
Lecture 5:
Unstable
Motivic

Homotopy
Theory,

Continued

By Mattie Ji

Strong
Homotopy
Invariance
and Vector
Bundle
Torsors

Classifying
Spaces and
Motivic
Eilenberg-
MacLane
Spaces

Suspension
Theorems

Some Com-
putations

Lecture 5: Unstable Motivic Homotopy Theory,
Continued

By Mattie Ji

Modern Techniques in Homotopy Theory Learning Seminar

July 2nd, 2025

1 / 47



Lecture 5:
Unstable
Motivic

Homotopy
Theory,

Continued

By Mattie Ji

Strong
Homotopy
Invariance
and Vector
Bundle
Torsors

Classifying
Spaces and
Motivic
Eilenberg-
MacLane
Spaces

Suspension
Theorems

Some Com-
putations

Outline

1 Strong Homotopy Invariance and Vector Bundle Torsors

2 Classifying Spaces and Motivic Eilenberg-MacLane Spaces

3 Suspension Theorems

4 Some Computations

2 / 47



Lecture 5:
Unstable
Motivic

Homotopy
Theory,

Continued

By Mattie Ji

Strong
Homotopy
Invariance
and Vector
Bundle
Torsors

Classifying
Spaces and
Motivic
Eilenberg-
MacLane
Spaces

Suspension
Theorems

Some Com-
putations

Vector Bundle Torsor

In the previous lecture, we saw two (building blocks) localization
given by LNis and LA1 . Here, we introduce another using the
notion of strong homotopy invariance.

Definition:

An (algebraic) vector bundle torsor over X is an affine morphism
ϕ : Y → X that is Zariski locally trivial and the fibers of the
maps are isomorphic to affine spaces (ie. An).

An (algebraic) vector bundle is a vector bundle torsor. The
difference between them is that for a vector bundle torsor, the
patching maps need not be linear, just affine.
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Vector Bundle Torsor

More generally, a vector bundle torsor W → X with respect to
some vector bundle E → X is given by an action of E on W
and W is locally isomorphic to E with affine patching maps.

In particular, the usage of the word torsor suggests that they are
classified exactly by

H1(X;E).

In particular, if X is affine, H1(X;E) = 0, so W is the same as
E. This means that every vector bundle torsor over affine
schemes is a vector bundle.
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Vector Bundle Torsor that is Not a Vector Bundle

Example: Consider the diagonal map δ : P1
k → P1

k ×k P1
k. This

is a closed immersion since P1
k is separated, so we can consider

an open immersion of the diagonal complement given by

X → P1
k ×k P1

k

Let π : X → P1
k be projection to one of its factors. The fibers

are A1
k since removing the diagonal removes a point off the

projective line, but this is not a vector bundle!
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Strong Homotopy Invariance

Recall by SmS we mean smooth S-schemes of finite type. A
presheaf F ∈ PShv(Sm /S) is strongly homotopy invariant if for
all vector bundle torsors Y → X, the corresponding map

F (X) → F (Y ) is an equivalence.

We refer to such presheaves as PShvhtp(Sm /S). Note that
clearly every strongly homotopy invariant sheaf is A1-invariant.

Now we denote the left adjoint of the inclusion functor
PShvhtp(Sm /S) → PShv(Sm /S) as

Lhtp : PShv(Sm /S) → PShvhtp(Sm /S).

Lhtp preserves finite products and is locally Cartesian!
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Equivalence of Motivic Spaces

Once we require the presheaves to be Nisnevich sheaves, we
actually have that

Theorem

PShvhtp(Sm /S) ∩ ShvNis(Sm /S) =
PShvA1(Sm /S) ∩ ShvNis(Sm /S).

The intuition is that being A1-invariant and strongly homotopy
invariant becomes a local condition if they are both sheaves, and
locally they are equivalent.
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The Jouanolou–Thomason Trick

There is a good reason for why we are interested in vector
bundle torsors.

Theorem

Let π : Y → X be a vector bundle torsor, then π induces a
motivic equivalence.

Idea: Check this equivalence over a trivializing open cover, then
this reduces to the previous lecture.

Theorem (Jouanolou-Thomason)

Let S be a qcqs scheme such that either:

1 S is affine, or

2 S is Noetherian separated and regular1

Let X ∈ SchS be quasi-projective, then there exists a vector
bundle torsor Y → X where Y is affine.

