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Warnings

These slides serve as a motivational introduction to mirror symmetry
from a physical perspective. We will go through some basic concepts
aimed at mathematical audiences. The logic flow is more
chronological than pedagogical.

I am new to this subject, so mistakes and missings are inevitable.
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Principle of Least Action

Definition (Action Functional)

Let M be the “space of configurations” of a physical system. The
action functional is a linear map S: M — R.

In classical mechanics, M is the space of piecewise smooth paths
from z to y on a smooth manifold M.

In classical field theory, M is the space of sections of a vector
bundle E over the spacetime manifold (M, g).

We need a well-behaved measure on M to perform calculus of
variations and integrations. This is usually not well-defined, but
physicists just assume it.



Principle of Least Action

Proposition (Principle of Least Action)

The trajectory of a system is the one which extremise the action:
0S8 = 0.

In classical mechanics, the action arises as the integral of the
Lagrangian:
ty
S= / L(ga, G, ) dt.
to

The principle of least action is equivalent to the Euler-Lagrange
equations (“equations of motions”):

4oL oL
dt 94, 9qa -

where (¢1, ...,¢n) is a set of coordinates on M.



Principle of Least Action

Proposition (Principle of Least Action)

The trajectory of a system is the one which extremise the action:
0S8 = 0.

In classical field theory, the action arises as the integral of the
Lagrangian density:

Sz/ E(gpa,@agﬁa)dvolg:/ L+/—det gd™z.
M R1.d—1

The Euler-Lagrange equations:

Z 875 =0
0z O agoa) 0pa



Path Integral Formalism

Now we move from classical to quantum! In the path integral
formalism, the primary object is the partition function:

A ::/ Dlv] e SN/1
M

where D[v] is a well-behaved measure on M (which, unfortunately,
does not exist in general. This is one of the most notable
mathematical difficulties of quantum field theory.)

In the classical limit 7 — 0, only the classical solution such that
0S5 = 0 contributes to the partition function.

An observable O is an operator-valued distribution on M with the
expectation:

©) = [ DhloG)esn,



Polyakov Action

A string is a 1-dimensional object in the space. It traces out a
2-dimensional surface (the “worldsheet”) in the spacetime M. So
mathematically, string theory is about (the quantisation of) the
embedding X : ¥ — M of a Lorentzian surface into a d-dimensional
Lorentzian manifold.

Definition (Polyakov Action)

The classical bosonic string is described by the Polyakov action:

1
S[X,h] = / d*o V= det h h*P 0, X" 05 X" g,
>

4o’

where h, g are the metrics on ¥ and M respectively, and X = (X*)
are the coordinates of M.



Supersymmetry

Slogan:
bosonic fields ‘ fermionic fields
even variables odd variables
(“c-numbers”) (“Grassmann numbers”)

commutator [a,b] = ab — ba | anti-commutator {a,b} = ab + ba

ungraded Lie algebra — Z/2-graded Lie algebra
(“supersymmetric algebra”)

Supersymmetric scalar multiplet: (scalar fields X*, fermions *);
Supergravity multiplet: (frame fields e%, gravitini y,).



Ramond-Neveu-Schwarz Strings

Bosonic string + N = 1 worldsheet supersymmetry = RNS string.
Proposition (RNS String Action)

The RNS string (fized to superconformal gauge) is described by the
action

1 2 =
S = —— d20' <—,3QX"5‘O‘XV + 217/1MPQ oﬂﬁl’) glLV
8T [ o}

The action is invariant under the supersymmetric transformation:

2
VS0 XH = i
(%
[21
66,1;1)“ = Jip aOéXHE



Conformal Field Theory

The classical string action is Weyl invariant:
h— Q%h

So string theory is a 2-dimensional conformal field theory!
The stress-energy tensor is traceless: tr7" = 0.

After quantisation, Weyl invariance must be preserved:
c
(trT) = _ER (worldsheet scalar curvature)

So central charge ¢ = 0.

After massaging operator product expansions...
c=d—10 = d=10

Conformal field theory tells us that superstrings live in 10 spacetime
dimensions!!! Needs compactification of 6 extra dimensions to get
real-world physics. See later.



Conformal Field Theory

For closed strings, the periodic boundary condition on *:

Y (o) = +yH (o + 4), Ramond sector
Y (o) = —¢pH (o + £), Neveu—Schwarz sector

Two independent spinors ¢! (o), ¥" (07), so 4 types of closed
strings: (R,R), (NS,NS), (R,NS), (NS,R).

N =1 super-Virasoro algebra:

c
[Lin, Ln) = (M —n)Lppgn + —m (m2 — 1) Om,—n

12
m
[Lmv GT] = (5 - T’) Gm+r
(G, G} = 2Ly o+ — (2 = 1) 6,

12

1
Ramond sector: r, s € Z; Neveu-Schwarz sector: r,s € Z + 3



Working towards Superstring Theories

Recall that in bosonic string theory, critial dimension d = 26; and the
ground state is tachyonic (m? < 0).

