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Reframing Motivic Homotopy Theory to Model
Categories

Today, we are starting our discussions on stable motivic
homotopy theory!

There is a model category treatment of the stable motivic
homotopy theory, which we will start with.

• Here, we mostly follow the outline given in
[Voevodsky et al., 2007] and [Hlavinka, 2021].

• A more detailed model category treatment of the unstable
case is outlined in [Antieau and Elmanto, 2016].

The idea in “stable motivic homotopy theory” is to “stabilize”:

motivic spaces⇝ motivic spectra.

This perspective is useful if we, for example, want to represent
motivic cohomology theories.
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Two Ways to Suspend a Spectrum

Question:

What should a motivic spectra look like?

In a first class on stable homotopy theory, you might see a
(sequential) spectrum E being formulated as a sequence of
pointed spaces

E0, E1, E2, ...

equipped with structure maps

σn : ΣEn ≃ S1 ∧ En → En+1.

But in motivic homotopy theory, we have two family of spheres:

1 S1 being viewed as a constant simplicial object.

2 Gm being viewed as a motivic space.
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Motivic Spaces in Model Categories

For our purposes, a motivic spectrum should compose of a grid
of motivic spaces with two ways to suspend, satisfying some
properties. In order to get there, we must answer two questions:

1 Since we are out of ∞-category land for a bit, what is a
motivic space now?

2 How do we suspend things? It seems like we need a smash
product of sorts for spaces.

A third question we will try to partially answer (but not
definitively) is:

3 How does this relate to our ∞-category language?
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Localization of a Category

Definition

Let C be a 1-category and S a class of morphisms in M . The
localization of C by S is a 1-category C[S−1] with a functor
L : C → C[S−1] such that:

1 For every f ∈ S, L(f) is an isomorphism.

2 Pre-composition by L is a fully faithful functor
Fun(C[S−1], •) → Fun(C, •).

3 Let F : C → D be a functor that sends f ∈ S to
isomorphisms, then F factors uniquely through

C D

C[S−1]

F

L
F ′

where the diagram commutes up to natural isomorphism.
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Homotopy Category

For a model category, we can build an associated homotopy
category.

Theorem

Let C be a model category with weak equivalences W, then
C[W−1] exists.

C[W−1] is called the homotopy category of C.

Ex: For the standard model structure on Top∗, the associated
hhomotopy category is equivalent to the category of CW
complexes with morphisms bneing homotopy classes of maps.
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Motivic Spaces Concretely

Definition

In this section, by a motivic space, we mean a Nisnevich sheaf
with values in simplicial sets.1

A pointed motivic space (X,x0) is an object in the
undercategory Spc(k)Spec(k)/. For a motivic space X, there is a
formal procedure to admit a base point X → X+ where
X+ = X ⊔ Spec(k).

For (X,x0), (Y, y0) ∈ Spc∗(k). There is a symmetric monoidal
structure

∧
(ie. smash product) on Spc∗(k) given by the sheaf

associated to the presheaf:

U 7→ ((X,x0)× (Y, y0))(U)/((X,x0) ∨ (Y, y0))(U).

1I believe, after considering an A1-model structure on this, the underlying
homotopy category will correspond to that of what we usually call Spc(k).
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The Simplicial Model Structure

There is a model structure on Spc(k) (called the simplicial
model structure) where:

1 Weak equivalences are simplicial weak equivalences, that is
a map f : X → Y such that for any choice of base-points
x0, y0 with f ◦ x0 = y0, the map of sheaves

πn((X,x0)) → πn((Y, y0))

is an isomorphism.

2 Cofibrations are monomorphisms (termwise
monomorphisms).

3 Fibration is determined by the first two.

The simplicial homotopy category of Spc(k) is called Hs Spc(k).
Note that we have not said anything about A1-invariance
yet, this is just carrying over the usual model structure on sSet
to this context.
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The A1-Homotopy Category

A motivic space Z is A1-local if the natural map

HomHs Spc(k)(Y,Z) → HomHs Spc(k)(Y × A1, Z)

induced by projection, is a bijection for any Y ∈ Sm /k.

There is a model structure on Spc(k) given by:

1 Weak Equivalences are A1-weak equivalences, that is, a
map f : X → Y such that for any A1-local Z, the natural
map is a bijection:

HomHs Spc(k)(Y,Z) → HomHs Spc(k)(X,Z).

