

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Modern Techniques in Homotopy Theory Learning Seminar

July 2nd, 2025

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

1 Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Vector Bundle Torsor

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations In the previous lecture, we saw two (building blocks) localization given by L_{Nis} and $L_{\mathbb{A}^1}$. Here, we introduce another using the notion of strong homotopy invariance.

Definition:

An (algebraic) vector bundle torsor over X is an affine morphism $\phi: Y \to X$ that is Zariski locally trivial and the fibers of the maps are isomorphic to affine spaces (ie. \mathbb{A}^n).

An (algebraic) vector bundle is a vector bundle torsor. The difference between them is that for a vector bundle torsor, the patching maps need not be linear, just affine.

Penn

Vector Bundle Torsor

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations More generally, a vector bundle torsor $W \to X$ with respect to some vector bundle $E \to X$ is given by an action of E on W and W is locally isomorphic to E with affine patching maps.

In particular, the usage of the word torsor suggests that they are classified exactly by

 $H^1(X; E).$

In particular, if X is affine, $H^1(X; E) = 0$, so W is the same as E. This means that every vector bundle torsor over affine schemes is a vector bundle.

Penn

vector Bundle Torsor that is Not a Vector Bundle

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations **Example**: Consider the diagonal map $\delta : \mathbb{P}^1_k \to \mathbb{P}^1_k \times_k \mathbb{P}^1_k$. This is a closed immersion since \mathbb{P}^1_k is separated, so we can consider an open immersion of the diagonal complement given by

$$X \to \mathbb{P}^1_k \times_k \mathbb{P}^1_k$$

Let $\pi: X \to \mathbb{P}^1_k$ be projection to one of its factors. The fibers are \mathbb{A}^1_k since removing the diagonal removes a point off the projective line, but this is not a vector bundle!

ℜPenn Strong Homotopy Invariance

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Recall by Sm_S we mean smooth *S*-schemes of finite type. A presheaf $F \in \operatorname{PShv}(\operatorname{Sm}/S)$ is strongly homotopy invariant if for all vector bundle torsors $Y \to X$, the corresponding map

 $F(X) \rightarrow F(Y)$ is an equivalence.

We refer to such presheaves as $PShv_{htp}(Sm/S)$. Note that clearly every strongly homotopy invariant sheaf is \mathbb{A}^{1} -invariant.

Now we denote the left adjoint of the inclusion functor $PShv_{htp}(Sm/S) \rightarrow PShv(Sm/S)$ as

 $L_{\text{htp}} : \text{PShv}(\text{Sm}/S) \to \text{PShv}_{htp}(\text{Sm}/S).$

 $L_{\rm htp}$ preserves finite products and is locally Cartesian!

Equivalence of Motivic Spaces

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Once we require the presheaves to be Nisnevich sheaves, we actually have that

Theorem

 $\begin{aligned} \operatorname{PShv}_{\operatorname{htp}}(\operatorname{Sm}/S) \cap \operatorname{Shv}_{\operatorname{Nis}}(\operatorname{Sm}/S) &= \\ \operatorname{PShv}_{\mathbb{A}^1}(\operatorname{Sm}/S) \cap \operatorname{Shv}_{\operatorname{Nis}}(\operatorname{Sm}/S). \end{aligned}$

The intuition is that being \mathbb{A}^1 -invariant and strongly homotopy invariant becomes a local condition if they are both sheaves, and locally they are equivalent.

n The Jouanolou–Thomason Trick

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations There is a good reason for why we are interested in vector bundle torsors.

Theorem

Let $\pi:Y\to X$ be a vector bundle torsor, then π induces a motivic equivalence.

Idea: Check this equivalence over a trivializing open cover, then this reduces to the previous lecture.

Theorem (Jouanolou-Thomason)

Let ${\cal S}$ be a qcqs scheme such that either:

- \bigcirc S is affine, or
- **2** S is Noetherian separated and regular¹

Let $X \in Sch_S$ be quasi-projective, then there exists a vector bundle torsor $Y \to X$ where Y is affine.