1Remark: This is also the setting where G-theory and K-theory of S are
the same. 8 / 47
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Example of The Jouanolou-Thomason Trick

When k is algebraically closed and X = Pn
k , consider a variety Y

in An+1
k × An+1

k where Y is composed of
(n+ 1)× (n+ 1)-matrices M such that:

1 M is idempotent, ie. M2 = M .

2 M has rank 1.

Question:

Why is Y affine?

1 Idempotence is a polynomial relations.

2 Having ≤ 1 is equivalent to all higher minors vanishing.

3 Having ̸= 0 means the zero matrix is not here.
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Example of The Jouanolou-Thomason Trick

Question:

Why is Y affine?

1 Idempotence is a polynomial relations.

2 Having rank ≤ 1 is equivalent to all higher minors
vanishing.

3 X Having ̸= 0 means the zero matrix is not here. This is an
open condition.

4 An idempotent matrix can only have eigenvalues 0 or 1.
We use the condition det(I −M) = 0. This implies that 1
is an eigenvalue of M , so M is not the zero matrix.
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Example of The Jouanolou-Thomason Trick

Note that the image of a rank 1 idempotent matrix is exactly a
line. Now consider the map

ϕ : Y → Pn
k ,M ∈ Y 7→ im(M).

For each closed point in Pn
k - the fiber is exactly An

k !

The idea is to a basis of kn with one vector v being the
generator of im(M), then an idempotent matrix has to fix v,
but we are free to choose where the other n vectors get sent to
in the line, so this gives An

k .
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The Jouanolou-Thomason Trick

Proof Sketch for the Affine Case (S = SpecA):

• If X is projective, then it has a closed immersion to Pn
A for

n >> 0. The previous construction works fine over a ring A
with more details, and we pull back the example
constructed.

• If X is quasi-projective then it is a quasicompact open
subscheme of a projective scheme Z. We can do an
operation called “blow up” on the complement of X such
that the inclusion i : X → BlZ−X Z is affine and the blow
up is projective. Now pull back the example constructed
again.

This was, allegedly, how Jouanolou originally prove this.

12 / 47
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The Jouanolou-Thomason Trick

Thomason’s contribution was the second case (Noetherian,
separated, regular) of the theorem with a different approach.

Proof Sketch of Second Version: Such X satisfying the
hypothesis would admit an ample family of line bundles
L0, ...,Ln - that is, the collection induces a morphism

s : OX → E =

n⊕
i=0

Li.

One can check the cokernel of s is actually locally free, and
construct

Y = P(E) \ P(coker(s))

Y ↪→ P(E) → X.

13 / 47
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Motivic Equivalences between Presheaves

Before we move on, we note one good criterion for checking
motivic equivalences.

Theorem:

Let f : F → G be a morphism in PShv(Sm /S). If
F (U) → G(U) is an equivalence for every affine U ∈ SmS , then
f is a motivic equivalence.

14 / 47
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Generalizing EG

Let C be a category and G ∈ C be a group object, we can
generalize the definition of EG we know in topology to a
simplicial object E•G given by

E•G : ∆op → C, [n] 7→
n+1∏
i=1

G

G G×G G×G×G ...

whose face maps di :
∏n

j=1G →
∏n−1

j=1 G are

d0(g1, ..., gn) = (g2, ..., gn)

di(g1, ..., gi, gi+1, ..., gn) = (g1, ..., gigi+1, ..., gn), i > 0

Degeneracy maps are insertions of identity.

16 / 47
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EG in the Motivic Setting

In the previous slide we wrote elements gi’s for notational ease,
but the same exact construction works for any group object in
any category.

Now, let X ∈ Sm /S and G be a τ -sheaf of groups, we define a
presheaf E•G such that for each cover U ∈ Sm /S,

E•G(U) := E•(G(U))

(ie. it produces a simplicial group for each U). Now E•G is in
PShv(Sm /S)!

We define EτG to be the τ -localization of E•G.

17 / 47
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EG in the Motivic Setting

Similarly to how in topology, EG is contractible.

Prop:

EτG is contractible.

Proof: There is an extra degeneracy at each step in the
diagram for G = G(U):

G G×G G×G×G ...

Notice at each step, there is an extra coordinate for G to insert
its identity! This implies |G| is contractible by standard
simplicial homotopy theory, and it induces a weak equivalence
between E•G and ∗. The functor Lτ preserves weak
equivalences.

18 / 47
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The Bar Construction

Let C be a category and G ∈ C be a group object. Let G act on
E•G on the right in the last coordinate, the quotient B•G is
called the bar construction of G. More explicitly, we have

∗ G G×G ...

whose face maps di :
∏n

j=1G →
∏n−1

j=1 G are

d0(g1, ..., gn) = (g2, ..., gn) and dn(g1, ..., gn) = (g1, ..., gn−1)

di(g1, ..., gi, gi+1, ..., gn) = (g1, ..., gigi+1, ..., gn).

