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Let k be a field. Milnor defined a graded ring Ky(k), called the Milnor K-theory of k,
as follows:

® KM(k) =0 for r <0;
Ké/’(k) =7
o KM(K) = k%

® For i > 2, we define Kf/’(k) = ®’r:+k where [ is the subgroup generated by
elements of the form a; ® - -- ® a, where a; + a; = 1 for some i < j. The class
{a1 ® -+ ® ar} is typically denoted as {a1,---,ar}.
The Milnor K-theory can be described in total as the quotient of the tensor algebra
T*(k*) by the two sided ideal / generated by elements of the form {a,1 — a} for
ac k—{0,1}.
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TR::";::E‘ There are some immediate relations we can deduce from the definitions:
® Because 0 = {1, b}, we have {a, b} = —{a~ 1, b}.
1

—=2., we have

® Because —a = ;=

{a—ap={a }—{al—a}+{a — !

=0-{a1-al}={aH1-a1}=0
® We have
0 = {ab, —ab} = {a, —a} + {a,b} + {b,—a} + {b, b}
=0+ {a,b} +{b,a} +{b, -1} + {b, b}
={a, b} +{b,a} + {b,~b}
= {a, b} + {b,a}

In particular, the third relation implies the symbols in Kff’(k) are alternating: For any
permutation 7 with sign (—1)™ we have

@y s X} = (1) x5+, xa}
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Per

s Let us see a basic example of Milnor K-theory:

Proposition 1
Let k = Fq be a finite field. We have

KM(k) =0,r > 2.

Remember that unit group of a finite field is always cyclic, so any element in K¥ (k)

can be written as

{x™,x"} = mn{x, x}.
so, we just need to show that {x,x} = 0. If g is even number, we have
{x,x} = {x,—x} = 0. If g is an odd number, we have 2{x, x} = 0. Hence, for any
odd integer m, n, it's true that {x, x} = mn{x, x} = {x™, x"}. Since the odd powers of
x are classified as non-squares, it suffices to find a non-square u such that 1 — u is also
a nonsquare. Notice the map u — 1 — u is an injection on the set Fq — {0,1}. There is
q%l nonsquares and qT73 squares, so necessarily some nonsquare will go to a nonsquare.
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Etale Cohomology and Galois Cohomology of a field

R’:g:“; Let X = Spec(k). We consider the small étale site Xg;.
Theorem

Proposition 2

Let k be the separable closure of k. There is an equivalence of categories between
abelian sheaves over Xs: and the category of continuous (Every element has an open
stabilizer) G = Gal(k/k)-modules.

Let F be an abelian sheaf over Schy. Let | be the poset of finite Galois extension of k
in k. Then we can set M = colim;sc; F(k"). It has a G-action induced by the
Gal(k’/k)-action on F(k’).

On the other hand, given a continuous G-module M, for any finite separable extension
k' of k, we define F(k') = MGal(k/K') | this defines a product preserving presheaf over
Xgst by remembering every object in Xg; is a finite coproduct of affine schemes
represented by finite separable extensions of k. To check the sheaf condition, it's
enough to check for any finite separable extension k”’ /k’, the following sequence

0= F(K') = F(K') > F(k" @ kY= F( T «)= T[] F®&")
Gal(k' /k") Gal(k!! /k")

is exact.
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Pengkun By construction, we want to check

04)MGaI(Z/k’)*)MGaI(Z/k”)*) H MGal(Z/k”)
Gal(k’" /Kk")

is exact. The first one is injective since Gal(k/k"") is a subgroup of Gal(k/k’). The
second map is m — [, cqar /xr) (M — o(m)), so its kernel is exactly

(MGal(Z/k“))Gal(k”/k/) _ MGaI(?/k’).

