A String-Theoretic Introduction to Mirror Symmetry

Peize Liu
University of Oxford
peize.liu@spc.ox.ac.uk

20 June 2022

Warnings

These slides serve as a motivational introduction to mirror symmetry from a physical perspective. We will go through some basic concepts aimed at mathematical audiences. The logic flow is more chronological than pedagogical.

I am new to this subject, so mistakes and missings are inevitable.

Table of Contents

(1) Crash Course on String Theory
(2) Compactification
(3) Calabi-Yau Manifolds
(4) Mirror Symmetry

Table of Contents

(1) Crash Course on String Theory
(2) Compactification
(3) Calabi-Yau Manifolds
(4) Mirror Symmetry

Principle of Least Action

Definition (Action Functional)

Let \mathcal{M} be the "space of configurations" of a physical system. The action functional is a linear map $S: \mathcal{M} \rightarrow \mathbb{R}$.

In classical mechanics, \mathcal{M} is the space of piecewise smooth paths from x to y on a smooth manifold M.
In classical field theory, \mathcal{M} is the space of sections of a vector bundle E over the spacetime manifold (M, g).
We need a well-behaved measure on \mathcal{M} to perform calculus of variations and integrations. This is usually not well-defined, but physicists just assume it.

Principle of Least Action

Proposition (Principle of Least Action)

The trajectory of a system is the one which extremise the action: $\delta S=0$.

In classical mechanics, the action arises as the integral of the Lagrangian:

$$
S=\int_{t_{0}}^{t_{1}} L\left(q_{a}, \dot{q}_{a}, t\right) \mathrm{d} t
$$

The principle of least action is equivalent to the Euler-Lagrange equations ("equations of motions"):

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial L}{\partial \dot{q}_{a}}-\frac{\partial L}{\partial q_{a}}=0,
$$

where $\left(q_{1}, \ldots, q_{n}\right)$ is a set of coordinates on M.

Principle of Least Action

Proposition (Principle of Least Action)

The trajectory of a system is the one which extremise the action: $\delta S=0$.

In classical field theory, the action arises as the integral of the Lagrangian density:

$$
S=\int_{M} \mathcal{L}\left(\varphi_{\alpha}, \partial_{a} \varphi_{\alpha}\right){\mathrm{d} \operatorname{vol}_{g}=\int_{\mathbb{R}^{1}, d-1}}^{\mathcal{L} \sqrt{-\operatorname{det} g} \mathrm{~d}^{n} x}
$$

The Euler-Lagrange equations:

$$
\sum_{a} \frac{\partial}{\partial x^{a}} \frac{\partial \mathcal{L}}{\partial\left(\partial_{a} \varphi_{\alpha}\right)}-\frac{\partial \mathcal{L}}{\partial \varphi_{\alpha}}=0
$$

Path Integral Formalism

Now we move from classical to quantum! In the path integral formalism, the primary object is the partition function:

$$
Z:=\int_{\mathcal{M}} \mathcal{D}[\gamma] \mathrm{e}^{\mathrm{i} S(\gamma) / \hbar}
$$

where $\mathcal{D}[\gamma]$ is a well-behaved measure on \mathcal{M} (which, unfortunately, does not exist in general. This is one of the most notable mathematical difficulties of quantum field theory.)

In the classical limit $\hbar \rightarrow 0$, only the classical solution such that $\delta S=0$ contributes to the partition function.

An observable O is an operator-valued distribution on \mathcal{M} with the expectation:

$$
\langle O\rangle:=\int_{\mathcal{M}} \mathcal{D}[\gamma] O(\gamma) \mathrm{e}^{\mathrm{i} S(\gamma) / \hbar}
$$

Polyakov Action

A string is a 1-dimensional object in the space. It traces out a 2-dimensional surface (the "worldsheet") in the spacetime M. So mathematically, string theory is about (the quantisation of) the embedding $X: \Sigma \rightarrow M$ of a Lorentzian surface into a d-dimensional Lorentzian manifold.