For superstring with worldsheet as a Riemann surface:

Modular invariance & Vanishing of one-loop partition function

4 _
GSO projection (—1)F, (=1)F
4
Tachyon-free & Spacetime supersymmetry N = 2
e N\

Type ITA superstring theory Type IIB superstring theory
(Non-chiral) (Chiral)



The Landscape of String Dualities

11d Supergravity —— Perturbative

—— Non-perturbative

Heterotic Type A

EsXEg

Mirror
Symmetry

Type IIB

Heterotic
S0O(32)

Strong-Weak Orientifold

Duality SLs (Z)

Typel
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Compactification

Superstring theory works in 10 dimensions, but our physical world has
only 4 dimensions. We would like to factor the spacetime as

RY3 x Mg
where Mg is a 6-dimensional compact Riemannian manifold of length
scale ~ 1073% m.

Even though we do not observe Mg, the geometry of it actually
determines the physics in the Minkowski space R':3!

Toroidal compactification: Mg = T°.
All supersymmetries preserved — phenomenologically unfavourable.

Calabi—Yau compactification of heterotic strings: Mg = CYs3.
N =1 minimal supersymmetric standard model (MSSM)!

There are simply too many choices of Mg for string theory to make
physical predictions. This is why string theory is not considered as a
part of physics by many people.



Naive Example: Toroidal Compactification
Consider the compactification M4t = M? x S1:

z¢ ~ 2% + 27 Rw.

R € R is the radius of the circle S'; w € Z is the winding number.

Slogan: Gravity in (d + 1)-dimensions produces electromagnetism in
d-dimensions.

Factorisation of metric:
d d—1 d—1 2
G= Z gundzMdzN = Z guvdatdz” +gqq (dxd + ZAMd:L’“> .
M,N=0 p,v=0 pn=0

Coordinate change x¢ +— x¢ + \(x#) produces gauge transformation
Ay = Ay — O

“Kaluza—Klein Reduction”. A4,: KK gauge boson.



Naive Example: Toroidal Compactification
Scalar field ¢ in (d + 1)-dimensions has the mode expansion:
o) = D pulat) e IR
nez
The momentum p; = n/R is quantised.

Mass for bosonic string:

, n?  wiR? 2 ~ ~

m'= bt (NN =2, N-N=nw.
T-duality:
al
R+ —, > w.
R n w

Also Type IIA < Type IIB.



Naive Example: Toroidal Compactification
Now consider compactification M+P = M x TP TP .= RP /2rAp.
For modular invariance the lattice Ap must be self-dual: Ap = A},.

KK reduction = Gauge boson A, 2-form B,,,.

B-field: “massless scalar degrees of freedom contributed by the

internal 2-form”...

T-duality:
a(g+b)<—>a'(g+b)_1, n & w

Moduli space:



Naive Example: Toroidal Compactification
2-torus: T? = R?/(Zey + Zes). Gij = €; - €;.

1
Complexified Kahler modulus: T := J(B +iV/detg) =T +iTs.

Complex structure modulus:
= leall iien ez — 912 +1Vdetg
e 911

(gz“)ZO/E : Ulz .
’ U, \U1 U]

T-duality: (n1,n9,wi,ws) < (—w1,ne, —ni,ws); T < U.

=U; +1Us.

This is a prototype of mirror symmetry, where the complex structure
and the Kéahler structure interchanges under the mirror
transformation.
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Special Holonomy
Compactification: R™3 x M. Why Calabi-Yau?

Ricci-flat: Ry, = 0. (Think of vacuum solutions of Finstein
equation.)

SU(3) holonomy.

Definition (Curvature)

Let (M,g) be a Riemannian/Lorentzian manifold with Levi-Civita
connection V. The Riemann curvature is given by Rap%0; =
[Va, Vp]0e. The Ricci curvature is given by R := Reap®.

Definition (Holonomy Group)

Let (M, g) as above. The holonomy group Hol, (V) based at © € M
is the group generated by the parallel transports P,, where v is a
loop in M based at z.



Special Holonomy
Compactification: R™3 x M. Why Calabi-Yau?

Ricci-flat: R,,,, = 0.
SU(3) holonomy.

Decomposition of Weyl representation under
SO(1,9) — SO(1,3) x SO(6):

16 =2;, 4P 2r Q4.

Further decomposition of 4 of s0(6) = su(4) if Mg has a
SU(3)-structure:

4ou) = (1@ 3)su(3)-

The singlet state of su(3) is a covariantly constant spinor of Mg, i.e.
Vme = 0. This produces N' = 1 supersymmetry in d = 4.

Side effect: Mg is Ricci-flat. (Exercise: try to prove this~)



Kahler Manifolds

Slogan: A Kéhler manifold is the one with compatible Riemannian,
complex, and symplectic strctures, encoded by:

w(X7Y) = g(JX7Y)7

where:
w e T(A?T*M) is a symplectic form;
J € T(End(TM)) is a complex structure (J? = —id);
g € T(S?T*M) is a Riemannian metric.

Any two of (w, J,g) determines the third one.