To check it gives an equivalence of categories, we need to see there are natural
isomorphisms (exercises)

(colim F(1))**/¥) = F(K)
and an isomorphism of G-modules

colim MGI(K/D) =~ pg.
iel
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Etale Cohomology and Galois Cohomology of a field

Under this equivalence of categories, the global section function F — F(k) is

corresponding to the functor M — MGal(k/k), Hence, for an an étale sheaf F over
Spec(k), there is an isomorphism of cohomology

HZ.(X; F) = H*(Gal(k/k); F(k))

Now, let us consider the sheaves that is related to the Norm-residue theorem. For start,
there is the multiplicative group scheme G, defined by sending X to (X, Ox)*.

Let / € N be an integer such that it's not equal to the characteristic of the field. So
that / is invertible on Spec(k). Then we can define a map of Etale sheaves

I: G — Gm by x € G(U) = x! € Gm(U).

Proposition 3

There is a short exact sequence of Etale sheaves
0—u —>Gn—>Gn—0,

where jin(U) = {x € [(X, 0x)*|x = 1}.
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By construction, p; is the kernel of the map. It's enough to show this is a surjective
map of sheaves. To see this, we need to show for every s € Gm(U), there is an open
covering {U; — U} such that sy, is in the image /: Gm(U;) — Gm(U;). Suppose

U = Spec(A), we set V = Spec(A[T]/(T' —s)). The map V — U is surjective
because the corresponding map is faithfully flat. Because the derivative of T/ — s is
IT'=' is a unit, the ring map A — A[T]/(T' — s) is a standard étale map by definition,
which implies V — U is an open covering. s|y is in the image by construction. If U is
not affine, we can consider the relative spectrum

i V = Spec, (Ou(t)/(t' —s)) = U

and restricting to its affine open subset. O

Notice this sequence is not exact if we replace étale by Zariski.
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Etale Cohomology and Galois cohomology of a field

The Kummer sequence indicates that there is a long exact sequence of cohomology
groups

0 — H%(X; 1) = HL(X:Gm) == HL(X;Gm) — HL(X; ) = HL(X:Gm) — - -
For the 0-th cohomology, we have
H2,(X;Gpm) = k*.

Hence, we have
HS, (X ) = Ker(1: kX — k)

For a field k containing an /-th root of unity, we see that
HE(X; 1) 2 21,
Otherwise, we have Hgt(X; 1) = 0. For the first cohomology, we have the Hilbert 90:
H:,(X; Gpm) = HY(Gal(k/k); k*) = 0.

This implies that
H (X 1) = K /1.
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Etale Cohomology and Galois cohomology of a field

On étale cohomology, one can imagine one can define an external cup product:
H"(X; F)® H™(X; G) = H™"(X; F ® G)
This gives a graded ring (for x =0, u,®0 =1Z/I):
(X 1y *)*@Ht(X lL

For [a],[1 — a] € k* /I = HY (X, ) where a # 1,0, we have a relation

[a] UL — a] = 0 € HE,(X; ).

Let a = \/a and consider E = k(). Then the inclusion i : k — E induces two natural
maps on the étale cohomology groups resg /y : H*(k; n®*) — H*(E;,u,®*) and
coresg i : H*(E; p”™) — H*(k;,u,®*) that are compatible with cup product in the

following way:

coresg /i (x) Uy = coresg /i (x Uresg /i (y))-
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In particular, for * = 1, the corestriction map is induced by the norm map E — k. We

Huang have
Nme /(1 —a) = H 1-0(x)=1-a.
o€Gal(E/K)
This implies
[a] U [1 — a] = [a] U coresg /i ([1 — a]) = coresg /i (resg /i ([a]) U [1 — o).
Notice that resg /. ([a]) = [@']=0¢€ HY(E; u) = EX/I. O

v

Since the Milnor K-theory is described as the tensor algebra of k* quotienting the
relation {a,1 — a}. We see there is a natural ring map KM (k) — HZ (k; ,u,/®*) Because
the étale cohomology groups with p-coefficient is always n-torsion, we see that the
above map natural factors through KM(k)/I, which we call as the norm-residue map:

KM(K)/1 = HE(K; )

Let k be a field and | be a positive integer that is not equal to the field characteristic.
Then the norm-residue map is an isomorphism for every field k.