Definition (Polyakov Action)

The classical bosonic string is described by the Polyakov action:

$$
S[X, h]=-\frac{1}{4 \pi \alpha^{\prime}} \int_{\Sigma} \mathrm{d}^{2} \sigma \sqrt{-\operatorname{det} h} h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} g_{\mu \nu}
$$

where h, g are the metrics on Σ and M respectively, and $X=\left(X^{\mu}\right)$ are the coordinates of M.

Supersymmetry

Slogan:

bosonic fields	fermionic fields
even variables	odd variables
("c-numbers")	("Grassmann numbers")
commutator $[a, b]=a b-b a$	anti-commutator $\{a, b\}=a b+b a$

$$
\begin{aligned}
\text { ungraded Lie algebra } & \rightarrow \mathbb{Z} / 2 \text {-graded Lie algebra } \\
& \text { ("supersymmetric algebra") }
\end{aligned}
$$

Supersymmetric scalar multiplet: (scalar fields X^{μ}, fermions ψ^{μ}); Supergravity multiplet: (frame fields e_{α}^{a}, gravitini χ_{α}).

Ramond-Neveu-Schwarz Strings

Bosonic string $+N=1$ worldsheet supersymmetry $=$ RNS string.

Proposition (RNS String Action)

The RNS string (fixed to superconformal gauge) is described by the action

$$
S=-\frac{1}{8 \pi} \int_{\Sigma} \mathrm{d}^{2} \sigma\left(\frac{2}{\alpha^{\prime}} \partial_{\alpha} X^{\mu} \partial^{\alpha} X^{\nu}+2 \mathrm{i} \bar{\psi}^{\mu} \rho^{\alpha} \partial_{\alpha} \psi^{\nu}\right) g_{\mu \nu}
$$

The action is invariant under the supersymmetric transformation:

$$
\begin{aligned}
\sqrt{\frac{2}{\alpha^{\prime}}} \delta_{\epsilon} X^{\mu} & =\mathrm{i} \bar{\epsilon} \psi^{\mu} \\
\delta_{\epsilon} \psi^{\mu} & =\sqrt{\frac{2}{\alpha^{\prime}}} \frac{1}{2} \rho^{\alpha} \partial_{\alpha} X^{\mu} \epsilon
\end{aligned}
$$

Conformal Field Theory

The classical string action is Weyl invariant:

$$
h \mapsto \Omega^{2} h
$$

So string theory is a 2 -dimensional conformal field theory! The stress-energy tensor is traceless: $\operatorname{tr} T=0$.

After quantisation, Weyl invariance must be preserved:

$$
\langle\operatorname{tr} T\rangle=-\frac{c}{12} R \quad \text { (worldsheet scalar curvature) }
$$

So central charge $c=0$.
After massaging operator product expansions...

$$
c=d-10 \Longrightarrow d=10
$$

Conformal field theory tells us that superstrings live in 10 spacetime dimensions!!! Needs compactification of 6 extra dimensions to get real-world physics. See later.

Conformal Field Theory

For closed strings, the periodic boundary condition on ψ^{μ} :

$$
\begin{aligned}
\psi^{\mu}(\sigma) & =+\psi^{\mu}(\sigma+\ell), & & \text { Ramond sector } \\
\psi^{\mu}(\sigma) & =-\psi^{\mu}(\sigma+\ell), & & \text { Neveu-Schwarz sector }
\end{aligned}
$$

Two independent spinors $\psi_{+}^{\mu}\left(\sigma^{+}\right), \psi_{-}^{\mu}\left(\sigma^{-}\right)$, so 4 types of closed strings: (R,R), (NS,NS), (R,NS), (NS,R).
$N=1$ super-Virasoro algebra:

$$
\begin{aligned}
{\left[L_{m}, L_{n}\right] } & =(m-n) L_{m+n}+\frac{c}{12} m\left(m^{2}-1\right) \delta_{m,-n} \\
{\left[L_{m}, G_{r}\right] } & =\left(\frac{m}{2}-r\right) G_{m+r} \\
\left\{G_{r}, G_{s}\right\} & =2 L_{r+s}+\frac{c}{12}\left(4 r^{2}-1\right) \delta_{r,-s}
\end{aligned}
$$

Ramond sector: $r, s \in \mathbb{Z}$; Neveu-Schwarz sector: $r, s \in \mathbb{Z}+\frac{1}{2}$.

