A String-Theoretic Introduction to Mirror Symmetry

Peize Liu

University of Oxford peize.liu@spc.ox.ac.uk

20 June 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Warnings

These slides serve as a motivational introduction to mirror symmetry from a physical perspective. We will go through some basic concepts aimed at mathematical audiences. The logic flow is more chronological than pedagogical.

I am new to this subject, so mistakes and missings are inevitable.

Table of Contents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2 Compactification

3 Calabi–Yau Manifolds

4 Mirror Symmetry

Table of Contents

1 Crash Course on String Theory

2 Compactification

3 Calabi–Yau Manifolds

4 Mirror Symmetry

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

うして ふゆ く は く は く む く し く

Definition (Action Functional)

Let \mathcal{M} be the "space of configurations" of a physical system. The action functional is a linear map $S \colon \mathcal{M} \to \mathbb{R}$.

In classical mechanics, \mathcal{M} is the space of piecewise smooth paths from x to y on a smooth manifold M.

In classical field theory, \mathcal{M} is the space of sections of a vector bundle E over the spacetime manifold (M, g).

We need a well-behaved measure on \mathcal{M} to perform calculus of variations and integrations. This is usually not well-defined, but physicists just assume it.

うして ふゆ く は く は く む く し く

Proposition (Principle of Least Action)

The trajectory of a system is the one which extremise the action: $\delta S = 0$.

In classical mechanics, the action arises as the integral of the Lagrangian:

$$S = \int_{t_0}^{t_1} L(q_a, \dot{q}_a, t) \,\mathrm{d}t.$$

The principle of least action is equivalent to the Euler–Lagrange equations ("equations of motions"):

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}_a} - \frac{\partial L}{\partial q_a} = 0,$$

where $(q_1, ..., q_n)$ is a set of coordinates on M.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposition (Principle of Least Action)

The trajectory of a system is the one which extremise the action: $\delta S = 0$.

In classical field theory, the action arises as the integral of the Lagrangian density:

$$S = \int_M \mathcal{L}(\varphi_\alpha, \partial_a \varphi_\alpha) \,\mathrm{d}\,\mathrm{vol}_g = \int_{\mathbb{R}^{1,d-1}} \mathcal{L}\sqrt{-\det g} \,\mathrm{d}^n x.$$

The Euler–Lagrange equations:

$$\sum_{a} \frac{\partial}{\partial x^{a}} \frac{\partial \mathcal{L}}{\partial (\partial_{a} \varphi_{\alpha})} - \frac{\partial \mathcal{L}}{\partial \varphi_{\alpha}} = 0.$$

Path Integral Formalism

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

Now we move from classical to quantum! In the path integral formalism, the primary object is the partition function:

$$Z := \int_{\mathcal{M}} \mathcal{D}[\gamma] \, \mathrm{e}^{\mathrm{i}S(\gamma)/\hbar},$$

where $\mathcal{D}[\gamma]$ is a well-behaved measure on \mathcal{M} (which, unfortunately, does not exist in general. This is one of the most notable mathematical difficulties of quantum field theory.)

In the classical limit $\hbar \to 0$, only the classical solution such that $\delta S = 0$ contributes to the partition function.

An observable O is an operator-valued distribution on \mathcal{M} with the expectation:

$$\langle O \rangle := \int_{\mathcal{M}} \mathcal{D}[\gamma] O(\gamma) e^{iS(\gamma)/\hbar}$$

Polyakov Action

うしゃ ふゆ きょう きょう うくの

A string is a 1-dimensional object in the space. It traces out a 2-dimensional surface (the "worldsheet") in the spacetime M. So mathematically, string theory is about (the quantisation of) the embedding $X: \Sigma \to M$ of a Lorentzian surface into a *d*-dimensional Lorentzian manifold.