Degeneracy maps are insertions of identity.
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The Bar Construction

Now, let X ∈ Sm /S and G be a τ -sheaf of groups. Define B•G
by

U 7→ B•(G(U))

and then localize to define the bar construction as

BτG := LτB•G.

When τ = Nis, we call this the classifying space and drop τ .

20 / 47
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Classifying Spaces in the Motivic Setting
Similar to how BG classifies principal G-bundles (ie. torsors) in
topology, we have a similar result in the motivic setting.

A τ − G-torsor on X is a τ -sheaf P of sets equipped with
compatible maps

α : P × G → P, π : P → X

where π is G-equivariant with trivial action on X.

The G-torsors over U ∈ Sm /S form a groupoid, we define
B Torsτ (G)(U) to be the nerve of this groupoid. Note that this
is already τ -local!

Theorem

There is a natural isomorphism2

[X,BτG]Shvτ ≃ H1
τ (X,G) ≃ π0(B Torsτ (G)(X)).

2If not abelian, take the right side as the definition of H1
τ (•,G). 21 / 47
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BGL and BSL, Some Computations

Let GLn be the general linear group scheme and SLn be the
special linear group scheme. We define

GL = colimnGLn and SL = colimn SLn.
3

and BGL,BSL as their associated classifying spaces.

Prop:

Let G be a Nisnevich sheaf of groups, then πA1

0 (BG) = 0.

Proof: From last lecture, we know we only need to compute
πNis
0 (BG). Now G-torsors are Nisnevich locally trivial, and the

last theorem tells us πA1

0 is the sheafification of U 7→ H1(U ;G).

3Colimit considered as presheaves
22 / 47
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Lifting to Higher Spaces

So far, we have representations on the level of H1.

Question:

What about H2, H3, ...?

Theorem (Dold-Kan Correspondence)

Over perfect field k, there is an equivalence of categories
between

Ch≥0(AbNis(k)) ∼= Fun(∆op,AbNis(k))

The chain complex is actually given by alternating sums of
certain face maps!

23 / 47
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The DK Functor

Ch≥0(AbNis(k)) ∼= Fun(∆op,AbNis(k))

Given a chain complex of abelian sheaves,

1 Send to its corresponding simplicial object on the right.

2 A simplicial object in abelian sheaves is a simplicial abelian
group by forgetting the sheaf structure.

3 Every simplicial abelian group is a Kan complex.

This defines a map

DK : Ch≥0(AbNis(k)) → PShv(Smk).

Fact:4 Let A ∈ Ch≥0(AbNis(k)), then

Hn(A) ∼= πn(LNisDK(A)).

4This is really a formal consequence of examining the DK
correspondence.
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Motivic Eilenberg Maclane Spaces

Let A ∈ AbNis(k). View A[n] as the chain complex with only
one A sitting at degree n. The motivic Eilenberg-Maclane Space
for A is

K(A,n) := DK(A[n]).

Note that K(A,n) is a Nisnevich sheaf.

Corollary: K(A,n) ∈ ShvNis(Smk) satisfies

πi(K(A,n)) ∼=

{
A, i = n

0, i ̸= n
.

25 / 47
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Representability

Recall in topology, we have that

[X,K(G,n)]∗ ∼= Hn(X;G).

We have an analogous result in the motivic world.

Theorem (Motivic Eilenberg Representability)

Hn
Nis(−;A) ∼= π0(MapShvNis

(−,K(A,n)).

26 / 47
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Fiber and Cofiber Sequences

For purposes that will be clear later, we fix k as a perfect field.
Let X → Y → Z in Spc(k)∗, we say

1 This is a fiber sequence if the following diagram is a
pullback:

X Y

∗ Z

2 This is a cofiber sequence if the following diagram is a
pushout:

X Y

∗ Z

27 / 47



Lecture 5:
Unstable
Motivic

Homotopy
Theory,

Continued

By Mattie Ji

Strong
Homotopy
Invariance
and Vector
Bundle
Torsors

Classifying
Spaces and
Motivic
Eilenberg-
MacLane
Spaces

Suspension
Theorems

Some Com-
putations

Homotopy Groups and Fiber Sequences

Note: What is discussed in this topic applies to the generality
of LA1LNis PShv(Sm/k) (See [Antieau and Elmanto, 2016]).