Working towards Superstring Theories

Recall that in bosonic string theory, critial dimension $d=26$; and the ground state is tachyonic ($m^{2}<0$).

For superstring with worldsheet as a Riemann surface:
Modular invariance \& Vanishing of one-loop partition function

$$
\begin{gathered}
\text { GSO projection } \\
\Downarrow
\end{gathered}
$$

Tachyon-free \& Spacetime supersymmetry $\mathcal{N}=2$
Type IIA superstring theory (Non-chiral)

Type IIB superstring theory (Chiral)

The Landscape of String Dualities

Type I

Table of Contents

(1) Crash Course on String Theory
(2) Compactification
(3) Calabi-Yau Manifolds
(4) Mirror Symmetry

Compactification

Superstring theory works in 10 dimensions, but our physical world has only 4 dimensions. We would like to factor the spacetime as

$$
\mathbb{R}^{1,3} \times M_{6}
$$

where M_{6} is a 6 -dimensional compact Riemannian manifold of length scale $\sim 10^{-35} \mathrm{~m}$.

Even though we do not observe M_{6}, the geometry of it actually determines the physics in the Minkowski space $\mathbb{R}^{1,3}$!

Toroidal compactification: $M_{6}=T^{6}$.
All supersymmetries preserved \rightarrow phenomenologically unfavourable.
Calabi-Yau compactification of heterotic strings: $M_{6}=\mathrm{CY}_{3}$.
$\mathcal{N}=1$ minimal supersymmetric standard model (MSSM)!
There are simply too many choices of M_{6} for string theory to make physical predictions. This is why string theory is not considered as a part of physics by many people.

Naive Example: Toroidal Compactification

Consider the compactification $M^{d+1}=M^{d} \times S^{1}$:

$$
x^{d} \sim x^{d}+2 \pi R w .
$$

$R \in R$ is the radius of the circle $S^{1} ; w \in \mathbb{Z}$ is the winding number.
Slogan: Gravity in $(d+1)$-dimensions produces electromagnetism in d-dimensions.

Factorisation of metric:
$G=\sum_{M, N=0}^{d} g_{M N} \mathrm{~d} x^{M} \mathrm{~d} x^{N}=\sum_{\mu, \nu=0}^{d-1} g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+g_{d d}\left(\mathrm{~d} x^{d}+\sum_{\mu=0}^{d-1} A_{\mu} \mathrm{d} x^{\mu}\right)^{2}$.
Coordinate change $x^{d} \mapsto x^{d}+\lambda\left(x^{\mu}\right)$ produces gauge transformation $A_{\mu} \mapsto A_{\mu}-\partial_{\mu} \lambda$.
"Kaluza-Klein Reduction". A_{μ} : KK gauge boson.

Naive Example: Toroidal Compactification

Scalar field ϕ in $(d+1)$-dimensions has the mode expansion:

$$
\phi\left(x^{M}\right)=\sum_{n \in \mathbb{Z}} \phi_{n}\left(x^{\mu}\right) \mathrm{e}^{\mathrm{i} n x^{d} / R}
$$

The momentum $p_{d}=n / R$ is quantised.
Mass for bosonic string:

$$
m^{2}=\frac{n^{2}}{R^{2}}+\frac{w^{2} R^{2}}{\alpha^{\prime 2}}+\frac{2}{\alpha^{\prime}}(N+\widetilde{N}-2), \quad N-\widetilde{N}=n w
$$

T-duality:

$$
R \leftrightarrow \frac{\alpha^{\prime}}{R}, \quad n \leftrightarrow w .
$$

Also Type IIA \leftrightarrow Type IIB.