Definition (Polyakov Action)

The classical bosonic string is described by the Polyakov action:

$$S[X,h] = -\frac{1}{4\pi\alpha'} \int_{\Sigma} \mathrm{d}^2\sigma \sqrt{-\det h} \, h^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} g_{\mu\nu},$$

where h, g are the metrics on Σ and M respectively, and $X = (X^{\mu})$ are the coordinates of M.

Supersymmetry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Slogan:

bosonic fieldsfermionic fieldseven variablesodd variables("c-numbers")("Grassmann numbers")commutator [a, b] = ab - baanti-commutator $\{a, b\} = ab + ba$

ungraded Lie algebra $\rightarrow \mathbb{Z}/2$ -graded Lie algebra ("supersymmetric algebra")

Supersymmetric scalar multiplet: (scalar fields X^{μ} , fermions ψ^{μ}); Supergravity multiplet: (frame fields e^a_{α} , gravitini χ_{α}).

Ramond–Neveu–Schwarz Strings

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bosonic string + N = 1 worldsheet supersymmetry = RNS string.

Proposition (RNS String Action)

The RNS string (fixed to superconformal gauge) is described by the action

$$S = -\frac{1}{8\pi} \int_{\Sigma} \mathrm{d}^2 \sigma \left(\frac{2}{\alpha'} \partial_{\alpha} X^{\mu} \partial^{\alpha} X^{\nu} + 2\mathrm{i} \overline{\psi}^{\mu} \rho^{\alpha} \partial_{\alpha} \psi^{\nu} \right) g_{\mu\nu}$$

The action is invariant under the supersymmetric transformation:

$$\sqrt{\frac{2}{\alpha'}} \delta_{\epsilon} X^{\mu} = \mathbf{i} \overline{\epsilon} \psi^{\mu}$$
$$\delta_{\epsilon} \psi^{\mu} = \sqrt{\frac{2}{\alpha'}} \frac{1}{2} \rho^{\alpha} \partial_{\alpha} X^{\mu} \epsilon$$

Conformal Field Theory

The classical string action is Weyl invariant:

$$h\mapsto \Omega^2 h$$

So string theory is a 2-dimensional conformal field theory! The stress-energy tensor is traceless: tr T = 0.

After quantisation, Weyl invariance must be preserved:

$$\langle \operatorname{tr} T \rangle = -\frac{c}{12}R$$
 (worldsheet scalar curvature)

So central charge c = 0.

After massaging operator product expansions...

$$c = d - 10 \implies d = 10$$

Conformal field theory tells us that superstrings live in 10 spacetime dimensions!!! Needs compactification of 6 extra dimensions to get real-world physics. See later.

Conformal Field Theory

うして ふゆ く は く は く む く し く

For closed strings, the periodic boundary condition on ψ^{μ} :

$$\begin{split} \psi^{\mu}(\sigma) &= +\psi^{\mu}(\sigma+\ell), \qquad \text{Ramond sector} \\ \psi^{\mu}(\sigma) &= -\psi^{\mu}(\sigma+\ell), \qquad \text{Neveu-Schwarz sector} \end{split}$$

Two independent spinors $\psi^{\mu}_{+}(\sigma^{+})$, $\psi^{\mu}_{-}(\sigma^{-})$, so 4 types of closed strings: (R,R), (NS,NS), (R,NS), (NS,R).

N = 1 super-Virasoro algebra:

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}m(m^2 - 1)\delta_{m,-n}$$
$$[L_m, G_r] = \left(\frac{m}{2} - r\right)G_{m+r}$$
$$\{G_r, G_s\} = 2L_{r+s} + \frac{c}{12}(4r^2 - 1)\delta_{r,-s}$$

Ramond sector: $r, s \in \mathbb{Z}$; Neveu–Schwarz sector: $r, s \in \mathbb{Z} + \frac{1}{2}$.

Working towards Superstring Theories

うして ふゆ く は く は く む く し く

Recall that in bosonic string theory, critial dimension d = 26; and the ground state is *tachyonic* $(m^2 < 0)$.