™7 = = = = SRl
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First Reductions: Transfer Argument

Consider the category of algebraic field extensions over k. Let F be a covariant functor
on this category taking values in Z/n-modules, and we also assume F is contravariant
for finite field extensions k’/k. Hence, for a finite field extension k — k’, we have a
composite of maps F(k) — F(k’) — F(k), we require this map is multiplication by
[k’ : k] on F(k). If [k’ : k] is prime to n, then we see F(k) injects as a summand of
F(k") = 0. Hence, F(k) = 0 will imply F(k) =0.

Proposition 5

Both k — KM(k)/I and k — HZ(k; uf") are functors satisfying the hypothesis above.
In particular, so do the kernel and cokernel of the norm-residue maps.

Consider a finite field extension k’/k. For the functor HJ}(—; "), we have seen it has
the restriction and corestriction. Sheaf-theorically, they are induced by (F = p):

F — ff*F - F

Writing out the definition, one can see this is exactly [k’ : k]idr. For the functor
KM(—), it is obviously a covariant functor. The transfer map is induced via Nmy/ /i on
degree 1.

Using this argument, we may assume k contains all nth-roots of unity, that k is a
perfect field, and even that k has no field extensions of degree prime to-n.
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First Reductions: Characteristic 0

Proposition 6

To prove the norm-residue theorem, it's enough to show the norm-residue map for fields
k such that char(k) = 0.

Proof sketch.

By the transfer argument, we can suppose k is a perfect field. Let K be the fraction
field of its Witt vectors W(k), in which case W(k) is a discrete valuation ring. By
[Weil3, 111.7.3], , one can define the specialization maps sp in this case, that are
compatible with the norm-residue maps in the following sense:

KM (K)/I —— HZ(K; u™)

spl L

KM(K) /| —— HI(K; uP™)

Furthermore, we also know sp is a split surjection which is compatible with the
norm-residue map. Because Char(K) = 0, we know the top arrow is an isomorphism,
which also implies the lower arrow is also an isomorphism. O
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Connections to Motivic cohomology

Now, we will explain how the norm-residue theorem is connected to the motivic
cohomology, where we let X = Spec(k). Recall that from last talk, we know

HP9(X,Z) =2 CHY(X,2q — p);

From [NS90], we have

Let k be a field. We have CHY(X,p) =0 for p < q and CHY(X, q) = Kg/’(k).

Consider the cofiber sequence of motive spectra Z — Z — Z/1, it induces a long exact
sequence of motivic cohomology groups:

- HPTLP(XG T/ 1) — HPP(XG Z) 2 HPP(XGZ) — HPP(XGZ/1) — HPYYP(XGZ) — -

Since HPT1:P(X;Z) =2 CHP(X; p — 1) = 0 and HP'P(X;Z) = CHP(X; p) = Kf,”(k) by
the above theorem, we see that

HPP(X; Z/1) = KN (K)/1.
In fact, following the same argument, we can see that
HPY(X;Z/1) =0 for p > gq.
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Connections to Motivic cohomology

To connect this to étale cohomology. We need to remember the other interpretation of
motivic cohomology. Let X be a smooth variety. Then there is a motivic complex Z(q),
which is a complex of étale sheaves with transfers (so they are also sheaves in Zariski

and Nisnevich topology). The motive cohomology HP:9(X,Z) can be recognized as the
hypercohomology of Z(q) over X in the Zariski topology. (Remark)

Consider the complex Z/I(q) = Z/1 ® Z(q), it is still a complex of étale sheaves, and in
fact, we have by [MVWO06, 10.2]