Naive Example: Toroidal Compactification

Now consider compactification $M^{d+D}=M^{d} \times T^{D}, T^{D}:=\mathbb{R}^{D} / 2 \pi \Lambda_{D}$. For modular invariance the lattice Λ_{D} must be self-dual: $\Lambda_{D}=\Lambda_{D}^{*}$.

KK reduction \Longrightarrow Gauge boson $A_{\mu}, 2$-form $B_{m n}$. B-field: "massless scalar degrees of freedom contributed by the internal 2-form" ...

T-duality:

$$
\frac{1}{\alpha^{\prime}}(\boldsymbol{g}+\boldsymbol{b}) \leftrightarrow \alpha^{\prime}(\boldsymbol{g}+\boldsymbol{b})^{-1}, \quad \boldsymbol{n} \leftrightarrow \boldsymbol{w}
$$

Moduli space:

$$
\frac{\mathrm{O}(D, D)}{\mathrm{O}(D) \times \mathrm{O}(D)} / \mathrm{O}(D, D ; \mathbb{Z})
$$

2-torus: $T^{2}=\mathbb{R}^{2} /\left(\mathbb{Z} e_{1}+\mathbb{Z} e_{2}\right) . g_{i j}:=e_{i} \cdot e_{j}$.
Complexified Kähler modulus: $T:=\frac{1}{\alpha^{\prime}}(B+\mathrm{i} \sqrt{\operatorname{det} g})=T_{1}+\mathrm{i} T_{2}$.
Complex structure modulus:
$U:=\frac{\left\|e_{2}\right\|}{\left\|e_{1}\right\|} \mathrm{e}^{\mathrm{i} \varphi\left(e_{1}, e_{2}\right)}=\frac{g_{12}+\mathrm{i} \sqrt{\operatorname{det} g}}{g_{11}}=U_{1}+\mathrm{i} U_{2}$.

$$
\left(g_{i j}\right)=\alpha^{\prime} \frac{T_{2}}{U_{2}}\left(\begin{array}{cc}
1 & U_{1} \\
U_{1} & |U|^{2}
\end{array}\right) .
$$

T-duality: $\left(n_{1}, n_{2}, w_{1}, w_{2}\right) \leftrightarrow\left(-w_{1}, n_{2},-n_{1}, w_{2}\right) ; \quad T \leftrightarrow U$.
This is a prototype of mirror symmetry, where the complex structure and the Kähler structure interchanges under the mirror transformation.

Table of Contents

(1) Crash Course on String Theory
(2) Compactification
(3) Calabi-Yau Manifolds
(4) Mirror Symmetry

Special Holonomy

Compactification: $\mathbb{R}^{1,3} \times M_{6}$. Why Calabi-Yau?

```
Ricci-flat: R}\mp@subsup{R}{mn}{}=0\mathrm{ . (Think of vacuum solutions of Einstein
equation.)
```

$\mathrm{SU}(3)$ holonomy.

Definition (Curvature)

Let (M, g) be a Riemannian/Lorentzian manifold with Levi-Civita connection ∇. The Riemann curvature is given by $R_{a b c}{ }^{d} \partial_{d}=$ $\left[\nabla_{a}, \nabla_{b}\right] \partial_{c}$. The Ricci curvature is given by $R_{a b}:=R_{c a b}{ }^{c}$.

Definition (Holonomy Group)

Let (M, g) as above. The holonomy group $\operatorname{Hol}_{x}(\nabla)$ based at $x \in M$ is the group generated by the parallel transports P_{γ}, where γ is a loop in M based at x.