For superstring with worldsheet as a Riemann surface:

The Landscape of String Dualities

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



Table of Contents

1 Crash Course on String Theory

2 Compactification

3 Calabi–Yau Manifolds

4 Mirror Symmetry

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● のへで

Compactification

Superstring theory works in 10 dimensions, but our physical world has only 4 dimensions. We would like to factor the spacetime as

$\mathbb{R}^{1,3} \times M_6$

where M_6 is a 6-dimensional compact Riemannian manifold of length scale $\sim 10^{-35}$ m.

Even though we do not observe M_6 , the geometry of it actually determines the physics in the Minkowski space $\mathbb{R}^{1,3}$!

Toroidal compactification: $M_6 = T^6$.

All supersymmetries preserved \rightarrow phenomenologically unfavourable.

Calabi–Yau compactification of heterotic strings: $M_6 = CY_3$.

 $\mathcal{N} = 1$ minimal supersymmetric standard model (MSSM)!

There are simply too many choices of M_6 for string theory to make physical predictions. This is why string theory is not considered as a part of physics by many people.

Consider the compactification $M^{d+1} = M^d \times S^1$:

$$x^d \sim x^d + 2\pi Rw.$$

 $R \in R$ is the radius of the circle S^1 ; $w \in \mathbb{Z}$ is the winding number.

Slogan: Gravity in (d+1)-dimensions produces electromagnetism in d-dimensions.

Factorisation of metric:

$$G = \sum_{M,N=0}^{d} g_{MN} \mathrm{d}x^{M} \mathrm{d}x^{N} = \sum_{\mu,\nu=0}^{d-1} g_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} + g_{dd} \left(\mathrm{d}x^{d} + \sum_{\mu=0}^{d-1} A_{\mu} \mathrm{d}x^{\mu} \right)^{2}$$

Coordinate change $x^d \mapsto x^d + \lambda(x^{\mu})$ produces gauge transformation $A_{\mu} \mapsto A_{\mu} - \partial_{\mu}\lambda$.

"Kaluza–Klein Reduction". A_{μ} : KK gauge boson.

Scalar field ϕ in (d+1)-dimensions has the mode expansion:

$$\phi(x^M) = \sum_{n \in \mathbb{Z}} \phi_n(x^\mu) \,\mathrm{e}^{\mathrm{i} n x^d/R}$$

The momentum $p_d = n/R$ is quantised. Mass for bosonic string:

$$m^{2} = \frac{n^{2}}{R^{2}} + \frac{w^{2}R^{2}}{\alpha'^{2}} + \frac{2}{\alpha'}(N + \tilde{N} - 2), \qquad N - \tilde{N} = nw.$$

T-duality:

$$R \leftrightarrow \frac{\alpha'}{R}, \qquad n \leftrightarrow w.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

Also Type IIA \leftrightarrow Type IIB.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Now consider compactification $M^{d+D} = M^d \times T^D$, $T^D := \mathbb{R}^D / 2\pi \Lambda_D$. For modular invariance the lattice Λ_D must be self-dual: $\Lambda_D = \Lambda_D^*$.

KK reduction \implies Gauge boson A_{μ} , 2-form B_{mn} . B-field: "massless scalar degrees of freedom contributed by the internal 2-form"...

T-duality:

$$rac{1}{lpha'}(oldsymbol{g}+oldsymbol{b}) \leftrightarrow lpha'(oldsymbol{g}+oldsymbol{b})^{-1}, \qquad oldsymbol{n} \leftrightarrow oldsymbol{w}$$

Moduli space:

$$\frac{\mathcal{O}(D,D)}{\mathcal{O}(D)\times\mathcal{O}(D)} \middle/ \mathcal{O}(D,D;\mathbb{Z})$$

2-torus:
$$T^2 = \mathbb{R}^2 / (\mathbb{Z}e_1 + \mathbb{Z}e_2)$$
. $g_{ij} := e_i \cdot e_j$.