 $^1\mathrm{Remark:}$ This is also the setting where G-theory and K-theory of S are the same. $$^{8/47}$$

Example of The Jouanolou-Thomason Trick

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations When k is algebraically closed and $X = \mathbb{P}_k^n$, consider a variety Y in $\mathbb{A}_k^{n+1} \times \mathbb{A}_k^{n+1}$ where Y is composed of $(n+1) \times (n+1)$ -matrices M such that:

1 M is idempotent, ie. $M^2 = M$.

 \bigcirc M has rank 1.

Question:

Why is Y affine?

- 1 Idempotence is a polynomial relations.
- 2 Having ≤ 1 is equivalent to all higher minors vanishing.
- **3** Having $\neq 0$ means the zero matrix is not here.

Penn

Example of The Jouanolou-Thomason Trick

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Question:

Why is Y affine?

- 1 Idempotence is a polynomial relations.
- 2 Having $rank \le 1$ is equivalent to all higher minors vanishing.
- **3** X Having $\neq 0$ means the zero matrix is not here. This is an open condition.
- An idempotent matrix can only have eigenvalues 0 or 1.
 We use the condition det(I M) = 0. This implies that 1 is an eigenvalue of M, so M is not the zero matrix.

Example of The Jouanolou-Thomason Trick

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Note that the image of a rank 1 idempotent matrix is exactly a line. Now consider the map

$$\phi: Y \to \mathbb{P}^n_k, M \in Y \mapsto \operatorname{im}(M).$$

For each closed point in \mathbb{P}^n_k - the fiber is exactly \mathbb{A}^n_k !

The idea is to a basis of k^n with one vector v being the generator of im(M), then an idempotent matrix has to fix v, but we are free to choose where the other n vectors get sent to in the line, so this gives \mathbb{A}_k^n .

The Jouanolou-Thomason Trick

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Proof Sketch for the Affine Case $(S = \operatorname{Spec} A)$:

- If X is projective, then it has a closed immersion to Pⁿ_A for n >> 0. The previous construction works fine over a ring A with more details, and we pull back the example constructed.
- If X is quasi-projective then it is a quasicompact open subscheme of a projective scheme Z. We can do an operation called "blow up" on the complement of X such that the inclusion i : X → Bl_{Z-X} Z is affine and the blow up is projective. Now pull back the example constructed again.

This was, allegedly, how Jouanolou originally prove this.

The Jouanolou-Thomason Trick

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Thomason's contribution was the second case (Noetherian, separated, regular) of the theorem with a different approach.

Proof Sketch of Second Version: Such X satisfying the hypothesis would admit an ample family of line bundles $\mathcal{L}_0, ..., \mathcal{L}_n$ - that is, the collection induces a morphism

$$s: \mathcal{O}_X \to \mathcal{E} = \bigoplus_{i=0}^n \mathcal{L}_i.$$

One can check the cokernel of \boldsymbol{s} is actually locally free, and construct

$$Y = \mathbb{P}(\mathcal{E}) \setminus \mathbb{P}(\operatorname{coker}(s))$$
$$Y \hookrightarrow \mathbb{P}(\mathcal{E}) \to X.$$

& Penn

n Motivic Equivalences between Presheaves

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Before we move on, we note one good criterion for checking motivic equivalences.

Theorem:

Let $f: F \to G$ be a morphism in PShv(Sm/S). If $F(U) \to G(U)$ is an equivalence for every affine $U \in Sm_S$, then f is a motivic equivalence.

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Strong Homotopy Invariance and Vector Bundle Torsors

2 Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Penn

Generalizing EG

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Let C be a category and $G \in C$ be a group object, we can generalize the definition of EG we know in topology to a simplicial object $E_{\bullet}G$ given by

$$E_{\bullet}G: \Delta^{op} \to \mathcal{C}, [n] \mapsto \prod_{i=1}^{n+1} G$$

1.1

$$G \xleftarrow{\longleftrightarrow} G \times G \xleftarrow{\longleftrightarrow} G \times G \times G \xrightarrow{\longleftrightarrow} \dots$$

whose face maps $d_i: \prod_{j=1}^n G \to \prod_{j=1}^{n-1} G$ are

$$d_0(g_1, ..., g_n) = (g_2, ..., g_n)$$

$$d_i(g_1, ..., g_i, g_{i+1}, ..., g_n) = (g_1, ..., g_i g_{i+1}, ..., g_n), i > 0$$

Degeneracy maps are insertions of identity.