Compactification: $\mathbb{R}^{1,3} \times M_{6}$. Why Calabi-Yau?
Ricci-flat: $R_{m n}=0$.
$\mathrm{SU}(3)$ holonomy.
Decomposition of Weyl representation under $\mathrm{SO}(1,9) \rightarrow \mathrm{SO}(1,3) \times \mathrm{SO}(6):$

$$
\mathbf{1 6}=\mathbf{2}_{L} \otimes \overline{\mathbf{4}} \oplus \mathbf{2}_{\boldsymbol{R}} \otimes 4
$$

Further decomposition of $\mathbf{4}$ of $\mathfrak{s o}(6) \cong \mathfrak{s u}(4)$ if M_{6} has a $\mathrm{SU}(3)$-structure:

$$
\mathbf{4}_{\mathfrak{s u}(4)}=(\mathbf{1} \oplus \mathbf{3})_{\mathfrak{s u}(3)} .
$$

The singlet state of $\mathfrak{s u}(3)$ is a covariantly constant spinor of M_{6}, i.e. $\nabla_{m} \epsilon=0$. This produces $\mathcal{N}=1$ supersymmetry in $d=4$.
Side effect: M_{6} is Ricci-flat. (Exercise: try to prove this~)

Kähler Manifolds

Slogan: A Kähler manifold is the one with compatible Riemannian, complex, and symplectic strctures, encoded by:

$$
\omega(X, Y)=g(J X, Y)
$$

where:
$\omega \in \Gamma\left(\bigwedge^{2} \mathrm{~T}^{*} M\right)$ is a symplectic form;
$J \in \Gamma(\operatorname{End}(T M))$ is a complex structure $\left(J^{2}=-\mathrm{id}\right)$;
$g \in \Gamma\left(\mathrm{~S}^{2} \mathrm{~T}^{*} M\right)$ is a Riemannian metric.
Any two of (ω, J, g) determines the third one.
Local expression:

$$
\omega=\mathrm{i} g_{\mu \bar{\nu}} \mathrm{d} z^{\mu} \wedge \mathrm{d} \bar{z}^{\nu}, \quad g_{\mu \nu}=g_{\overline{\mu \nu}}=0
$$

Hodge Theory

Kähler manifolds are a special class of complex manifolds (real manifolds with an integrable almost complex structure J.)

Exterior differential splits into holomorphic \& anti-holomorphic parts:

$$
\mathrm{d}=\partial+\bar{\partial}
$$

de Rham cohomology $\mathrm{H}_{\mathrm{dR}}^{n}(M ; \mathbb{C})=\bigoplus_{p+q=n} \mathrm{H}^{p, q}(M)$
Dolbeault cohomology $\mathrm{H}^{p, q}(M)=\mathrm{H}^{q}\left(M, \Omega_{M}^{p}\right)$.

$$
\partial: \mathrm{H}^{p, q}(M) \rightarrow \mathrm{H}^{p+1, q}(M) ; \quad \bar{\partial}: \mathrm{H}^{p, q}(M) \rightarrow \mathrm{H}^{p, q+1}(M) .
$$

Hodge numbers: $h^{p, q}(M):=\operatorname{dim}_{\mathbb{C}} \mathrm{H}^{p, q}(M)$.

Serre duality:

$$
\mathrm{H}^{p, q}(M) \cong \mathrm{H}^{n-q, n-p}(M) .
$$

Hodge star:

$$
\mathrm{H}^{p, q}(M) \cong \mathrm{H}^{n-p, n-q}(M)
$$

Complex conjugation:

$$
\mathrm{H}^{p, q}(M) \cong \mathrm{H}^{q, p}(M)
$$

Hodge diamond:

There are a lot of different and inequivalent definitions of a Calabi-Yau manifold.

Definition (Calabi-Yau Manifolds)

Let M be a $2 n$-dimensional compact Kähler manifold. We say that M is Calabi-Yau, if it satisfies any of the following conditions:

1. M has vanishing first Chern class $c_{1}(M)$;
2. M admits a Ricci-flat Kähler metric;
3. M has trivial canonical bundle $K_{M}=\bigwedge^{n} \Omega_{M}$;
4. M admits a Kähler metric with holonomy contained in $\mathrm{SU}(n)$.
5. M has a unique nowhere vanishing holomorphic n-form.