Complexified Kähler modulus: $T := \frac{1}{\alpha'}(B + i\sqrt{\det g}) = T_1 + iT_2$. Complex structure modulus:

$$U := \frac{\|e_2\|}{\|e_1\|} e^{i\varphi(e_1, e_2)} = \frac{g_{12} + i\sqrt{\det g}}{g_{11}} = U_1 + iU_2.$$
$$(g_{ij}) = \alpha' \frac{T_2}{U_2} \begin{pmatrix} 1 & U_1 \\ U_1 & |U|^2 \end{pmatrix}.$$

T-duality: $(n_1, n_2, w_1, w_2) \leftrightarrow (-w_1, n_2, -n_1, w_2); \quad T \leftrightarrow U.$

This is a prototype of mirror symmetry, where the complex structure and the Kähler structure interchanges under the mirror transformation.

Table of Contents

1 Crash Course on String Theory

2 Compactification

3 Calabi–Yau Manifolds

4 Mirror Symmetry

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Special Holonomy

Compactification: $\mathbb{R}^{1,3} \times M_6$. Why Calabi–Yau?

Ricci-flat: $R_{mn} = 0$. (Think of vacuum solutions of Einstein equation.) SU(3) holonomy.

Definition (Curvature)

Let (M,g) be a Riemannian/Lorentzian manifold with Levi-Civita connection ∇ . The Riemann curvature is given by $R_{abc}{}^d\partial_d = [\nabla_a, \nabla_b]\partial_c$. The Ricci curvature is given by $R_{ab} := R_{cab}{}^c$.

Definition (Holonomy Group)

Let (M, g) as above. The holonomy group $\operatorname{Hol}_x(\nabla)$ based at $x \in M$ is the group generated by the parallel transports P_{γ} , where γ is a loop in M based at x.

Special Holonomy

Compactification: $\mathbb{R}^{1,3} \times M_6$. Why Calabi–Yau?

Ricci-flat: $R_{mn} = 0$. SU(3) holonomy.

Decomposition of Weyl representation under $SO(1,9) \rightarrow SO(1,3) \times SO(6)$:

$$\mathbf{16} = \mathbf{2}_{\boldsymbol{L}} \otimes \overline{\mathbf{4}} \oplus \mathbf{2}_{\boldsymbol{R}} \otimes \mathbf{4}.$$

Further decomposition of **4** of $\mathfrak{so}(6) \cong \mathfrak{su}(4)$ if M_6 has a SU(3)-structure:

$$\mathbf{4}_{\mathfrak{su}(4)} = (\mathbf{1} \oplus \mathbf{3})_{\mathfrak{su}(3)}.$$

The singlet state of $\mathfrak{su}(3)$ is a covariantly constant spinor of M_6 , i.e. $\nabla_m \epsilon = 0$. This produces $\mathcal{N} = 1$ supersymmetry in d = 4.

Side effect: M_6 is Ricci-flat. (Exercise: try to prove this~)

Kähler Manifolds

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Slogan: A Kähler manifold is the one with compatible Riemannian, complex, and symplectic structures, encoded by:

$$\omega(X,Y) = g(JX,Y),$$

where:

$$\begin{split} &\omega\in \Gamma(\bigwedge^2 \mathrm{T}^*M) \text{ is a symplectic form;} \\ &J\in \Gamma(\mathrm{End}(\mathrm{T}M)) \text{ is a complex structure } (J^2=-\operatorname{id}); \\ &g\in \Gamma(\mathrm{S}^2\mathrm{T}^*M) \text{ is a Riemannian metric.} \\ &\mathrm{Any \ two \ of \ } (\omega,J,g) \ \mathrm{determines \ the \ third \ one.} \end{split}$$

Local expression:

$$\omega = \mathrm{i}g_{\mu\overline{\nu}}\mathrm{d}z^{\mu}\wedge\mathrm{d}\overline{z}^{\nu}, \qquad g_{\mu\nu} = g_{\overline{\mu}\overline{\nu}} = 0.$$

Hodge Theory

うして ふぼう ふほう ふほう ふしつ

Kähler manifolds are a special class of complex manifolds (real manifolds with an integrable almost complex structure J.)

