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Milnor K -theory

Let k be a field. Milnor defined a graded ring KM
∗ (k), called the Milnor K -theory of k,

as follows:

• KM
r (k) = 0 for r < 0;

• KM
0 (k) := Z;

• KM
1 (k) = k×;

• For i ≥ 2, we define KM
r (k) =

⊗r
i=1k

∗

I
, where I is the subgroup generated by

elements of the form a1 ⊗ · · · ⊗ ar where ai + aj = 1 for some i ≤ j . The class
{a1 ⊗ · · · ⊗ ar} is typically denoted as {a1, · · · , ar}.

The Milnor K -theory can be described in total as the quotient of the tensor algebra
T∗(k×) by the two sided ideal I generated by elements of the form {a, 1− a} for
a ∈ k − {0, 1}.
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Milnor K -theory

There are some immediate relations we can deduce from the definitions:

• Because 0 = {1, b}, we have {a, b} = −{a−1, b}.
• Because −a = 1−a

1−a−1 , we have

{a,−a} = {a,
1− a

1− a−1
} = {a, 1− a}+ {a,

1

1− a−1
}

= 0− {a, 1− a−1} = {a−1, 1− a−1} = 0.

• We have

0 = {ab,−ab} = {a,−a}+ {a, b}+ {b,−a}+ {b, b}
= 0 + {a, b}+ {b, a}+ {b,−1}+ {b, b}
= {a, b}+ {b, a}+ {b,−b}
= {a, b}+ {b, a}

In particular, the third relation implies the symbols in KM
∗ (k) are alternating: For any

permutation π with sign (−1)π we have

{xπ(1), · · · , xπ(n)} = (−1)π{x1, · · · , xn}.
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Milnor K -theory

Let us see a basic example of Milnor K -theory:

Proposition 1

Let k = Fq be a finite field. We have

KM
r (k) = 0, r ≥ 2.

Remember that unit group of a finite field is always cyclic, so any element in KM
2 (k)

can be written as
{xm, xn} = mn{x , x}.

so, we just need to show that {x , x} = 0. If q is even number, we have
{x , x} = {x ,−x} = 0. If q is an odd number, we have 2{x , x} = 0. Hence, for any
odd integer m, n, it’s true that {x , x} = mn{x , x} = {xm, xn}. Since the odd powers of
x are classified as non-squares, it suffices to find a non-square u such that 1− u is also
a nonsquare. Notice the map u → 1− u is an injection on the set Fq − {0, 1}. There is
q−1
2

nonsquares and q−3
2

squares, so necessarily some nonsquare will go to a nonsquare.
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Étale Cohomology and Galois Cohomology of a field

Let X = Spec(k). We consider the small étale site Xét .

Proposition 2

Let k be the separable closure of k. There is an equivalence of categories between
abelian sheaves over Xét and the category of continuous (Every element has an open
stabilizer) G = Gal(k/k)-modules.

Proof.

Let F be an abelian sheaf over Schk . Let I be the poset of finite Galois extension of k
in k. Then we can set M = colimk′∈I F (k

′). It has a G -action induced by the
Gal(k ′/k)-action on F (k ′).
On the other hand, given a continuous G -module M, for any finite separable extension

k ′ of k, we define F (k ′) = MGal(k/k′), this defines a product preserving presheaf over
Xét by remembering every object in Xét is a finite coproduct of affine schemes
represented by finite separable extensions of k. To check the sheaf condition, it’s
enough to check for any finite separable extension k ′′/k ′, the following sequence

0 → F (k ′) → F (k ′′) → F (k ′′ ⊗k′ k
′′) ∼= F (

∏
Gal(k′′/k′)

k ′′) =
∏

Gal(k′′/k′)

F (k ′′)

is exact.
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Étale Cohomology and Galois Cohomology of a field

Proof Continued.

By construction, we want to check

0 → MGal(k/k′) → MGal(k/k′′) →
∏

Gal(k′′/k′)

MGal(k/k′′)

is exact. The first one is injective since Gal(k/k ′′) is a subgroup of Gal(k/k ′). The
second map is m 7→

∏
σ∈Gal(k′′/k′)(m − σ(m)), so its kernel is exactly

(MGal(k/k′′))Gal(k
′′/k′) = MGal(k/k′).