& Penn

EG in the Motivic Setting

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations In the previous slide we wrote elements g_i 's for notational ease, but the same exact construction works for any group object in any category.

Now, let $X \in \operatorname{Sm} / S$ and \mathcal{G} be a τ -sheaf of groups, we define a presheaf $E_{\bullet}\mathcal{G}$ such that for each cover $U \in \operatorname{Sm} / S$,

$$E_{\bullet}\mathcal{G}(U) \coloneqq E_{\bullet}(\mathcal{G}(U))$$

(ie. it produces a simplicial group for each U). Now $E_{\bullet}\mathcal{G}$ is in PShv(Sm/S)!

We define $E_{\tau}\mathcal{G}$ to be the τ -localization of $E_{\bullet}\mathcal{G}$.

n EG in the Motivic Setting

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Similarly to how in topology, EG is contractible.

Prop:

$E_{\tau}\mathcal{G}$ is contractible.

Proof: There is an extra degeneracy at each step in the diagram for $G = \mathcal{G}(U)$:

$$G \xrightarrow{\longleftarrow} G \times G \xrightarrow{\longleftarrow} G \times G \times G \xrightarrow{\longleftarrow} \dots$$

Notice at each step, there is an extra coordinate for G to insert its identity! This implies |G| is contractible by standard simplicial homotopy theory, and it induces a weak equivalence between $\mathcal{E}_{\bullet}\mathcal{G}$ and *. The functor L_{τ} preserves weak equivalences.

The Bar Construction

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Let \mathcal{C} be a category and $G \in \mathcal{C}$ be a group object. Let G act on $E_{\bullet}G$ on the right in the last coordinate, the quotient $B_{\bullet}G$ is called the bar construction of G. More explicitly, we have

$$* \underbrace{\longleftrightarrow}_{\longleftarrow} G \underbrace{\longleftrightarrow}_{\longleftrightarrow} G \times G \xrightarrow{\longleftrightarrow} \dots$$

whose face maps $d_i: \prod_{j=1}^n G \to \prod_{j=1}^{n-1} G$ are

 $d_0(g_1,...,g_n) = (g_2,...,g_n)$ and $d_n(g_1,...,g_n) = (g_1,...,g_{n-1})$

$$d_i(g_1, ..., g_i, g_{i+1}, ..., g_n) = (g_1, ..., g_i g_{i+1}, ..., g_n).$$

Degeneracy maps are insertions of identity.

& Penn

The Bar Construction

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspensior Theorems

Some Computations Now, let $X \in \mathrm{Sm}\,/S$ and \mathcal{G} be a au-sheaf of groups. Define $B_{\bullet}\mathcal{G}$ by

 $U \mapsto B_{\bullet}(\mathcal{G}(U))$

and then localize to define the bar construction as

 $B_{\tau}\mathcal{G} \coloneqq L_{\tau}B_{\bullet}\mathcal{G}.$

When $\tau = Nis$, we call this the classifying space and drop τ .

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Classifying Spaces in the Motivic Setting

Similar to how BG classifies principal G-bundles (ie. torsors) in topology, we have a similar result in the motivic setting.

A $\tau-\mathcal{G}\text{-torsor}$ on X is a $\tau\text{-sheaf}\ P$ of sets equipped with compatible maps

$$\alpha: P \times \mathcal{G} \to P, \pi: P \to X$$

where π is \mathcal{G} -equivariant with trivial action on X.

The \mathcal{G} -torsors over $U \in \mathrm{Sm} / S$ form a groupoid, we define $B \operatorname{Tors}_{\tau}(\mathcal{G})(U)$ to be the nerve of this groupoid. Note that this is already τ -local!

Theorem

There is a natural isomorphism²

$$[X, B_{\tau}\mathcal{G}]_{Shv_{\tau}} \simeq H^1_{\tau}(X, \mathcal{G}) \simeq \pi_0(B \operatorname{Tors}_{\tau}(\mathcal{G})(X)).$$

²If not abelian, take the right side as the definition of $H^1_{\tau}(\bullet, \mathcal{G})$. $_{21/47}$

& Penn

BGL and BSL, Some Computations

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Let GL_n be the general linear group scheme and SL_n be the special linear group scheme. We define

$$GL = \operatorname{colim}_n GL_n$$
 and $SL = \operatorname{colim}_n SL_n$.³

and BGL, BSL as their associated classifying spaces.