2 Cofibrations are monomorphisms.

The associated homotopy category H(k) is called the
A1-homotopy category.
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Bi-Spectrum

A (motivic) (s,t)-bi-spectrum is composed of the data:

• En,m pointed motivic spaces for n,m ≥ 0.

• Structure Maps given by suspensions from S1 and Gm:

σs : S
1 ∧ En,m → En+1,m,

σt : Gm ∧ En,m+1 → En,m+1.

such that the following diagram commutes:

S1 ∧Gm ∧ En,m Gm ∧ S1 ∧ En,m

S1 ∧ En,m+1 En+1,m+1 Gm ∧ En+1,m

τ∧En,m

S1∧σt Gm∧σs

σs σt

where τ : S1 ∧Gm → Gm ∧ S1 is the isomorphism given by the
symmetry of the smash product.
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The Category of Bi-Spectra

Let E,E′ be two (s, t)-bispectra, a morphism f : E → E′ is the
data of maps

fn,m : En,m → E′
n,m, n ≥ 0,m ≥ 0

such that they commute with the structure maps, ie.

S1 ∧ En,m S1 ∧ E′
n,m Gm ∧ En,m Gm ∧ E′

n,m

En+1,m E′
n+1,m En,m+1 E′

n,m+1

S1∧fn,m

σs σ′
s

Gm∧fn,m

σt σ′
t

fn+1,m fn,m+1

The category of (s, t)-bispectra is denoted Spts,t(k).
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Constructions on Bi-Spectra

Let Spts,t(k) be the category of (s, t)-bispectra. For
X,Y ∈ Spts,t(k).

1 The categorical coproduct X ∨ Y is the component wise
wedge product.

2 For any pointed motivic space Z, there is a suspension
(bi)-spectrum given by Σ∞Zm,n := Sm,n ∧ Z, where Sm,n

is (m,n)-motivic-sphere.

3 For any bi-spectra X, there is a sequence of “s-spectra”
given by

Ei := E0,i, E1,i, E2,i, ...

with structure maps σs : S
1 ∧ Ej,i → Ej+1,i.

4 We denote the category of “s-spectra” as Spts(k).

5 For any motivic space Z, there is a similar s-spectra given
by Σ∞

s Z whose i-th component of (S1)i ∧ Z.
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The s-simplicial model structure for s-Spectra

The category Spts(k) is supposed to mimick the notion of
spectra we are more familar with previously. Similar to how the
homotopy groups of spectra are defined, for E ∈ Spts(k), we
define πn as the sheaf associated to the presheaf of abelian
groups, given by

πpre
n (E) := colimk>0 πn+k(Ek).

Similar to how we defined the simplicial model structure for
Spc(k), we can define a s-simplicial model structure on Spts(k):

1 Weak equivalences are maps inducing an equivalence on
πn for all n.

2 Cofibrations are morphisms such that the component-wise
morphisms are A1-homotopical cofibration of pointed
motivic spaces.

The homotopy category is denoted SHs(k).
14 / 50
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The s-stable A1-model Structure

Similar to A1-model structure in the unstable case, we can
define one for Spts(k).

• E ∈ Spts(k) is A1-local if for all U ∈ Sm/k and n ≥ 0,
there is a bijection induced by the natural projection:

HomSHs(k)(Σ
∞
s (U)+,Σ

n
sE) → HomSHs(k)(Σ

∞
s (U × A1)+,Σ

n
sE)

• An A1-weak equivalence is a map f : E → E′ of s-spectrum
such that for all A1-local Z and all n, the induced maps

HomSHs(k)(E
′, Z) → HomSHs(k)(E,Z)

is a bijection.

The s-stable A1-model structure on Spts(k) has weak
equivalences being A1-weak equivalences and cofibrations being
pointwise cofibrations. The associated homotopy category is
denoted SHA1

s (k).
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The A1-model Structure for bi-Spectra

For any bi-spectra X, there is bigraded homotopy group sheaf
πp,q that is the sheaf associated to the presheaf:

U → colimmHom
SHA1

s (k)
(Σ∞

s (Sp−q
s ∧ Sq+m

t ∧ U+), Em).