HE (X 2/1(0) 2 HE (X 7).
Consider the adjunction

Ler: Shaar(X) T Shee(X): i

If F is an étale sheaf, we have a Lerray spectral sequence
EPY = HE_ (X;RYiF) = HEM9(X; F),

where the inclusion of the zero-th line gives us a natural change of topology morphism.
Hence, for the motivic complex Z/I(q), we have

Hz.(X:Z2/1(q)) = H&(X:2/1(q))

Let = g, since we know HJ_ (X;Z/I(q)) = HT9(X;Z/]) = Ky(k)/l, we see this
change of topology morphism recovers the norm-residue- map.
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The Hilbert 90 condition

Now, we will give a road map of the proof of the norm-residue theorem. We will mainly
follow Chapter 1 of [HW19].

Because étale and Zariski cohomology over Spec(k) commutes with filtered limits, for
any abilen groups A that can be written as a direct limit of Z, we have

z*ar/ét(X;A(i)) = zar/et(X A®Z( )) - zar/et(X Z( )) ® A.

Definition 7

Fix n and /. We say that H90(n) holds if H"H(k,Z(,)(n)) = 0 for any field 1// € k.

When n = 0, we have H!(k,Z) = H'(Gal(k/k),Z) = Homcont.(Gal(k/k),Z) = 0.
Which implies H90(0) holds for any /.

When n = 1, we need to observe that Z(1) 2 Gp[1]. Hence, we have

H?(k, Zg (1)) H2(k,Gm[1]) & H(k,Gm) () = 0 by the Hilbert Theorem 90,
which Justlﬁes the name.

For all n > m, the étale cohomology HZ,(k,Z(m)) is a torsion group, so its I-torsion
subgroup is Hf,(k, Z(jy(m)). When 1/I € k, we have
H”H(k Zy(m)) = et(k,(QQ/Z(,)(m)). For n = I, we have an exact sequence

KM (k) ® Q/Zy — HE (ki Q/Zy(n)) — HE(k; Z(jy(n)) = 0.

T mid = = >y
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Penekin By [MVWO06, 14.23] and [MVWO06, 3.6], we have HZ,(k; Q(m)) = H"(k; Q(m)) for all
Huang n. and n > m, H"(k,Q(m)) = 0, this implies

Hg (k, Z(m)) © Q = H, (k,Q(m)) = 0.

Hence, we know H(,(k,Z(m)) is a torsion group. To see the isomorphism as claimed,

we consider the long exact sequence induced by 0 — Z(,) —-Q— Q/Z(,) — 0 as
follows:

- = Hey(k, Q(m)) — HEy(k, Q/Zjy(m)) — HEH (K, Zgy(m)) — HE (k, Q(m)) — -} .

We see the isomorphism by observing the first and the last cohomology groups are zero.
To get the exact sequence, we consider the following commutative diagram:

Hgar(k;z(l)(n)) — Hznar(k;Q(n)) — H;ar(k;@/z(l)(n)) —0

| y |

HE,(Kk; Zp (n)) —— HE (ki Q(n)) —— HE (ki Q/Z;)(n)) ——» HE (ki Zgy(n))

This almost gives u the exact sequence by noticing that KM(k)/I ® Q/Z =
HZ, (ki Q/Z;)(n)). The exactness in the middle follows from a easy diagram chase. [J
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Pengkun Fix n and I. The condition H90(n) holds if and only if the norm-residue map

= KM (k)/1 — HE,(k; ,u/®") is an isomorphism for every field k with 1/I € k.
In fact, H90(n) holds implies that for any smooth scheme X over k and for all p < n,
the change of topology map HE\ (X;Z/1(n)) — HE,.(X;Z/I(n)) is an isomorphism.

proof for the if part

Recall that KM (k) = HZ,, (k; Z(n)). We have a commutative diagram induced by the
change of topology map as follows