Prop:

Let \mathcal{G} be a Nisnevich sheaf of groups, then $\pi_0^{\mathbb{A}^1}(B\mathcal{G}) = 0$.

Proof: From last lecture, we know we only need to compute $\pi_0^{\text{Nis}}(B\mathcal{G})$. Now \mathcal{G} -torsors are Nisnevich locally trivial, and the last theorem tells us $\pi_0^{\mathbb{A}^1}$ is the sheafification of $U \mapsto H^1(U; \mathcal{G})$.

³Colimit considered as presheaves

🛪 Penn	
--------	--

Lifting to Higher Spaces

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations So far, we have representations on the level of H^1 .

Question:

What about H^2, H^3, \dots ?

Theorem (Dold-Kan Correspondence)

Over perfect field k, there is an equivalence of categories between

 $\operatorname{Ch}_{\geq 0}(\operatorname{Ab}_{\operatorname{Nis}}(k)) \cong \operatorname{Fun}(\Delta^{op}, \operatorname{Ab}_{Nis}(k))$

The chain complex is actually given by alternating sums of certain face maps!

The DK Functor

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

$\operatorname{Ch}_{\geq 0}(\operatorname{Ab}_{\operatorname{Nis}}(k)) \cong \operatorname{Fun}(\Delta^{op}, \operatorname{Ab}_{Nis}(k))$

Given a chain complex of abelian sheaves,

- 1 Send to its corresponding simplicial object on the right.
- A simplicial object in abelian sheaves is a simplicial abelian group by forgetting the sheaf structure.
- 8 Every simplicial abelian group is a Kan complex.

This defines a map

 $\mathrm{DK}: \mathrm{Ch}_{\geq 0}(\mathrm{Ab}_{\mathrm{Nis}}(k)) \to \mathrm{PShv}(\mathrm{Sm}_k).$

Fact:⁴ Let $\mathcal{A} \in \mathrm{Ch}_{\geq 0}(\mathrm{Ab}_{\mathrm{Nis}}(k))$, then

$$H_n(\mathcal{A}) \cong \pi_n(L_{Nis} \operatorname{DK}(\mathcal{A})).$$

 $^{4}\mbox{This}$ is really a formal consequence of examining the DK correspondence.

Motivic Eilenberg Maclane Spaces

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Let $A \in Ab_{Nis}(k)$. View A[n] as the chain complex with only one A sitting at degree n. The motivic Eilenberg-Maclane Space for A is

$$K(A,n) \coloneqq DK(A[n]).$$

Note that K(A, n) is a Nisnevich sheaf.

Corollary: $K(A, n) \in \text{Shv}_{Nis}(Sm_k)$ satisfies $\pi_i(K(A, n)) \cong \begin{cases} A, i = n \\ 0, i \neq n \end{cases}$.

Representability

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Recall in topology, we have that

$$[X, K(G, n)]_* \cong H^n(X; G).$$

We have an analogous result in the motivic world.

Theorem (Motivic Eilenberg Representability)

 $H^n_{\operatorname{Nis}}(-;A) \cong \pi_0(\operatorname{Map}_{\operatorname{Shv}_{Nis}}(-,K(A,n)).$

& Penn

Fiber and Cofiber Sequences

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations For purposes that will be clear later, we fix k as a perfect field. Let $X \to Y \to Z$ in ${\rm Spc}(k)_*,$ we say

1 This is a fiber sequence if the following diagram is a pullback:

2 This is a cofiber sequence if the following diagram is a pushout:

Tenn Homotopy Groups and Fiber Sequences

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations **Note:** What is discussed in this topic applies to the generality of $L_{\mathbb{A}^1}L_{Nis} \operatorname{PShv}(Sm/k)$ (See [Antieau and Elmanto, 2016]).

Let $F \to X \to Y$ be a fiber sequence in $\text{Spc}(k)_*$, then we have a long exact sequence of homotopy groups:

 $\dots \to \pi_{n+1}F \to \pi_{n+1}X \to \pi_{n+1}Y \to \pi_nF \to \dots$

Cohomology and Co-Fiber Sequences

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations We say a Nisnevich sheaf of groups \mathcal{G} is strongly invariant⁵ if $H^i_{Nis}(X;\mathcal{G}) \to H^i_{Nis}(X \times \mathbb{A}^1;\mathcal{G})$

is an isomorphism for i = 0, 1.