We define the A1-model structure on Spts,t(k) as:

1 A weak equivalence is a map f : E → E′ inducing an
isomorphism on all πp,q.

2 A cofibration is a componentwise cofibration of pointed
motivic spaces.

The associated homotopy category is called SH(k), the
A1-stable homotopy category.

Theorem

For X ∈ Sm/k, X × A1 → X induces an equivalence
Σ∞(X × A1) and Σ∞(X) in SH(k). There is a good smash
product structure for bi-spectra that becomes symmetric
monoidal in SH(k).
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The ∞-category perspective

We will now give an ∞-categoric perspective of what we
discussed in the previous section2.

• Here we mainly follow the discussions in [Bachmann, 2021].

• Aided by much of the very helpful resources in [Lurie, 2017]
and [Rischel, 2018].

• The presenter listened to a relevant lecture by Julie
Bannwart at the European Talbot workshop earlier, which
are helpful for some parts of this section.

2Warning: I am not sure what exactly the connection between this
section’s definition of SH(k) is with the previous one. My understanding is
that the homotopy category of what will be defined in the this section is
what we have defined in the last section.
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Commutative Monoids

Let C be a category with finite products, a ∞-commutative
monoid is a functor M : N(Fin∗) → C3 such that for any map
ρi : ⟨m⟩ = {∗, 1, ...,m} → ⟨1⟩ = {∗, 1} sending everything to 1
except for ∗, the induced map

M(⟨m⟩) →
m∏
i=1

M(⟨1⟩)

is an equivalence.
• The underlying object is M(⟨1⟩) ∈ C, denoted M .
• The multiplication structure is given by

M(⟨1⟩)×M(⟨1⟩) ≃ M(⟨2⟩) f∗−→ M(⟨1⟩)
where the first map is induced by the definition and the
second map is induced by f : {∗, 1, 2} → {∗, 1} with
f(∗) = ∗ and f(1) = f(2) = 1.

• The monoidal unit is given by M(⟨0⟩).
3Here Fin∗ is the category pointed finite sets with morphisms being

base-point preserving set functions. 19 / 50
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Symmetric Monoidal ∞-Categories

The full subcategory of Fun(N(Fin∗), C) spanned by
∞-commutative monoids is denoted CMon(C).

Example: A monoid M ∈ CMon(Spc) is group-like if π0M is
a group. By the recognition principle, group-like commutative
monoids over M correspond exactly to connective spectra.

Definition

A (small) symmetric monoidal ∞-category is an object of
CMon(Cat∞) (ie. C : N(Fin∗) → Cat∞).

20 / 50
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Reformulation with co-Cartesian Fibration

Our definition of symmetric monoidal ∞-categories matches
with our intuition, but it can be very hard to work with!

An alternative formulation is possible with co-Cartesian
fibrations. Let f : X → Y be a morphism of simplicial sets, f is
a coCartesian fibration if:

1 f is an inner fibration, that is it has the right lifting
property w.r.t to all inclusions of inner horns:

Λn
i X

∆n Y

f

2 For every edge e : y → y′ in Y and every vertex x ∈ X
such that f(x) = y, there exists a f-coCartesian edge
e : x → x′ of X such that q(e) = e.

21 / 50
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f-co-Cartesian Edge

Note that given f : X → Y , we say e : x → x′ in X is an
f-coCartesian edge if for any map

∆1 ≃ N•({0 < 1}) ↪→ Λn
0

σ0−→ X

that corresponds to the edge e, the following diagram has a lift

Λn
0 X

∆n Y

σ0

f

σ

.
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The Straightening and Unstraightening Argument

Lurie’s insight in this is the following theorem.

• Let K be an ∞-category.

• Let (Cat∞)coCart
/K be the full subcategory of the slice

category (Cat∞)/K spanned by morphisms C → K that are
co-Cartesian fibrations.

Theorem (Lurie)

There is an equivalence of ∞-categories between Fun(K,Cat∞)
and (Cat∞)coCart

/K , called the straightening equivalence.

Thus, a symmetric monoidal category is equivalently some
coCarteisna fibration f : C⊗ → N(Fin∗) for some ∞-category
C⊗, satisfying certain conditions.