To check it gives an equivalence of categories, we need to see there are natural
isomorphisms (exercises)

(colim
i∈I

F (i))Gal(k/k
′) = F (k ′)

and an isomorphism of G -modules

colim
i∈I

MGal(k/i) ∼= M.
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Étale Cohomology and Galois Cohomology of a field

Under this equivalence of categories, the global section function F 7→ F (k) is

corresponding to the functor M 7→ MGal(k/k). Hence, for an an étale sheaf F over
Spec(k), there is an isomorphism of cohomology

H∗
ét(X ;F ) ∼= H∗(Gal(k/k);F (k))

Now, let us consider the sheaves that is related to the Norm-residue theorem. For start,
there is the multiplicative group scheme Gm defined by sending X to Γ(X ,OX )

∗.
Let l ∈ N be an integer such that it’s not equal to the characteristic of the field. So
that l is invertible on Spec(k). Then we can define a map of Étale sheaves
l : Gm → Gm by x ∈ Gm(U) 7→ x l ∈ Gm(U).

Proposition 3

There is a short exact sequence of Étale sheaves

0 → µl → Gm → Gm → 0,

where µn(U) = {x ∈ Γ(X ,OX )
∗|x l = 1}.
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Étale Cohomology and Galois cohomology of a field

Proof.

By construction, µl is the kernel of the map. It’s enough to show this is a surjective
map of sheaves. To see this, we need to show for every s ∈ Gm(U), there is an open
covering {Ui → U} such that s|Ui

is in the image l : Gm(Ui ) → Gm(Ui ). Suppose

U = Spec(A), we set V = Spec(A[T ]/(T l − s)). The map V → U is surjective
because the corresponding map is faithfully flat. Because the derivative of T l − s is
lT l−1 is a unit, the ring map A → A[T ]/(T l − s) is a standard étale map by definition,
which implies V → U is an open covering. s|V is in the image by construction. If U is
not affine, we can consider the relative spectrum

π : V = Spec
U
(OU(t)/(t

l − s)) → U

and restricting to its affine open subset.

Notice this sequence is not exact if we replace étale by Zariski.
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Étale Cohomology and Galois cohomology of a field

The Kummer sequence indicates that there is a long exact sequence of cohomology
groups

0 → H0
ét(X ;µl ) → H0

ét(X ;Gm)
n−→ H0

ét(X ;Gm) → H1
ét(X ;µl ) → H1

ét(X ;Gm) → · · ·

For the 0-th cohomology, we have

H0
ét(X ;Gm) = k×.

Hence, we have
H0

ét(X ;µl ) = Ker(l : k× → k×)

For a field k containing an l-th root of unity, we see that

H0
ét(X ;µl ) ∼= Z/l .

Otherwise, we have H0
ét(X ;µl ) ∼= 0. For the first cohomology, we have the Hilbert 90:

H1
ét(X ;Gm) ∼= H1(Gal(k/k); k×) = 0.

This implies that
H1

ét(X ;µl ) ∼= k×/l .
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Étale Cohomology and Galois cohomology of a field

On étale cohomology, one can imagine one can define an external cup product:

Hn(X ;F )⊗ Hm(X ;G) → Hm+n(X ;F ⊗ G)

This gives a graded ring (for ∗ = 0, µ⊗0
l := Z/l):

H∗
ét(X ;µ⊗∗

l ) =
⊕
m

Hm
ét(X ;µ⊗m

l ).

Proposition 4

For [a], [1− a] ∈ k×/l ∼= H1
ét(X , µl ) where a ̸= 1, 0, we have a relation

[a] ∪ [1− a] = 0 ∈ H2
ét(X ;µ⊗2

l ).

Proof.

Let α = l
√
a and consider E = k(α). Then the inclusion i : k → E induces two natural

maps on the étale cohomology groups resE/k : H∗(k;µ⊗∗
l ) → H∗(E ;µ⊗∗

l ) and

coresE/k : H∗(E ;µ⊗∗
l ) → H∗(k;µ⊗∗

l ) that are compatible with cup product in the
following way:

coresE/k (x) ∪ y = coresE/k (x ∪ resE/k (y)).
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Étale Cohomology and Galois cohomology of a field

Proof continued.

In particular, for ∗ = 1, the corestriction map is induced by the norm map E → k. We
have

NmE/k (1− α) =
∏

σ∈Gal(E/k)

(1− σ(α)) = 1− a.

This implies

[a] ∪ [1− a] = [a] ∪ coresE/k ([1− α]) = coresE/k (resE/k ([a]) ∪ [1− α]).

Notice that resE/k ([a]) = [αl ] = 0 ∈ H1(E ;µl ) ∼= E×/l .