Let F → X → Y be a fiber sequence in Spc(k)∗, then we have
a long exact sequence of homotopy groups:

... → πn+1F → πn+1X → πn+1Y → πnF → ...

28 / 47



Lecture 5:
Unstable
Motivic

Homotopy
Theory,

Continued

By Mattie Ji

Strong
Homotopy
Invariance
and Vector
Bundle
Torsors

Classifying
Spaces and
Motivic
Eilenberg-
MacLane
Spaces

Suspension
Theorems

Some Com-
putations

Cohomology and Co-Fiber Sequences

We say a Nisnevich sheaf of groups G is strongly invariant5 if

H i
Nis(X;G) → H i

Nis(X × A1;G)

is an isomorphism for i = 0, 1.

Theorem

G is strongly invariant if and only if BNisG is A1-invariant.

Let X → Y → C be a cofiber sequence in Spc(k)∗ and G be
strongly invariant, then we have a long exact sequence of
cohomology:

0 → H0
Nis(C;G) → H0

Nis(Y ;G) → H0
Nis(X;G) → H1

Nis(C;G) → ...

that terminates at level 1.
5ex. Gm

29 / 47
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Cohomology and Co-Fiber Sequence

Let A be a Nisnevich abelian sheaf, we say A is strictly invariant
if

H i
Nis(X;A) → H i

Nis(X × A1;A)

is an isomorphism for all i.

Theorem

A is strictly invariant if and only if K(A, n) is A1-invariant for
all n ≥ 0.

Let X → Y → C be a cofiber sequence in Spc(k)∗ and A be
strictly invariant, then we have a long exact sequence of
cohomology:

0 → H0
Nis(C;G) → H0

Nis(Y ;G) → H0
Nis(X;G) → H1

Nis(C;G) → ...

that continues for all i.
30 / 47
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Strong and Strict Invariance

Question:

Is πA1

0 (X) always A1-invariant?

There is a counter-example! Apparently due to Ayoub in 2023.

Fortunately, we do have the following results.

Theorem (Morel)

Let X be a motivic space over a field, then πA1

1 (X) is strongly
A1-invariant.

Theorem (Morel)

If k is a perfect field and A is a sheaf of abelian groups, then A
is strongly invariant if and only if it is strictly invariant.
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Strong and Strict Invariance

Corollary:

Let k be a perfect field and X ∈ Spc(k)∗, then πA1

n (X) is
strictly invariant for n ≥ 2 and strongly invariant for n = 1.

Proof: Consider the loop space functor Ω and observe

πn(X) = π1(Ω
n−1X).

At least in this lecture, we will assume k is perfect from now on.
We use HI(k) ⊂ AbShv(k) to denote the full subcategory of
strongly (= strictly) invariant sheaves.

Theorem (Morel)

HI(k) is an abelian category with exact inclusions.
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Fiber Sequence for Classifying Spaces

Theorem (Asok, Hoyois, Wendt, 2015)

Let X → Y → Z be a fiber sequence of PShv(Sm /S) such that
Z satisfies affine Nisnevich excision and π0(Z) has affine
A1-invariance, then X → Y → Z is admits a fiber sequence
that gives the aforrementioned LES of homotopy groups.

Corollary: Let G be a sheaf of groups, the G → EG → BG is a
fiber sequence that gives the LES of homotopy groups if
H1

Nis(•,G) is A1-invariant.
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(Motivic) S1-Freudenthal Suspension Theorem

A (pointed) motivic space X is A1-n-connected if πA1

i (X) = 0
for i ≤ n.

Theorem (S1-Freudenthal Suspension Theorem, Morel,
Asok-Bachmann-Hopkins)

Let X be A1-n-connected, then the natural map

πA1

i (X) → πA1

i+1(ΣX)

is an isomorphism for i ≤ 2n and an epimorphism for i = 2n+1.
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The S1-Freudenthal Suspension Theorem

This theorem follows directly by applying the LES of homotopy
groups to the following theorem.

Theorem (Morel, Asok-Bachmann-Hopkins)

Let n ≥ 0 and X be A1-n-connected, for i ≥ 1, the natural map

X → ΩiΣiX

has A1-2n-connected fibers.

Proof Sketch: Let F be the fiber of the map ϕ : X → ΩiΣiX
taken in the level of sheaves, this fiber always exists on the level
of sheaves - it is just not clear whether it would exist in the level
of pointed motivic spaces.
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The S1-Freudenthal Suspension Theorem

Theorem (Morel, Asok-Bachmann-Hopkins)

Let n ≥ 0 and X be A1-n-connected, for i ≥ 1, the natural map

X → ΩiΣiX

has A1-2n-connected fibers.