23 / 50
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Conditions to Satisfy

If we unwind the condition, it is exactly specifying the following:

Definition (See 2.0.0.7 of [Lurie, 2017])

A coCartesian fibration f : C⊗ → N(Fin∗) is a symmetric
monoidal ∞-category if for each map f : ⟨n⟩ → ⟨1⟩ in Fin∗ that
sends everything except for ∗ to 1, there is an equivalence

C⊗
⟨m⟩

∼=
m∏
i=1

C⊗
⟨1⟩,

where C⊗
⟨i⟩ denotes the fiber over ⟨i⟩.
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Commutative Algebra over Symmetric Monoidal
∞-Categories

A morphism f : (X, ∗) → (Y, ∗) in Fin∗ is inert if f−1(y) is a
singleton for all y ̸= ∗ ∈ Y .

Definition

Let f : C⊗ → N(Fin∗) be a symmetric monoidal ∞-category, a
commutative algebra object over C is a section N(Fin∗) → C⊗

that sends inert morphisms to f -co-Cartesian edges.

Theorem (Section 2.4.1 of [Lurie, 2017])

Let C be an ∞-category with finite products, then C admits an
essentially unique symmetric monoidal structure C× with ×
being the tensor product with a few other axioms.

Ex: Let C be an ∞-category with finite products, then
CMon(C) ≃ CAlg(C×).

25 / 50
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Presentable ∞-Categories

Let κ be a regular cardinal, and Indκ(C) ⊂ Fun(Cop,Spc)4. An
∞-category C is κ-accessible if there exists a small ∞-category
C′ such that Indκ(C′) ≃ C.

Definition

Let C be an ∞-category, we say C is presentable if:

1 C has all small colimits.

2 C is κ-accessible for some regular cardinal κ.

1 The presheaf category of spaces on any small ∞-category is
presentable.

2 Let D be a diagram of presentable ∞-categories whose
functors either all preserve colimits or all preserve limits,
then limD is also presentable.

3 Spc and Sp are both presentable.
4Here we omit the definition of Indκ(C) but the reader is encouraged to

think about the 1-categorical analogy.
26 / 50
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Smash Product in Presentable ∞-Categories

Let C be a presentable ∞-category with a final object ∗, the
pointed ∞-category is

C∗ := {∗} ×C Fun([1], C).

An object of C∗ consists of c ∈ C with a map ∗ → c, we denote
coproduct of c, d ∈ C∗ as c ∨ d.

Theorem (Probably Also By Lurie)

Let C be a presentable ∞-category, there is a symmetric
monoidal structure ∧ on C∗ given by

X ∧ Y := X × Y/X ∨ Y.

Ex: This endows the smash product structure on Sp with unit S.

27 / 50
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Presentably Symmetric Monoidal Categories

We use PrL to denote the subcategory of Ĉat∞ composing of
presentable categories whose morphisms are left adjoint functors.

Theorem (See 4.8.15 of [Lurie, 2017])

There is a symmetric monoidal structure on PrL such that:

1 Spc is the unit.

2 C ⊗ Sp ≃ Sp(C).
3 PrLst (full subcategory of stable ones) has an induced

symmetric monoidal structure such that Sp is the unit.

4 and more properties not mentioned.

A presentably symmetric monoidal ∞-category is an object
C ∈ CAlg(PrL).

28 / 50
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Inverting Objects and Stabilization

Let C be a presentably symmetric monoidal ∞-category and X
be a set of objects in C.

Theorem

There exists a presentably symmetric monoidal ∞-category
C[X−1] and map L : C → C[X−1] such that for any f : C → D
in CAlg(PrL) with f(x) invertible for all x ∈ X, f factors
uniquely through L.

Example: Sp is Spc∗[(S
1)−1].
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The Stable Motivic ∞-Category

We are finally ready to define SH(k) and more generally SH(S).

Definition

Let S be a scheme, SH(S) is Spc(S)∗[(P1)−1], called the stable
motivic ∞-category.

It is equipped with a smash product ∧ and a suspension
spectrum functor Σ∞

P1 : Spc(S)∗ → SH(S).
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The Spectrum Description of SH(S)

Theorem

Let C ∈ CAlg(Pr) and X ∈ C. If there exists n ≥ 2 such that
the cycle permutation on X⊗n is homotopic to the identity, then
C[X−1] to the spectra category SpN(C, X) whose objects are
collections (c0, c1, ...) equipped with equivalences ci ≃ ΩXci+1.