Since the Milnor K -theory is described as the tensor algebra of k× quotienting the
relation {a, 1− a}. We see there is a natural ring map KM (k) → H∗

ét(k;µ
⊗∗
l ). Because

the étale cohomology groups with µl -coefficient is always n-torsion, we see that the
above map natural factors through KM(k)/l , which we call as the norm-residue map:

KM(k)/l → H∗
ét(k;µ

⊗∗
l )

Theorem 1

Let k be a field and l be a positive integer that is not equal to the field characteristic.
Then the norm-residue map is an isomorphism for every field k.
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First Reductions: Transfer Argument

Consider the category of algebraic field extensions over k. Let F be a covariant functor
on this category taking values in Z/n-modules, and we also assume F is contravariant
for finite field extensions k ′/k. Hence, for a finite field extension k → k ′, we have a
composite of maps F (k) → F (k ′) → F (k), we require this map is multiplication by
[k ′ : k] on F (k). If [k ′ : k] is prime to n, then we see F (k) injects as a summand of
F (k ′) = 0. Hence, F (k ′) = 0 will imply F (k) = 0.

Proposition 5

Both k 7→ KM
m (k)/l and k 7→ Hm

ét(k;µ
m
l ) are functors satisfying the hypothesis above.

In particular, so do the kernel and cokernel of the norm-residue maps.

Proof.

Consider a finite field extension k ′/k. For the functor Hm
ét(−;µm

l ), we have seen it has
the restriction and corestriction. Sheaf-theorically, they are induced by (F = µl ):

F → f∗f
∗F → F

Writing out the definition, one can see this is exactly [k ′ : k] idF . For the functor
KM
m (−), it is obviously a covariant functor. The transfer map is induced via Nmk′/k on

degree 1.

Using this argument, we may assume k contains all nth-roots of unity, that k is a
perfect field, and even that k has no field extensions of degree prime to n.
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First Reductions: Characteristic 0

Proposition 6

To prove the norm-residue theorem, it’s enough to show the norm-residue map for fields
k such that char(k) = 0.

Proof sketch.

By the transfer argument, we can suppose k is a perfect field. Let K be the fraction
field of its Witt vectors W(k), in which case W(k) is a discrete valuation ring. By
[Wei13, III.7.3], , one can define the specialization maps sp in this case, that are
compatible with the norm-residue maps in the following sense:

KM
m (K)/l Hm

ét(K ;µ⊗m
l )

KM
m (k)/l Hm

ét(K ;µ⊗m
l )

sp sp

Furthermore, we also know sp is a split surjection which is compatible with the
norm-residue map. Because Char(K) = 0, we know the top arrow is an isomorphism,
which also implies the lower arrow is also an isomorphism.
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Connections to Motivic cohomology

Now, we will explain how the norm-residue theorem is connected to the motivic
cohomology, where we let X = Spec(k). Recall that from last talk, we know

Hp,q(X ,Z) ∼= CHq(X , 2q − p);

From [NS90], we have

Theorem 2

Let k be a field. We have CHq(X , p) = 0 for p < q and CHq(X , q) = KM
q (k).

Consider the cofiber sequence of motive spectra Z → Z → Z/l , it induces a long exact
sequence of motivic cohomology groups:

· · ·Hp−1,p(X ;Z/l) → Hp,p(X ;Z) ×l−→ Hp,p(X ;Z) → Hp,p(X ;Z/l) → Hp+1,p(X ;Z) → · · ·

Since Hp+1,p(X ;Z) ∼= CHp(X ; p − 1) = 0 and Hp,p(X ;Z) ∼= CHp(X ; p) ∼= KM
p (k) by

the above theorem, we see that

Hp,p(X ;Z/l) ∼= KM
p (k)/l .

In fact, following the same argument, we can see that

Hp,q(X ;Z/l) = 0 for p > q.
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Connections to Motivic cohomology

To connect this to étale cohomology. We need to remember the other interpretation of
motivic cohomology. Let X be a smooth variety. Then there is a motivic complex Z(q),
which is a complex of étale sheaves with transfers (so they are also sheaves in Zariski
and Nisnevich topology). The motive cohomology Hp,q(X ,Z) can be recognized as the
hypercohomology of Z(q) over X in the Zariski topology. (Remark)
Consider the complex Z/l(q) = Z/l ⊗ Z(q), it is still a complex of étale sheaves, and in
fact, we have by [MVW06, 10.2]

H∗
ét(X ;Z/l(q)) ∼= H∗

ét(X ;µ⊗q
l ).