Theorem

 \mathcal{G} is strongly invariant if and only if $B_{Nis}\mathcal{G}$ is \mathbb{A}^1 -invariant.

Let $X \to Y \to C$ be a cofiber sequence in $\text{Spc}(k)_*$ and \mathcal{G} be strongly invariant, then we have a long exact sequence of cohomology:

$$0 \to H^0_{Nis}(C;\mathcal{G}) \to H^0_{Nis}(Y;\mathcal{G}) \to H^0_{Nis}(X;\mathcal{G}) \to H^1_{Nis}(C;\mathcal{G}) \to \dots$$

 $\frac{\text{that terminates at level 1.}}{{}^{5}\text{ex. }\mathbb{G}_{m}}$

Cohomology and Co-Fiber Sequence

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Let ${\mathcal A}$ be a Nisnevich abelian sheaf, we say ${\mathcal A}$ is strictly invariant if

$$H^i_{Nis}(X;\mathcal{A}) \to H^i_{Nis}(X \times \mathbb{A}^1;\mathcal{A})$$

is an isomorphism for all i.

Theorem

 \mathcal{A} is strictly invariant if and only if $K(\mathcal{A}, n)$ is \mathbb{A}^1 -invariant for all $n \geq 0$.

Let $X \to Y \to C$ be a cofiber sequence in $\text{Spc}(k)_*$ and \mathcal{A} be strictly invariant, then we have a long exact sequence of cohomology:

 $0 \to H^0_{Nis}(C;\mathcal{G}) \to H^0_{Nis}(Y;\mathcal{G}) \to H^0_{Nis}(X;\mathcal{G}) \to H^1_{Nis}(C;\mathcal{G}) \to \dots$

that continues for all i.

Strong and Strict Invariance

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Question:

Is $\pi_0^{\mathbb{A}^1}(X)$ always \mathbb{A}^1 -invariant?

There is a counter-example! Apparently due to Ayoub in 2023.

Fortunately, we do have the following results.

Theorem (Morel)

Let X be a motivic space over a field, then $\pi_1^{\mathbb{A}^1}(X)$ is strongly $\mathbb{A}^1\text{-invariant}.$

Theorem (Morel)

If k is a perfect field and A is a sheaf of abelian groups, then A is strongly invariant if and only if it is strictly invariant.

Strong and Strict Invariance

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Corollary:

Let k be a perfect field and $X \in \operatorname{Spc}(k)_*$, then $\pi_n^{\mathbb{A}^1}(X)$ is strictly invariant for $n \ge 2$ and strongly invariant for n = 1.

Proof: Consider the loop space functor Ω and observe

$$\pi_n(X) = \pi_1(\Omega^{n-1}X).$$

At least in this lecture, we will assume k is perfect from now on. We use $HI(k) \subset Ab_{Shv}(k)$ to denote the full subcategory of strongly (= strictly) invariant sheaves.

Theorem (Morel)

HI(k) is an abelian category with exact inclusions.

The Fiber Sequence for Classifying Spaces

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Theorem (Asok, Hoyois, Wendt, 2015)

Let $X \to Y \to Z$ be a fiber sequence of PShv(Sm / S) such that Z satisfies affine Nisnevich excision and $\pi_0(Z)$ has affine \mathbb{A}^1 -invariance, then $X \to Y \to Z$ is admits a fiber sequence that gives the aforrementioned LES of homotopy groups.

Corollary: Let \mathcal{G} be a sheaf of groups, the $G \to EG \to BG$ is a fiber sequence that gives the LES of homotopy groups if $H^1_{Nis}(\bullet, \mathcal{G})$ is \mathbb{A}^1 -invariant.