Application to SH(S):5 Observe that P1 is the cofiber
A1/(A1 − 0) and we can identify (P1)⊗3 ≃ A3/(A3 − 0). The
permutation (123) corresponds to the matrix0 0 1

1 0 0
0 1 0

 ,

which is a product of elementary matrices that are each
A1-homotopic to the identity.

5Proposition 3.19.5.1 of [Brazelton, 2024]
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The Spectrum Description of SH(S)

Since P1 = S1 ∧Gm, we have that the following two
suspensions are also invertible in SH(S):

Σ1,1 := (−) ∧ Σ∞Gm and Σ1,0 := (−) ∧ Σ∞S1.

From here, we write Σp,q := (Σ1,1)◦q(Σ1,0)◦p−q.

We define the bi-graded homotopy groups as

πi,j(E) = [Σi,j1, E]SH(S),

where 1 denotes the symmetric monoidal unit. This can be
enhanced to a sheaf by considering the sheaf associated to the
presheaf

U 7→ [Σi,jU+, E]SH(S),

but for our purposes we will mainly stick to 1.
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Motivic Homology and Cohomology

Let E ∈ SH(S) and X ∈ Sm /S, we can define the motivic
homology and cohomology of X with respect to E as:

1 Ep,q(X) := [Sp,q,Σ∞
P1X+ ∧ E]

2 Ep,q(X) := [Σ∞
P1X+,Σ

p,qE].

Note that over S = Spec(k), πp,qE ∼= E−p,−q(Spec k).
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Sanity Check: Computation Example

Question:

What is the graded ring π−∗,−∗(1)?

Well, unwinding the definition, for each π−i,−i(1), it is given by

π−i,−i(1) = [Σ−i,−i1, 1] = [1,Σi,i1] = π0(S
i,i)6.

Since S1 = S1,0, we have that π0(S
i,i) is the colimit

colimn πn(S
i+n,i) = KMW

i ,

which we showed in Lecture 5 is the i-th Milnor Witt K-theory.

Conclusion: π−∗,−∗(1) ∼= KMW
∗ .

6This homotopy group is taken in the context of s-spectra.
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For completeness: Milnor-Witt K-Theory

We might as well introduce what Milnor-Witt K-theory is7.

Definition

For any field F , the Milnor Witt K-theory of F is the graded
ring KMW

∗ (F ) that is the quotient of the free non-cmmutative
algebra on generators

[a] ∈ KMW
1 (F )∀a ∈ F× and a formal symbol η ∈ KMW

−1 (F ),

with relations imposed as:

1 η[a] = [a]η

2 [a][1− a] = 0 for all a ̸= 0, 1 in F .

3 [ab] = [a] + [b] + η[a][b].

4 η(2 + [−1]) = 0.

Note Milnor-K theory KM
∗ (F ) is KMW

∗ (F ) mod η.
7Note we did assume some familiarity with algebraic K-theory coming in,

which implicitly included some of Milnor K-theory.
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The Eilenberg-Maclane Spectrum (Following
[Brazelton, 2024])

Question:

Let A be a sheaf of abelian groups over Sm /k, how would be
build a motivic spectrum out of this?

Well in good cases, we do have a sequence of spaces
K(A, 0),K(A, 1), ..., but do we have an equivalence

K(A, 0) → Ω2,1K(A, 1), and so on ...?

There are a few problems already.

1 Ω2,1K(A, 1) is not usually K(A, 0).

2 This is because we are dealing with two spheres here.

Instead, we need to introduce an adjustment known as
contractions.
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Contractions

Let F be a sheaf of pointed sets, the contraction of F , denoted
F−1, is the sheaf associated to the presheaf F pre

−1 where

F pre
−1 (U) := ker(F (U ×Gm) → F (U)),

where the map is induced by id× 1 : U → U ×Gm.

1 Ex: (KMW
n )−1

∼= KMW
n−1 .

2 If A is strictly A1-invariant abelian sheaf, then

ΩGmK(A,n) ≃ K(A−1, n).