Consider the adjunction

Lét : Shzar(X ) Shét(X ) : i⊣
If F is an étale sheaf, we have a Lerray spectral sequence

Ep,q
2 = Hp

Zar(X ;Rq iF ) ⇒ Hp+q
ét (X ;F ),

where the inclusion of the zero-th line gives us a natural change of topology morphism.
Hence, for the motivic complex Z/l(q), we have

H∗
Zar(X ;Z/l(q)) → H∗

ét(X ;Z/l(q))

Let ∗ = q, since we know Hq
Zar(X ;Z/l(q)) ∼= Hq,q(X ;Z/l) ∼= KM

q (k)/l , we see this
change of topology morphism recovers the norm-residue map.
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The Hilbert 90 condition

Now, we will give a road map of the proof of the norm-residue theorem. We will mainly
follow Chapter 1 of [HW19].
Because étale and Zariski cohomology over Spec(k) commutes with filtered limits, for
any abilen groups A that can be written as a direct limit of Z, we have

H∗
zar /ét(X ;A(i)) = H∗

zar /ét(X ;A⊗ Z(i)) ∼= H∗
zar /ét(X ;Z(i))⊗ A.

Definition 7

Fix n and l . We say that H90(n) holds if Hn+1
ét (k,Z(l)(n)) = 0 for any field 1/l ∈ k.

When n = 0, we have H1(k,Z) = H1(Gal(k/k),Z) = Homcont.(Gal(k/k),Z) = 0.
Which implies H90(0) holds for any l .
When n = 1, we need to observe that Z(1) ∼= Gm[1]. Hence, we have
H2(k,Z(l)(1)) = H2(k,Gm[1])(l) ∼= H1(k,Gm)(l) = 0 by the Hilbert Theorem 90,
which justifies the name.

Lemma 3

For all n > m, the étale cohomology Hn
ét(k,Z(m)) is a torsion group, so its l-torsion

subgroup is Hn
ét(k,Z(l)(m)). When 1/l ∈ k, we have

Hn+1
ét (k,Z(l)(m)) ∼= Hn

ét(k,Q/Z(l)(m)). For n = l , we have an exact sequence

KM
n (k)⊗ Q/Z(l) → Hn

ét(k;Q/Z(l)(n)) → Hn+1
ét (k;Z(l)(n)) → 0.
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The Hilbert 90 condition

Proof.

By [MVW06, 14.23] and [MVW06, 3.6], we have Hn
ét(k;Q(m)) ∼= Hn(k;Q(m)) for all

n. and n > m, Hn(k,Q(m)) = 0, this implies

Hn
ét(k,Z(m))⊗ Q ∼= Hn

ét(k,Q(m)) = 0.

Hence, we know Hn
ét(k,Z(m)) is a torsion group. To see the isomorphism as claimed,

we consider the long exact sequence induced by 0 → Z(l) → Q → Q/Z(l) → 0 as

follows:

· · · → Hn
ét(k,Q(m)) → Hn

ét(k,Q/Z(l)(m)) → Hn+1
ét (k,Z(l)(m)) → Hn+1

ét (k,Q(m)) → · · · .

We see the isomorphism by observing the first and the last cohomology groups are zero.
To get the exact sequence, we consider the following commutative diagram:

Hn
zar(k;Z(l)(n)) Hn

zar(k;Q(n)) Hn
zar(k;Q/Z(l)(n)) 0

Hn
ét(k;Z(l)(n)) Hn

ét(k;Q(n)) Hn
ét(k;Q/Z(l)(n)) Hn+1

ét (k;Z(l)(n))

∼=

This almost gives u the exact sequence by noticing that KM
n (k)/l ⊗ Q/Z(l)

∼=
Hn
zar(k;Q/Z(l)(n)). The exactness in the middle follows from a easy diagram chase.
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The Hilbert 90 condition

Theorem 4

Fix n and l . The condition H90(n) holds if and only if the norm-residue map
KM
n (k)/l → Hn

ét(k;µ
⊗n
l ) is an isomorphism for every field k with 1/l ∈ k.

In fact, H90(n) holds implies that for any smooth scheme X over k and for all p ≤ n,
the change of topology map Hp

zar(X ;Z/l(n)) → Hp
ét(X ;Z/l(n)) is an isomorphism.

proof for the if part.

Recall that KM
n (k) ∼= Hn

zar(k;Z(n)). We have a commutative diagram induced by the
change of topology map as follows

KM
n (k) KM

n (k) KM
n (k)/l 0

Hn
ét(k;Z(n)) Hn

ét(k;Z(n)) Hn
ét(k;µ

⊗n
l ) Hn+1

ét (k;Z(n)) · · ·

l

l l

By assumption, the third vertical map is an isomorphism so by the commutative
diagram, we see Hn

ét(k;Z(n)) → Hn
ét(k;µ

⊗n
l ) is surjective. By exactness, we the next

map is the zero map and the l-torsion part of Hn+1
ét (k;Z(l)(n)) is 0. By the lemma

above, this is saying exactly

Hn+1
ét (k;Z(l)(n)) = 0.