Exterior differential splits into holomorphic & anti-holomorphic parts:

$$\mathbf{d} = \partial + \overline{\partial}.$$

de Rham cohomology $\mathrm{H}^{n}_{\mathrm{dR}}(M;\mathbb{C}) = \bigoplus_{p+q=n} \mathrm{H}^{p,q}(M)$ Dolbeault cohomology $\mathrm{H}^{p,q}(M) = \mathrm{H}^{q}(M,\Omega^{p}_{M}).$

 $\partial \colon \mathrm{H}^{p,q}(M) \to \mathrm{H}^{p+1,q}(M); \qquad \overline{\partial} \colon \mathrm{H}^{p,q}(M) \to \mathrm{H}^{p,q+1}(M).$

Hodge numbers: $h^{p,q}(M) := \dim_{\mathbb{C}} H^{p,q}(M)$.

Hodge Theory

Serre duality:

$$\mathrm{H}^{p,q}(M) \cong \mathrm{H}^{n-q,n-p}(M).$$

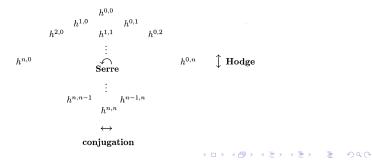
Hodge star:

$$\mathrm{H}^{p,q}(M) \cong \mathrm{H}^{n-p,n-q}(M)$$

Complex conjugation:

$$\mathrm{H}^{p,q}(M) \cong \mathrm{H}^{q,p}(M)$$

Hodge diamond:



Calabi–Yau Manifolds

There are a lot of different and inequivalent definitions of a Calabi–Yau manifold.

Definition (Calabi–Yau Manifolds)

Let M be a 2n-dimensional compact Kähler manifold. We say that M is Calabi–Yau, if it satisfies any of the following conditions:

- 1. M has vanishing first Chern class $c_1(M)$;
- 2. *M* admits a Ricci-flat Kähler metric;
- 3. *M* has trivial canonical bundle $K_M = \bigwedge^n \Omega_M$;
- 4. *M* admits a Kähler metric with holonomy contained in SU(n).
- 5. M has a unique nowhere vanishing holomorphic n-form.

The conditions satisfy $(1) \iff (2) \iff (3) \iff (4) \iff (5)$. They are all equivalent if M is simply connected.

The hard part is (1) \implies (2), known as the *Calabi conjecture*, proven by Yau in 1978.

うして ふゆ く は く は く む く し く

Definition (Physicists' Calabi–Yau Manifolds)

Let M be a 2*n*-dimensional compact Kähler manifold. We say that M is Calabi–Yau, if M admits a Kähler metric with holonomy *exactly* equal to SU(n).

Hodge numbers:

$$h^{0,0} = 1,$$
 $h^{n,0} = 1,$ $h^{i,0} = 0$ for $0 < i < n.$

So for a Calabi–Yau 3-fold, the only independent Hodge numbers are $h^{1,1}$ and $h^{1,2}$.

Euler characteristic $\chi(CY_3) = 2(h^{1,1}(CY_3) - h^{1,2}(CY_3)).$

Mirror Calabi–Yau 3-folds

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

Mirror pair (X, X^{\vee}) :

$$h^{1,1}(X) = h^{1,2}(X^{\vee}), \qquad h^{1,2}(X) = h^{1,1}(X^{\vee}).$$

Calabi–Yau Moduli Space

Infinite
smal deformation of the metric $g\mapsto g+\delta g$ preserving Ricci-flatness.

