times}) \cong \\ H^{1}_{\mathrm{\acute{e}t}}(X;\mathcal{O}_{X}^{\times}) &\cong H^{1}_{\mathrm{fppf}}(X;\mathcal{O}_{X}^{\times}) \cong H^{1}_{\mathrm{fpqc}}(X;\mathcal{O}_{X}^{\times}) \cong \mathrm{Pic}(X). \end{split}$$

All of which represents the isomorphism classes of line bundle over X.

Nisnevich topology combines the advantages of both Zariski topology and étale topology:

- Nisnevich topology has the same cohomological dimension as Zariski topology, the Krull dimension. (Zariski)
- Fields have trivial shape in Nisnevich topology. (Zariski)
- Algebraic K-theory satisfies Nisnevich decent (not true for étale), which mean algebraic K theory is a sheaf in Nisnevich topology (then moreover a motivic space). (**Zariski**)
- Nisnevich cohomology can be computed using Čech cohomology. They coincide for all quasicompact separated schemes over k. (étale)
- The purity theorem. (étale)

Let C be a site, A be an ∞ -category (for example, Spc). We can define a notion of sheaves that take values in A, which is useful in the definition of motivic spaces.

Definition (∞ -sheaves)

A presheaf valued in A on C is a functor $C^{op} \to A$. A sheaf \mathcal{F} valued in A on C is a presheaf that satisfies the sheaf condition: for any open cover $\{U_i \to U\}_{i \in I}$, there is an equivalence

$$\mathcal{F}(U) \simeq \lim(\prod \mathcal{F}(U_i) \rightrightarrows \prod \mathcal{F}(U_{i_0 i_1}) \rightrightarrows \prod \mathcal{F}(U_{i_0 i_1}))$$

- If A = Set or A = Ab the discrete 1-categories, this definition coincide with the usual definition of **sheaves**.
- If A = Gpd the 2-category of all groupoids, this definition coincide the usual definition of **stacks**.

41 / 42

イロト 不得 トイヨト イヨト

Next lecture: unstable motivic homotopy theory!

æ

42 / 42