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Warnings

These slides serve as a motivational introduction to mirror symmetry
from a physical perspective. We will go through some basic concepts
aimed at mathematical audiences. The logic flow is more
chronological than pedagogical.

I am new to this subject, so mistakes and missings are inevitable.
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Principle of Least Action

Definition (Action Functional)

Let M be the “space of configurations” of a physical system. The
action functional is a linear map S :M→ R.

In classical mechanics,M is the space of piecewise smooth paths
from x to y on a smooth manifold M .

In classical field theory,M is the space of sections of a vector
bundle E over the spacetime manifold (M, g).

We need a well-behaved measure onM to perform calculus of
variations and integrations. This is usually not well-defined, but
physicists just assume it.



Principle of Least Action

Proposition (Principle of Least Action)

The trajectory of a system is the one which extremise the action:
δS = 0.

In classical mechanics, the action arises as the integral of the
Lagrangian:

S =

∫ t1

t0

L(qa, q̇a, t) dt.

The principle of least action is equivalent to the Euler–Lagrange
equations (“equations of motions”):

d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0,

where (q1, ..., qn) is a set of coordinates on M .



Principle of Least Action

Proposition (Principle of Least Action)

The trajectory of a system is the one which extremise the action:
δS = 0.

In classical field theory, the action arises as the integral of the
Lagrangian density:

S =

∫
M

L(φα, ∂aφα) d volg =

∫
R1,d−1

L
√
−det g dnx.

The Euler–Lagrange equations:∑
a

∂

∂xa
∂L

∂(∂aφα)
− ∂L
∂φα

= 0.



Path Integral Formalism

Now we move from classical to quantum! In the path integral
formalism, the primary object is the partition function:

Z :=

∫
M
D[γ] eiS(γ)/ℏ,

where D[γ] is a well-behaved measure onM (which, unfortunately,
does not exist in general. This is one of the most notable
mathematical difficulties of quantum field theory.)

In the classical limit ℏ→ 0, only the classical solution such that
δS = 0 contributes to the partition function.

An observable O is an operator-valued distribution onM with the
expectation:

⟨O⟩ :=
∫
M
D[γ]O(γ) eiS(γ)/ℏ .



Polyakov Action

A string is a 1-dimensional object in the space. It traces out a
2-dimensional surface (the “worldsheet”) in the spacetime M . So
mathematically, string theory is about (the quantisation of) the
embedding X : Σ→M of a Lorentzian surface into a d-dimensional
Lorentzian manifold.

Definition (Polyakov Action)

The classical bosonic string is described by the Polyakov action:

S[X,h] = − 1

4πα′

∫
Σ

d2σ
√
−dethhαβ∂αX

µ∂βX
νgµν ,

where h, g are the metrics on Σ and M respectively, and X = (Xµ)
are the coordinates of M .



Supersymmetry

Slogan:
bosonic fields fermionic fields
even variables odd variables
(“c-numbers”) (“Grassmann numbers”)

commutator [a, b] = ab− ba anti-commutator {a, b} = ab+ ba

ungraded Lie algebra → Z/2-graded Lie algebra
(“supersymmetric algebra”)

Supersymmetric scalar multiplet: (scalar fields Xµ, fermions ψµ);
Supergravity multiplet: (frame fields eaα, gravitini χα).



Ramond–Neveu–Schwarz Strings

Bosonic string + N = 1 worldsheet supersymmetry = RNS string.

Proposition (RNS String Action)

The RNS string (fixed to superconformal gauge) is described by the
action

S = − 1

8π

∫
Σ

d2σ

(
2

α′ ∂αX
µ∂αXν + 2iψ

µ
ρα∂αψ

ν

)
gµν

The action is invariant under the supersymmetric transformation:√
2

α′ δϵX
µ = iϵψµ

δϵψ
µ =

√
2

α′
1

2
ρα∂αX

µϵ



Conformal Field Theory

The classical string action is Weyl invariant:

h 7→ Ω2h

So string theory is a 2-dimensional conformal field theory!
The stress-energy tensor is traceless: trT = 0.

After quantisation, Weyl invariance must be preserved:

⟨trT ⟩ = − c

12
R (worldsheet scalar curvature)

So central charge c = 0.

After massaging operator product expansions...

c = d− 10 =⇒ d = 10

Conformal field theory tells us that superstrings live in 10 spacetime
dimensions!!! Needs compactification of 6 extra dimensions to get
real-world physics. See later.



Conformal Field Theory

For closed strings, the periodic boundary condition on ψµ:

ψµ(σ) = +ψµ(σ + ℓ), Ramond sector

ψµ(σ) = −ψµ(σ + ℓ), Neveu–Schwarz sector

Two independent spinors ψµ
+(σ

+), ψµ
−(σ

−), so 4 types of closed
strings: (R,R), (NS,NS), (R,NS), (NS,R).

N = 1 super-Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m
(
m2 − 1

)
δm,−n

[Lm, Gr] =
(m
2
− r
)
Gm+r

{Gr, Gs} = 2Lr+s +
c

12

(
4r2 − 1

)
δr,−s

Ramond sector: r, s ∈ Z; Neveu–Schwarz sector: r, s ∈ Z+
1

2
.