Thus, we have that

Ω2,1K(A,n) ≃ K(A−1, n− 1).
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The Eilenberg-Maclane Spectrum

Thus, we see that A admits an Eilenberg-Maclane spectrum HA
if it satisfies the following two conditions:

1 Successive applications of (−)−1 always exists for A (ie. A
admits infinite de-looping).

2 Each term in the sequence is strictly A1-invariant abelian
sheaf.

These two conditions together have a name - they are called
homotopy modules HM(k)!

Ex: Milnor-Witt K-theory KMW
n , Milnor K-theory KM

n , the
ideal In in Milnor K-theory are all homotopy modules.
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The Algebraic K-theory Spectrum (Following
[Bachmann, 2021])

We already have the motivic space K given by algebraic
K-theory. For convenience it will be useful for us to construct
KVect(−) ∈ PShv(SmS) such that

K ≃ LmotKVect(−).

We construct KVect(−) as follows:

1 For X ∈ SmS , Vect(X) is a symmetric monoidal
1-category under Whitney sum.

2 Let us restrict to only invertible morphisms Vect(X)≃.
Take the group completion of the classifying space of
Vect(X)≃ produces a (group-like) space for which we call
KVect(X) - the direct sum K-theory.
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The Bott Element

Given the tautological line bundle γ ∈ Vect(P1
S), there is a

natural additive functor induced by γ

Vect(X) → (X × P1)

which induces a map

γ : KVect(X) → KVect(X × P1).

We also have a map 1 : KVect(X) → KVect(X × P1) given by
pulling back along the natural map. Since these are group-like
spaces, we also get a map −1, for which we can use to define a
map

γ − 1 : KVect(X) → KVect(X × P1).
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Periodicity

The morphism of presheaves γ− 1 : KVect(−) → ΩP1 KVect(−)
given above induces a natural map through the motivic
localization, which we also denote

γ − 1 : K ≃ Lmot(KVect(−)) → ΩP1K ∈ Spc(S)∗.

Theorem (Motivic Bott Periodicity)

The map γ − 1 : K ≃ Lmot(KVect(−)) → ΩP1K ∈ Spc(S)∗ is
an equivalence.

The proof for the special case when S is Noetherian, regular,
and finite dimensional should be of interests, because it involves
some motivic concepts, the Thomason-Trobaugh K-theory, and
the projective bundle formula.
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The Motivic Spectrum KGL

With respect to the base scheme S, we define the algebraic
K-theory spectrum KGL as follows.

Definition

KGL (also written as KGLS) is the sequence K,K,K, ... with
structure maps given by γ − 1.

One can check that Σ2n,nKGL ≃ KGL.

Theorem

Let S be regular, Noetherian, finite-dimensional, then

πp,q KGLS ≃

{
Kp−2q(S), p ≥ 2q

0, otherwise
.
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The Cellular Motivic Category

We conclude this lecture by remarking that, in special
circumstances, there is a purely topological reformulation of
motivic spectra. This reformulation was established by Piotr
Pstragowski in [Pstragowski, 2023].

Definition

Let SpcellC denote the smallest subcategory of complex motivic
spectra containing the motivic spheres and closed under
colimits. This is called the cellular motivic category over C.

Piotr Pstragowski’s theorem was that, after p-completing, SpC
can be refomulated in the language of what are called synthetic
spectra.
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What is a Synthetic Spectrum?

A synthetic spectrum should be thought of as a categorification
of an E-based Adams spectral sequence. Due to the limited
time in the lecture, we will not really be able to shed light on
this intuition.

1 Let SpfpMU denote the full subcategory spanned by
MU∗-projective finite spectra E. By MU∗-projective, we
mean MU∗(E) is projective.

2 A presheaf of spectra on SpfpMU is spherical if it sends
coproducts to products.

3 The ∞-category of MU -based synthetic spectra8 SynMU is
the full sub-category of spherical presheaves of spectra X
such that

A →B → C an MU∗-SES

⇕
X(C) → X(B) → X(A) a fiber sequence.

8They are actually sheaves given an appropriate Grothendieck topology.
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Synthetic Spectra to Cellular Motivic Category

Similarly, if we only restrict to those E with MU∗(E) projective
and concentrated in even degrees, we can similarly build the
even synthetic spectra on (SpfpMU )

ev to obtain the category

SynevenMU .

Theorem ([Pstragowski, 2023])

After p-completion, there is an equivalence between SpcellC and
SynevenMU .
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