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Space

3 Suspension Theorems

Some Computations

Penne	(Motivic) S^1 -Freudenthal Suspension Theorem
Lecture 5: Unstable Motivic Homotopy Theory, Continued By Mattie Ji	A (pointed) motivic space X is \mathbb{A}^1 -n-connected if $\pi_i^{\mathbb{A}^1}(X) = 0$ for $i \leq n$.
Strong Homotopy Invariance and Vector Bundle	Theorem (S^1 -Freudenthal Suspension Theorem, Morel, Asok-Bachmann-Hopkins)
Torsors	Let X be \mathbb{A}^1 - n -connected, then the natural map
Spaces and Motivic Eilenberg- MacLane	$\pi_i^{\mathbb{A}^1}(X) \to \pi_{i+1}^{\mathbb{A}^1}(\Sigma X)$
Spaces Suspension	is an isomorphism for $i \leq 2n$ and an epimorphism for $i = 2n + 1$.

Suspension Theorems

Some Computations

35 / 47

Penn

The S^1 -Freudenthal Suspension Theorem

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations This theorem follows directly by applying the LES of homotopy groups to the following theorem.

Theorem (Morel, Asok-Bachmann-Hopkins)

Let $n \geq 0$ and X be \mathbb{A}^1 -n-connected, for $i \geq 1$, the natural map

 $X\to \Omega^i\Sigma^iX$

has \mathbb{A}^1 -2*n*-connected fibers.

Proof Sketch: Let F be the fiber of the map $\phi: X \to \Omega^i \Sigma^i X$ taken in the level of sheaves, this fiber always exists on the level of sheaves - it is just not clear whether it would exist in the level of pointed motivic spaces.

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

The S^1 -Freudenthal Suspension Theorem

Theorem (Morel, Asok-Bachmann-Hopkins)

Let $n\geq 0$ and X be $\mathbb{A}^1\text{-}n\text{-}\mathrm{connected},$ for $i\geq 1,$ the natural map

 $X\to \Omega^i\Sigma^iX$

has \mathbb{A}^1 -2*n*-connected fibers.

Proof Sketch (cont'd): The motivic localization L_{mot} sends the fiber sequence $F \to X \to \Omega^i \Sigma^i X$ to a fiber sequence

$$L_{mot}F \to L_{mot}X = X \to L_{mot}(\Omega^i \Sigma^i X) = \Omega^i \Sigma^i X.$$

This in particular implies $L_{mot}F = F$, so F is motivic. F is 2n-connected before localization by classical theorems.

By Morel's unstable connectivity theorem, L_{mot} actually preserves connectivity in the \mathbb{A}^1 -sense too!

Lecture 5: Unstable

The Motivic Homotopy Groups of Spheres

Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations **Remark:** The S^1 -Freudenthal Suspension theorem can be used to show that:

Theorem

For $n\geq 2$ and $i\geq 1$, $\pi_n(S^{n+i,i})\cong K_i^{\rm MW}$ where $K_i^{\rm MW}$ denotes the Milnor-Witt K-theory.

In an ideal world, we would have loved to cover more about this and the interesting relationships between K-theory, Chow groups, Milnor-Witt K-theory, with the motivic spheres. This may be covered in a future lecture (Lecture 10 tentatively).

Weakly A-Cellular Spaces

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Question:

But isn't there another family of spheres in algebraic geometry with $\mathbb{G}_m?$

A suitable version of this extension was given by Asok, Bachmann, Hopkins in 2023, formulated using a notion of weakly A-cellular spaces with respect to some (compact, pointed) motivic space A.

Definition

Let A be a (pointed, compact) motivic space and consider the set $\{A \times U \rightarrow U\}$ for $U \in \text{Sm}_k$. The left Bousfield localization of Spc(k) w.r.t to this set yields an endofunctor

$$L_A: \operatorname{Spc}(k) \to \operatorname{Spc}(k)$$

Let X be a motivic space, X is weakly A-cellular if $L_A X \simeq *$.

The \mathbb{P}^1 -Freudenthal Suspension Theorem

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Let X be a motivic space, X is weakly A-cellular if $L_A X \simeq *$. We use O(A) to denote the class of weakly A-cellular spaces.

Theorem

Let $n\geq 2$ and $X\in O(S^{2n,n})$ and k be a characteristic zero, the fiber of

$$X \to \Omega^{2,1} \Sigma^{2,1} X$$

is in $O(S^{4n-1,2n})$.