Lichnerowicz equation:

$$\Delta_L \delta g_{\mu\nu} := \nabla^{\rho} \nabla_{\rho} \delta g_{\mu\nu} + 2R_{\mu}{}^{\rho}{}_{\nu}{}^{\sigma} \delta g_{\rho\sigma} = 0$$

1. Mixed indices $\delta g_{i\overline{j}}$:

$$(\Delta \delta g)_{i\overline{\jmath}}=0.$$

So $\delta g_{i\overline{j}}$ are components of a (1, 1)-form.

$$\delta g_{i\overline{j}} = \sum_{\alpha=1}^{h^{1,1}} \tilde{t}^{\alpha} b_{i\overline{j}}^{\alpha}$$

where $\tilde{t}^{\alpha} \in \mathbb{R}$ are the Kähler moduli, which spans the Kähler cone.

Calabi–Yau Moduli Space

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

Infinite
smal deformation of the metric $g\mapsto g+\delta g$ preserving Ricci-flatness.

Lichnerowicz equation:

$$\Delta_L \delta g_{\mu\nu} := \nabla^{\rho} \nabla_{\rho} \delta g_{\mu\nu} + 2R_{\mu}{}^{\rho}{}_{\nu}{}^{\sigma} \delta g_{\rho\sigma} = 0$$

1. Combining with the deformation of B-field:

$$(\mathrm{i}\delta g_{i\overline{\jmath}} + \delta B_{i\overline{\jmath}}) \,\mathrm{d}z^i \wedge \mathrm{d}\overline{z}^j = \sum_{\alpha=1}^{h^{1,1}} t^\alpha b_{i\overline{\jmath}}^\alpha$$

Now $t^{\alpha} \in \mathbb{C}$ are complexified Kähler moduli.

Calabi-Yau Moduli Space

Infinite
smal deformation of the metric $g\mapsto g+\delta g$ preserving Ricci-flatness.

Lichnerowicz equation:

$$\Delta_L \delta g_{\mu\nu} := \nabla^{\rho} \nabla_{\rho} \delta g_{\mu\nu} + 2R_{\mu}{}^{\rho}{}_{\nu}{}^{\sigma} \delta g_{\rho\sigma} = 0$$

2. Pure indices $\delta g_{\overline{\imath j}}$:

$$\Delta_{\overline{\partial}} \delta g^i = 0, \qquad \delta g^i := g^{i\overline{k}} \delta g_{\overline{k}\overline{j}} \mathrm{d}\overline{z}^{\overline{j}}$$

 δg^i is a $\mathbf{T}_M := \mathbf{T}^{1,0} M$ -valued (0, 1)-form. $\mathbf{H}^{0,1}_{\overline{\partial}}(M, \mathbf{T}_M) \cong \mathbf{H}^1(M, \mathbf{T}_M) \cong \mathbf{H}^{2,1}(M)$, so

$$\Omega_{ijk}\delta g_{\bar{l}}^{k} = \sum_{a=1}^{h^{2,1}} t^{\alpha} b_{ij\bar{l}}^{\alpha}$$

where $t^{\alpha} \in \mathbb{C}$ are the complex structure moduli.

Table of Contents

1 Crash Course on String Theory

2 Compactification

3 Calabi–Yau Manifolds

4 Mirror Symmetry

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めへぐ

Massless Spectra of Type IIA & Type IIB Theories

Type IIA on $X \longleftrightarrow$ Type IIB on X^{\vee} !