Working towards Superstring Theories

Recall that in bosonic string theory, critial dimension d = 26; and the
ground state is tachyonic (m2 < 0).

For superstring with worldsheet as a Riemann surface:

Modular invariance & Vanishing of one-loop partition function
⇓

GSO projection (−1)F , (−1)F
⇓

Tachyon-free & Spacetime supersymmetry N = 2
↙ ↘

Type IIA superstring theory Type IIB superstring theory
(Non-chiral) (Chiral)



The Landscape of String Dualities
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Compactification

Superstring theory works in 10 dimensions, but our physical world has
only 4 dimensions. We would like to factor the spacetime as

R1,3 ×M6

where M6 is a 6-dimensional compact Riemannian manifold of length
scale ∼ 10−35 m.

Even though we do not observe M6, the geometry of it actually
determines the physics in the Minkowski space R1,3!

Toroidal compactification: M6 = T 6.
All supersymmetries preserved → phenomenologically unfavourable.

Calabi–Yau compactification of heterotic strings: M6 = CY3.
N = 1 minimal supersymmetric standard model (MSSM)!

There are simply too many choices of M6 for string theory to make
physical predictions. This is why string theory is not considered as a
part of physics by many people.



Naive Example: Toroidal Compactification

Consider the compactification Md+1 =Md × S1:

xd ∼ xd + 2πRw.

R ∈ R is the radius of the circle S1; w ∈ Z is the winding number.

Slogan: Gravity in (d+ 1)-dimensions produces electromagnetism in
d-dimensions.

Factorisation of metric:

G =

d∑
M,N=0

gMNdxMdxN =

d−1∑
µ,ν=0

gµνdx
µdxν+gdd

(
dxd +

d−1∑
µ=0

Aµdx
µ

)2

.

Coordinate change xd 7→ xd + λ(xµ) produces gauge transformation
Aµ 7→ Aµ − ∂µλ.

“Kaluza–Klein Reduction”. Aµ: KK gauge boson.



Naive Example: Toroidal Compactification

Scalar field ϕ in (d+ 1)-dimensions has the mode expansion:

ϕ(xM ) =
∑
n∈Z

ϕn(x
µ) einx

d/R .

The momentum pd = n/R is quantised.

Mass for bosonic string:

m2 =
n2

R2
+
w2R2

α′2 +
2

α′ (N + Ñ − 2), N − Ñ = nw.

T-duality:

R↔ α′

R
, n↔ w.

Also Type IIA ↔ Type IIB.



Naive Example: Toroidal Compactification

Now consider compactification Md+D =Md × TD, TD := RD/2πΛD.
For modular invariance the lattice ΛD must be self-dual: ΛD = Λ∗

D.

KK reduction =⇒ Gauge boson Aµ, 2-form Bmn.
B-field: “massless scalar degrees of freedom contributed by the
internal 2-form”...

T-duality:
1

α′ (g + b)↔ α′(g + b)−1, n↔ w

Moduli space:
O(D,D)

O(D)×O(D)

/
O(D,D;Z).



Naive Example: Toroidal Compactification

2-torus: T 2 = R2/(Ze1 + Ze2). gij := ei · ej .

Complexified Kähler modulus: T :=
1

α′ (B + i
√
det g) = T1 + iT2.

Complex structure modulus:

U :=
∥e2∥
∥e1∥

eiφ(e1,e2) =
g12 + i

√
det g

g11
= U1 + iU2.

(gij) = α′ T2
U2

(
1 U1

U1 |U |2
)
.

T-duality: (n1, n2, w1, w2)↔ (−w1, n2,−n1, w2); T ↔ U .

This is a prototype of mirror symmetry, where the complex structure
and the Kähler structure interchanges under the mirror
transformation.
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Special Holonomy

Compactification: R1,3 ×M6. Why Calabi–Yau?

Ricci-flat: Rmn = 0. (Think of vacuum solutions of Einstein
equation.)

SU(3) holonomy.

Definition (Curvature)

Let (M, g) be a Riemannian/Lorentzian manifold with Levi-Civita
connection ∇. The Riemann curvature is given by Rabc

d∂d =
[∇a,∇b]∂c. The Ricci curvature is given by Rab := Rcab

c.

Definition (Holonomy Group)

Let (M, g) as above. The holonomy group Holx(∇) based at x ∈ M
is the group generated by the parallel transports Pγ , where γ is a
loop in M based at x.



Special Holonomy

Compactification: R1,3 ×M6. Why Calabi–Yau?

Ricci-flat: Rmn = 0.

SU(3) holonomy.

Decomposition of Weyl representation under
SO(1, 9)→ SO(1, 3)× SO(6):

16 = 2L ⊗ 4⊕ 2R ⊗ 4.

Further decomposition of 4 of so(6) ∼= su(4) if M6 has a
SU(3)-structure:

4su(4) = (1⊕ 3)su(3).

The singlet state of su(3) is a covariantly constant spinor of M6, i.e.
∇mϵ = 0. This produces N = 1 supersymmetry in d = 4.