Here the index (2,1) indicates the suspension and loop are w.r.t to $\mathbb{P}^1=S^{2,1}.$

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Strong Homotopy Invariance and Vector Bundle Torsors

Suspension Theorems

4 Some Computations

Homotopy Groups of $B\mathbb{G}_m$

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations For simplicity we work over a perfect field k,

Theorem

We have that

$$\pi_i(B\mathbb{G}_m) = \begin{cases} *, i = 0\\ \mathbb{G}_m, i = 1\\ 0, i > 1 \end{cases}$$

.

- Note we have shown that i = 0 holds in more generality.
- i = 1 follows from how classifying spaces are constructed.
- We really need to check i > 1!

$\mathbb{A}^1\text{-}\mathsf{Rigidity}$

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Observe that \mathbb{G}_m is \mathbb{A}^1 -rigid in the sense that $h_{\mathbb{G}_m}$ is \mathbb{A}^1 -invariant already.

Theorem

Let X be $\mathbb{A}^1\text{-rigid}$ $k\text{-scheme, then }\pi_i^{\mathbb{A}^1}(X)=0$ for i>0 and $\pi_0^{\mathbb{A}^1}(X)=X.$

Now consider the sequence

J

$$B\mathbb{G}_m \to E\mathbb{G}_m \to \mathbb{G}_m.$$

This is a fiber sequence since $H^1(\bullet, \mathbb{G}_m)$ is \mathbb{A}^1 -invariant (ie. Hilbert 90).

The LES of homotopy groups now shows that $\pi_i(B\mathbb{G}_m) = 0$ for i > 1.

Comparing BGL and BSL

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations Observe we have the following exact sequence

$$SL \to GL \xrightarrow{\det} \mathbb{G}_m$$

Applying the classifying space construction yields a fiber sequence

 $BSL \to BGL \to B\mathbb{G}_m$

which gives a long exact sequence of homotopy groups.

Since $B\mathbb{G}_m$ has no non-trivial homotopy groups above 1, we conclude that

Theorem:

The natural map $SL \to GL$ induces an isomorphism $\pi_i^{\mathbb{A}^1}(BSL) \to \pi_i^{\mathbb{A}^1}(BGL)$ for i > 1.

The theorem works just as well for $SL_r \to GL_r \to \mathbb{G}_m!$

Range of Stability Result

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspensior Theorems

Some Computations

Consider the fiber sequence

$$SL_{n+1}/SL_n \to BSL_n \to BSL_{n+1}.$$

By the unstable connectivity theorem of Morel, SL_{n+1}/SL_n is actually \mathbb{A}^1 -(n-1)-connected! Thus, we have that:

Theorem

For i > 0 and $n \ge 1$, the natural map

$$\pi_i^{\mathbb{A}^1}(\mathrm{BSL}_n) \to \pi_i^{\mathbb{A}^1}(\mathrm{BSL}_{n+1})$$

is an epimorphism for $i \leq n$ and an isomorphism for $i \leq n-1$.

This can also be done similarly with GL instead of SL.

Penn	Algebraic K-theory Space
Lecture 5: Unstable Motivic Homotopy Theory, Continued	Recall for a ring R , Quillen's Plus Construction defines that the homotopy groups of $\mathbb{Z} \times BGL(R)^+$
By Mattie Ji	is equal to the K-groups of K .
Strong Homotopy Invariance and Vector Bundle Torsors Classifying	The notations we have set-up in the motivic setting look similar enough that one might wonder - can this be done in the motivic world?
Spaces and Motivic	Theorem
Eilenberg- MacLane Spaces Suspension	There is a motivic equivalence between $\mathbb{Z} \times BGL$ and algebraic K-theory K .
Theorems Some Com-	Corollary: For $1 < i \le n-1$ and $n \ge 1$, we have that
putations	$\pi_i^{\mathbb{A}^1} \operatorname{BSL}_n \cong \pi_i^{\mathbb{A}^1} \operatorname{BGL}_n \cong K_i.$

Lecture 5: Unstable Motivic Homotopy Theory, Continued

By Mattie Ji

Strong Homotopy Invariance and Vector Bundle Torsors

Classifying Spaces and Motivic Eilenberg-MacLane Spaces

Suspension Theorems

Some Computations

Antieau, B. and Elmanto, E. (2016).

A primer for unstable motivic homotopy theory.