Multiplet	Component fields	Multiplicity
Туре ПА		
Gravity	$g_{\mu\nu},\psi_{\mu\alpha}\eta,\bar{\tilde{\psi}}_{\mu\dot{\alpha}}\eta,\bar{\psi}_{\mu\dot{\alpha}}\eta_{\bar{\imath}\bar{\jmath}\bar{k}},\tilde{\psi}_{\mu\alpha}\eta_{\bar{\imath}\bar{\jmath}\bar{k}},(C_1)_{\mu}$	1
Hyper	$\lambda_{\alpha}\eta, \overline{\widetilde{\lambda}}_{\dot{\alpha}}\eta, \overline{\lambda}_{\dot{\alpha}}\eta_{\overline{i}\overline{j}\overline{k}}, \widetilde{\lambda}_{\alpha}\eta_{\overline{i}\overline{j}\overline{k}}, \boldsymbol{\Phi}, \boldsymbol{B}_{\mu\nu}, (C_3)_{ijk}, (C_3)_{\overline{i}\overline{j}\overline{k}}$	1
Hyper	$\psi_{\alpha}\eta_{i,\overline{j}\overline{k}},\overline{\psi}_{\dot{\alpha}}\eta_{\overline{i},\overline{j}},\overline{\tilde{\psi}}_{\dot{\alpha}}\eta_{\overline{i},\overline{j}\overline{k}},\widetilde{\psi}_{\alpha}\eta_{\overline{i},\overline{j}},g_{ij},g_{\overline{i}\overline{j}},(C_3)_{i\overline{j}\overline{k}},(C_3)_{\overline{i}jk}$	$h^{2,1}$
Vector	$(C_3)_{\mu i \bar{j}}, \bar{\psi}_{\dot{\alpha}} \eta_{i,\bar{j}}, \psi_{\alpha} \eta_{\bar{i},\bar{j}\bar{k}}, \tilde{\psi}_{\alpha} \eta_{i,\bar{j}}, \bar{\tilde{\psi}}_{\dot{\alpha}} \eta_{\bar{i},\bar{j}\bar{k}}, g_{i\bar{j}}, B_{i\bar{j}}$	$h^{1,1}$
Туре ІІВ		
Gravity	$g_{\mu\nu}, \bar{\psi}_{\mu\dot{\alpha}}\eta, \psi_{\mu\alpha}\eta_{\bar{\imath}\bar{\imath}\bar{k}}, \tilde{\bar{\psi}}_{\mu\dot{\alpha}}\eta, \tilde{\psi}_{\mu\alpha}\eta_{\bar{\imath}\bar{\imath}\bar{k}}, (C_4^+)_{\mu ijk}$	1
Hyper	$\lambda_{\alpha}\eta, \bar{\lambda}_{\dot{\alpha}}\eta_{\bar{i}\bar{j}\bar{k}}, \tilde{\lambda}_{\alpha}\eta, \tilde{\tilde{\lambda}}\eta_{\bar{i}\bar{j}\bar{k}}, \Phi, a, B_{\mu\nu}, (C_2)_{\mu\nu}$	1
Hyper	$\psi_{\alpha}\eta_{i,\overline{j}}, \bar{\psi}_{\dot{\alpha}}\eta_{\overline{i},\overline{j}\overline{k}}, \tilde{\psi}_{\alpha}\eta_{i,\overline{j}}, \bar{\tilde{\psi}}_{\dot{\alpha}}\eta_{\overline{i},\overline{j}\overline{k}}, g_{i\overline{j}}, B_{i\overline{j}}, (C_2)_{i\overline{j}}, (C_4^+)_{\mu\nu i\overline{j}}$	$h^{1,1}$
Vector	$(C_4^+)_{\mu i \bar{\jmath} \bar{k}}, \bar{\psi}_{\dot{\alpha}} \eta_{i, \bar{\jmath} \bar{k}}, \psi_{\alpha} \eta_{\bar{\imath}, \bar{\jmath}}, \tilde{\bar{\psi}}_{\dot{\alpha}} \eta_{i, \bar{\jmath} \bar{k}}, \tilde{\psi}_{\alpha} \eta_{\bar{\imath}, \bar{\jmath}}, g_{ij}, g_{\bar{\imath} \bar{\jmath}}$	$h^{2,1}$