Mky — L5 KM(k) ——» KM(k)/| —————— 0

N | |

HZ (ki Z(n)) —— Hg (ki Z(n)) —— HE(kipP") —— HEP (ki Z(n)) —— -

By assumption, the third vertical map is an isomorphism so by the commutative
diagram, we see HZ,(k; Z(n)) — HZ,(k; i, ©M) is surjective. By exactness, we the next

map is the zero map and the /-torsion part of H"H(k Z(;y(n)) is 0. By the lemma
above, this is saying exactly

+1
HE (ks 2y () = :
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The quick proof
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e Now, we can present a quick proof of the Norm-residue theorem with listing another
Theorem two theorems

Huang Definition 8

We say a field k containing 1// is I-special if k has no finite field extensions of degree
prime to /. Recall we can always assume k satisfies this condition by transfer
arguement.

Suppose that H90(n — 1) holds. If k is an I-special field and KM(k)/I = 0, then
HZ,(k, ,u/®") = 0, which also implies Hg:'l(k,Z(,)(n)) =0.

Theorem 6

Suppose that H90(n — 1) holds. Then for every field k of characteristic O and every
nonzero symbol a = {ay,- - ,an} in KM(k)/I, there is a smooth projective variety X,
whose function field K, = k(X,) satisfies

® a vanishes in KM(K,)/I;
® the map Hg:rl(k,Z(,)(n)) — Hg:rl(Ka,Z(,)(n)) is an injection.
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By our reductions, we can assume k is an /-special field and has characteristic 0. For
Huang each a € KM(k)/I, by Theorem 6, there is a smooth projective variety X, such that a
vanishes in KM(k(X,))/! and Hg:‘l(k Z(;)(n)) embeds into Hg:‘l(k(Xa),Z(,)(n)). B
putting an well-order of elements in Kﬁ/’( )/I and using a transfinite induction, we can
get a sequence of field {ky} such that ay vanaishes in KM(ky)/I and Hg?l(kA,Z(,)(n))
embeds into H”'H(k)\“, 1)(n)). Setting k' = Uxkx, we see that KM(k)/I =

KM (k") /1 is a zero map and H"+1(k Z(;(n)) embeds into Hg:'l(k/,Z(,)(n)). (Notice
here we're using Hg:“l(k/, n(n)) = coI|m>\ Hg:‘l(k)\,Z(,)(n)) by Theorem 59.51.3
from stacks project.) Then, we can choose an /-special algebraic extension k'’ of k’.
By transfer argument, we know that

HZ (k, Zgy(n)) — HITH (K Zgy(n)) — HETH(K” Zgy ()

is an injection and
KM (k)1 — KM(K') /1 = KM (K" /1

is a zero map.

Let k! = k”’, and we iterate this construction to obtain an ascending sequence of field
extensions k™. Let L be the union of all k™. Then L is /- special and KM(L)/I = 0 by
construction, so H"+1(L Z(;)(n)) = 0 by Theorem 5. Since HZF Lk, Z(;(n)) embeds

into Hg:'l(L,Z( y(n)), we f|n|sh the proof by Theorem 4. O

~ o~ ———————————> = -~y
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Let k be a field containing a primitive |-th root of unit, then there is a ring isomorphism

H**(k,Z/1) = KY(k)/I[7],

where 7 € HOY(k,Z/1) =2 HO(k, ;) = Z/I is the class representing a primitive I-th
root of unity.

By the norm-residue theorem and Theorem 4, we have learned that

HP (k, u®9 > q;
pea g,z = | Halkor™) P za
0 p<gq

Under the equivalence between étale sheaves and Galois modules, we see y; is
equivalent to the trivial Gal(k/k)-module Z/I because the /-th root of unity is in k.
Hence, the multiplication by a primitive /-th root of unity induces an isomorphism of
Gal(k/k)-modules (Z/n)®P ® Z/n = (Z/n)®P+L. In sheaf cohomologies, this gives an
isomorphism 7: HX, (ki 1) — H, (ki pP9).

Then the norm-residue theorem and the identification of motivic cohomology with étale
cohomology finishes the proof immediately.

= = = = = SNl
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