Local expression:

w = igugdz“ A\ dEV, Guv = Gpv = 0.



Hodge Theory

Kéhler manifolds are a special class of complex manifolds (real
manifolds with an integrable almost complex structure J.)

Exterior differential splits into holomorphic & anti-holomorphic parts:
d=0+0.
de Rham cohomology Hjy (M; C) @ HP (M
p+q=n

Dolbeault cohomology HP¢(M) = HY(M, Q).

0: HPY(M) — HPTH(M);  9: HPY(M) — HP9TH(M).

Hodge numbers: hP?(M) := dim¢ HP9(M).



Hodge Theory

Serre duality:
HP (M) =2 H" 2" "P(M).

Hodge star:
HPI(M) =2 H" P9 M)

Complex conjugation:
HP4(M) = HOP (M)

Hodge diamond:

h™0 A hOm Hodge
Serre I &

pnin—1 hn—l.n
prn

>

conjugation



Calabi—Yau Manifolds

There are a lot of different and inequivalent definitions of a
Calabi—Yau manifold.

Definition (Calabi-Yau Manifolds)

Let M be a 2n-dimensional compact Kahler manifold. We say that
M is Calabi—Yau, if it satisfies any of the following conditions:

M has vanishing first Chern class ¢;(M);

M admits a Ricci-flat Kéhler metric;

M has trivial canonical bundle Ky = A" Qur;

M admits a Kéhler metric with holonomy contained in SU(n).
M has a unique nowhere vanishing holomorphic n-form.

S 8O =

The conditions satisfy (1) <= (2) <= (3) <— (4) < (5).
They are all equivalent if M is simply connected.

The hard part is (1) = (2), known as the Calabi conjecture, proven
by Yau in 1978.



Calabi—Yau Manifolds

Definition (Physicists’ Calabi—Yau Manifolds)

Let M be a 2n-dimensional compact Kahler manifold. We say that
M is Calabi-Yau, if M admits a Kahler metric with holonomy ezactly
equal to SU(n).

Hodge numbers:
ROO = 1, 0 =1, R0 =0 for 0 < i < n.

So for a Calabi—Yau 3-fold, the only independent Hodge numbers are
hY! and h12.

Euler characteristic x(CY3) = 2(h**(CY3) — h12(CY3)).



Mirror Calabi—Yau 3-folds

complex conjugation

Mirror pair (X, XV):

hl,l(X) _ hl’Q(XV), h1’2(X) _ hl’l(XV).



Calabi-Yau Moduli Space

Infinitesmal deformation of the metric g — ¢g + dg preserving
Ricci-flatness.

Lichnerowicz equation:
ALdGu = VPV 09 + 2R, 70906 =0
1. Mixed indices dg;53:
(Adg)i; = 0.
So dg;7 are components of a (1, 1)-form.
Rt

dgi3 =Y 1°b;
a=1

where t® € R are the Kéhler moduli, which spans the Kdhler
cone.



Calabi-Yau Moduli Space

Infinitesmal deformation of the metric g — ¢g + dg preserving
Ricci-flatness.

Lichnerowicz equation:
ALdGu = VPV 09 + 2R, 70906 =0
1. Combining with the deformation of B-field:
hl 1

(idgi5 + 6Bi3) Yd2' AdF = Z t*bi

Now t* € C are complexfied Kéahler moduli.



Calabi-Yau Moduli Space

Infinitesmal deformation of the metric g — ¢g + dg preserving
Ricci-flatness.

Lichnerowicz equation:

ALdGu = VPV 09 + 2R, 70906 =0

2. Pure indices gz
Agégi =0, 5gt = giE(SgEjdEj
§g' is a Tpy := THOM-valued (0, 1)-form.
Ho' (M, Ty) 22 HY (M, Tyy) = H2 (M), s0
21
Qijedgf =Y b5
a=1

where t¢ € C are the complex structure moduli.
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Massless Spectra of Type ITA & Type 1IB Theories
Type IIA on X <— Type IIB on XV!

Table 14.1 Massless spectrum of the type II theories on C'Y3

| Multiplet | Component fields | Multiplicity |

Type I1A

Gravity | g Vol Vi Vi e iz (C) 1

Hyper An’]-j‘iyr}*i&r]?ﬂ?v)La’]lef-lp- B,.. (Cl)ijb (Cz),-y;( 1

Hyper Valli 75 Vallng Valli 7 Vallig- 817 877 (C3)i77 (C)iji h?!

Vector (C3)/AI'7‘1/;U'(771.]~ l//a777_,’[-17/a771./’< &&UT.jﬂgi% B/] ht!
Type 1IB

Gravity | g Va1 Vel Vil Va iz (Ca )iz 1

Hyper | Aul). Aallzg. Aol Atz D.d. By (Ca) 1

Hyper Wm’]r‘j- ‘po}’?,‘__ﬂf-&aﬂf.]ﬂ/;&']r_;[-g:% Bi7<(C2)z‘/'v (C4+)/wi/_ h*!

Vector (Ci) i Wahs g Vel Vil g Wali 5 817 57 h*!
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