Proof Sketch (cont’d): The motivic localization Lmot sends
the fiber sequence F → X → ΩiΣiX to a fiber sequence

LmotF → LmotX = X → Lmot(Ω
iΣiX) = ΩiΣiX.

This in particular implies LmotF = F , so F is motivic. F is
2n-connected before localization by classical theorems.

By Morel’s unstable connectivity theorem, Lmot actually
preserves connectivity in the A1-sense too!
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The Motivic Homotopy Groups of Spheres

Remark: The S1-Freudenthal Suspension theorem can be used
to show that:

Theorem

For n ≥ 2 and i ≥ 1, πn(S
n+i,i) ∼= KMW

i where KMW
i denotes

the Milnor-Witt K-theory.

In an ideal world, we would have loved to cover more about this
and the interesting relationships between K-theory, Chow
groups, Milnor-Witt K-theory, with the motivic spheres. This
may be covered in a future lecture (Lecture 10 tentatively).
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Weakly A-Cellular Spaces

Question:

But isn’t there another family of spheres in algebraic geometry
with Gm?

A suitable version of this extension was given by Asok,
Bachmann, Hopkins in 2023, formulated using a notion of
weakly A-cellular spaces with respect to some (compact,
pointed) motivic space A.

Definition

Let A be a (pointed, compact) motivic space and consider the
set {A× U → U} for U ∈ Smk. The left Bousfield localization
of Spc(k) w.r.t to this set yields an endofunctor

LA : Spc(k) → Spc(k)

Let X be a motivic space, X is weakly A-cellular if LAX ≃ ∗.
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The P1-Freudenthal Suspension Theorem

Let X be a motivic space, X is weakly A-cellular if LAX ≃ ∗.
We use O(A) to denote the class of weakly A-cellular spaces.

Theorem

Let n ≥ 2 and X ∈ O(S2n,n) and k be a characteristic zero, the
fiber of

X → Ω2,1Σ2,1X

is in O(S4n−1,2n).

Here the index (2, 1) indicates the suspension and loop are w.r.t
to P1 = S2,1.
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Homotopy Groups of BGm

For simplicity we work over a perfect field k,

Theorem

We have that

πi(BGm) =


∗, i = 0

Gm, i = 1

0, i > 1

.

• Note we have shown that i = 0 holds in more generality.

• i = 1 follows from how classifying spaces are constructed.

• We really need to check i > 1!
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A1-Rigidity

Observe that Gm is A1-rigid in the sense that hGm is
A1-invariant already.

Theorem

Let X be A1-rigid k-scheme, then πA1

i (X) = 0 for i > 0 and

πA1

0 (X) = X.

Now consider the sequence

BGm → EGm → Gm.

This is a fiber sequence since H1(•,Gm) is A1-invariant (ie.
Hilbert 90).

The LES of homotopy groups now shows that πi(BGm) = 0 for
i > 1.
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Comparing BGL and BSL

Observe we have the following exact sequence

SL → GL
det−−→ Gm

Applying the classifying space construction yields a fiber
sequence

BSL → BGL → BGm

which gives a long exact sequence of homotopy groups.

Since BGm has no non-trivial homotopy groups above 1, we
conclude that

Theorem:

The natural map SL → GL induces an isomorphism
πA1

i (BSL) → πA1

i (BGL) for i > 1.

The theorem works just as well for SLr → GLr → Gm!
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Range of Stability Result

Consider the fiber sequence

SLn+1/SLn → BSLn → BSLn+1.

By the unstable connectivity theorem of Morel, SLn+1/SLn is
actually A1-(n− 1)-connected! Thus, we have that:

Theorem

For i > 0 and n ≥ 1, the natural map

πA1

i (BSLn) → πA1

i (BSLn+1)

is an epimorphism for i ≤ n and an isomorphism for i ≤ n− 1.

This can also be done similarly with GL instead of SL.
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Algebraic K-theory Space

Recall for a ring R, Quillen’s Plus Construction defines that the
homotopy groups of

Z× BGL(R)+

is equal to the K-groups of K.

The notations we have set-up in the motivic setting look similar
enough that one might wonder - can this be done in the motivic
world?

Theorem

There is a motivic equivalence between Z× BGL and algebraic
K-theory K.

Corollary: For 1 < i ≤ n− 1 and n ≥ 1, we have that

πA1

i BSLn
∼= πA1

i BGLn
∼= Ki.
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