Side effect: M6 is Ricci-flat. (Exercise: try to prove this∼)



Kähler Manifolds

Slogan: A Kähler manifold is the one with compatible Riemannian,
complex, and symplectic strctures, encoded by:

ω(X,Y ) = g(JX, Y ),

where:

ω ∈ Γ(
∧2

T∗M) is a symplectic form;

J ∈ Γ(End(TM)) is a complex structure (J2 = − id);

g ∈ Γ(S2T∗M) is a Riemannian metric.

Any two of (ω, J, g) determines the third one.

Local expression:

ω = igµνdz
µ ∧ dzν , gµν = gµν = 0.



Hodge Theory

Kähler manifolds are a special class of complex manifolds (real
manifolds with an integrable almost complex structure J .)

Exterior differential splits into holomorphic & anti-holomorphic parts:

d = ∂ + ∂.

de Rham cohomology Hn
dR(M ;C) =

⊕
p+q=n

Hp,q(M)

Dolbeault cohomology Hp,q(M) = Hq(M,Ωp
M ).

∂ : Hp,q(M)→ Hp+1,q(M); ∂ : Hp,q(M)→ Hp,q+1(M).

Hodge numbers: hp,q(M) := dimC Hp,q(M).



Hodge Theory

Serre duality:
Hp,q(M) ∼= Hn−q,n−p(M).

Hodge star:
Hp,q(M) ∼= Hn−p,n−q(M)

Complex conjugation:

Hp,q(M) ∼= Hq,p(M)

Hodge diamond:



Calabi–Yau Manifolds

There are a lot of different and inequivalent definitions of a
Calabi–Yau manifold.

Definition (Calabi–Yau Manifolds)

Let M be a 2n-dimensional compact Kähler manifold. We say that
M is Calabi–Yau, if it satisfies any of the following conditions:

1. M has vanishing first Chern class c1(M);
2. M admits a Ricci-flat Kähler metric;
3. M has trivial canonical bundle KM =

∧n
ΩM ;

4. M admits a Kähler metric with holonomy contained in SU(n).
5. M has a unique nowhere vanishing holomorphic n-form.

The conditions satisfy (1) ⇐⇒ (2) ⇐= (3) ⇐⇒ (4) ⇐⇒ (5).
They are all equivalent if M is simply connected.

The hard part is (1) =⇒ (2), known as the Calabi conjecture, proven
by Yau in 1978.



Calabi–Yau Manifolds

Definition (Physicists’ Calabi–Yau Manifolds)

Let M be a 2n-dimensional compact Kähler manifold. We say that
M is Calabi–Yau, ifM admits a Kähler metric with holonomy exactly
equal to SU(n).

Hodge numbers:

h0,0 = 1, hn,0 = 1, hi,0 = 0 for 0 < i < n.

So for a Calabi–Yau 3-fold, the only independent Hodge numbers are
h1,1 and h1,2.

Euler characteristic χ(CY3) = 2(h1,1(CY3)− h1,2(CY3)).



Mirror Calabi–Yau 3-folds

Mirror pair (X,X∨):

h1,1(X) = h1,2(X∨), h1,2(X) = h1,1(X∨).



Calabi–Yau Moduli Space

Infinitesmal deformation of the metric g 7→ g + δg preserving
Ricci-flatness.

Lichnerowicz equation:

∆Lδgµν := ∇ρ∇ρδgµν + 2Rµ
ρ
ν
σδgρσ = 0

1. Mixed indices δgiȷ:
(∆δg)iȷ = 0.

So δgiȷ are components of a (1, 1)-form.

δgiȷ =

h1,1∑
α=1

t̃αbαiȷ

where t̃α ∈ R are the Kähler moduli, which spans the Kähler
cone.



Calabi–Yau Moduli Space

Infinitesmal deformation of the metric g 7→ g + δg preserving
Ricci-flatness.

Lichnerowicz equation:

∆Lδgµν := ∇ρ∇ρδgµν + 2Rµ
ρ
ν
σδgρσ = 0

1. Combining with the deformation of B-field:

(iδgiȷ + δBiȷ) dz
i ∧ dzj =

h1.1∑
α=1

tαbαiȷ

Now tα ∈ C are complexfied Kähler moduli.



Calabi–Yau Moduli Space

Infinitesmal deformation of the metric g 7→ g + δg preserving
Ricci-flatness.

Lichnerowicz equation:

∆Lδgµν := ∇ρ∇ρδgµν + 2Rµ
ρ
ν
σδgρσ = 0

2. Pure indices δgıȷ:

∆∂δg
i = 0, δgi := gikδgkȷdz

ȷ

δgi is a TM := T1,0M -valued (0, 1)-form.

H0,1

∂
(M,TM ) ∼= H1(M,TM ) ∼= H2,1(M), so

Ωijkδg
k
l
=

h2,1∑
a=1

tαbα
ijl

where tα ∈ C are the complex structure moduli.
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Massless Spectra of Type IIA & Type IIB Theories

Type IIA on X ←→ Type IIB on X∨!
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