18 / 22



Norm-
Residue
Theorem

Pengkun
Huang

The quick proof

Now, we can present a quick proof of the Norm-residue theorem with listing another
two theorems

Definition 8

We say a field k containing 1/l is l-special if k has no finite field extensions of degree
prime to l . Recall we can always assume k satisfies this condition by transfer
arguement.

Theorem 5

Suppose that H90(n − 1) holds. If k is an l-special field and KM
n (k)/l = 0, then

Hn
ét(k, µ

⊗n
l ) = 0, which also implies Hn+1

ét (k,Z(l)(n)) = 0.

Theorem 6

Suppose that H90(n − 1) holds. Then for every field k of characteristic 0 and every
nonzero symbol a = {a1, · · · , an} in KM

n (k)/l , there is a smooth projective variety Xa

whose function field Ka = k(Xa) satisfies

• a vanishes in KM
n (Ka)/l ;

• the map Hn+1
ét (k,Z(l)(n)) → Hn+1

ét (Ka,Z(l)(n)) is an injection.
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The quick proof

Proof of the Norm-residue theorem.

By our reductions, we can assume k is an l-special field and has characteristic 0. For
each a ∈ KM

n (k)/l , by Theorem 6, there is a smooth projective variety Xa such that a
vanishes in KM

n (k(Xa))/l and Hn+1
ét (k,Z(l)(n)) embeds into Hn+1

ét (k(Xa),Z(l)(n)). By

putting an well-order of elements in KM
n (k)/l and using a transfinite induction, we can

get a sequence of field {kλ} such that aλ vanaishes in KM
n (kλ)/l and Hn+1

ét (kλ,Z(l)(n))

embeds into Hn+1
ét (kλ+1,Z(l)(n)). Setting k ′ = ∪λkλ, we see that KM

n (k)/l →
KM
n (k ′)/l is a zero map and Hn+1

ét (k,Z(l)(n)) embeds into Hn+1
ét (k ′,Z(l)(n)). (Notice

here we’re using Hn+1
ét (k ′,Z(l)(n)) ∼= colimλ Hn+1

ét (kλ,Z(l)(n)) by Theorem 59.51.3
from stacks project.) Then, we can choose an l-special algebraic extension k ′′ of k ′.
By transfer argument, we know that

Hn+1
ét (k,Z(l)(n)) → Hn+1

ét (k ′,Z(l)(n)) → Hn+1
ét (k ′′,Z(l)(n))

is an injection and
KM
n (k)/l → KM

n (k ′)/l → KM
n (k ′′)/l

is a zero map.
Let k1 = k ′′, and we iterate this construction to obtain an ascending sequence of field
extensions km. Let L be the union of all km. Then L is l-special and KM

n (L)/l = 0 by
construction, so Hn+1

ét (L,Z(l)(n)) = 0 by Theorem 5. Since Hn+1
ét (k,Z(l)(n)) embeds

into Hn+1
ét (L,Z(l)(n)), we finish the proof by Theorem 4.
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H∗,∗(k ;Z/n)

Corollary 7

Let k be a field containing a primitive l-th root of unit, then there is a ring isomorphism

H∗,∗(k,Z/l) ∼= KM
∗ (k)/l [τ ],

where τ ∈ H0,1(k,Z/l) ∼= H0(k, µl ) ∼= Z/l is the class representing a primitive l-th
root of unity.

Proof.

By the norm-residue theorem and Theorem 4, we have learned that

Hp,q(k,Z/l) ∼=

{
Hp
ét(k, µ

⊗q
l ) p ≥ q;

0 p < q

Under the equivalence between étale sheaves and Galois modules, we see µl is
equivalent to the trivial Gal(k/k)-module Z/l because the l-th root of unity is in k.
Hence, the multiplication by a primitive l-th root of unity induces an isomorphism of
Gal(k/k)-modules (Z/n)⊗p ⊗ Z/n ∼= (Z/n)⊗p+1. In sheaf cohomologies, this gives an

isomorphism τ : H∗
ét(k;µ

⊗q
l ) → H∗

ét(k;µ
⊗q+1
l ).

Then the norm-residue theorem and the identification of motivic cohomology with étale
cohomology finishes the proof immediately.
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