The conditions satisfy $(1) \Longleftrightarrow(2) \Longleftrightarrow(3) \Longleftrightarrow(4) \Longleftrightarrow(5)$. They are all equivalent if M is simply connected.

The hard part is $(1) \Longrightarrow(2)$, known as the Calabi conjecture, proven by Yau in 1978.

Calabi-Yau Manifolds

Definition (Physicists' Calabi-Yau Manifolds)

Let M be a $2 n$-dimensional compact Kähler manifold. We say that M is Calabi-Yau, if M admits a Kähler metric with holonomy exactly equal to $\mathrm{SU}(n)$.

Hodge numbers:

$$
h^{0,0}=1, \quad h^{n, 0}=1, \quad h^{i, 0}=0 \text { for } 0<i<n .
$$

So for a Calabi-Yau 3-fold, the only independent Hodge numbers are $h^{1,1}$ and $h^{1,2}$.

Euler characteristic $\chi\left(\mathrm{CY}_{3}\right)=2\left(h^{1,1}\left(\mathrm{CY}_{3}\right)-h^{1,2}\left(\mathrm{CY}_{3}\right)\right)$.

Mirror Calabi-Yau 3-folds

$$
\begin{aligned}
& h^{0,0}=1
\end{aligned}
$$

$$
\begin{aligned}
& h^{3,1}=0 \quad h^{2,2}=h^{1, \AA} \quad h^{1,3}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { complex conjugation }
\end{aligned}
$$

Mirror pair $\left(X, X^{\vee}\right)$:

$$
h^{1,1}(X)=h^{1,2}\left(X^{\vee}\right), \quad h^{1,2}(X)=h^{1,1}\left(X^{\vee}\right) .
$$

Calabi-Yau Moduli Space

Infinitesmal deformation of the metric $g \mapsto g+\delta g$ preserving Ricci-flatness.

Lichnerowicz equation:

$$
\Delta_{L} \delta g_{\mu \nu}:=\nabla^{\rho} \nabla_{\rho} \delta g_{\mu \nu}+2 R_{\mu}{ }^{\rho}{ }_{\nu}{ }^{\sigma} \delta g_{\rho \sigma}=0
$$

1. Mixed indices $\delta g_{i \bar{\jmath}}$:

$$
(\Delta \delta g)_{i \bar{\jmath}}=0
$$

So $\delta g_{i \bar{\jmath}}$ are components of a $(1,1)$-form.

$$
\delta g_{i \bar{\jmath}}=\sum_{\alpha=1}^{h^{1,1}} \widetilde{t}^{\alpha} b_{i \bar{\jmath}}^{\alpha}
$$

where $\widetilde{t^{\alpha}} \in \mathbb{R}$ are the Kähler moduli, which spans the Kähler cone.

Calabi-Yau Moduli Space

Infinitesmal deformation of the metric $g \mapsto g+\delta g$ preserving Ricci-flatness.

Lichnerowicz equation:

$$
\Delta_{L} \delta g_{\mu \nu}:=\nabla^{\rho} \nabla_{\rho} \delta g_{\mu \nu}+2 R_{\mu}{ }^{\rho}{ }_{\nu}{ }^{\sigma} \delta g_{\rho \sigma}=0
$$

1. Combining with the deformation of B-field:

$$
\left(\mathrm{i} \delta g_{i \bar{\jmath}}+\delta B_{i \bar{\jmath}}\right) \mathrm{d} z^{i} \wedge \mathrm{~d} \bar{z}^{j}=\sum_{\alpha=1}^{h^{1.1}} t^{\alpha} b_{i \bar{\jmath}}^{\alpha}
$$

Now $t^{\alpha} \in \mathbb{C}$ are complexfied Kähler moduli.

Calabi-Yau Moduli Space

Infinitesmal deformation of the metric $g \mapsto g+\delta g$ preserving Ricci-flatness.

Lichnerowicz equation:

$$
\Delta_{L} \delta g_{\mu \nu}:=\nabla^{\rho} \nabla_{\rho} \delta g_{\mu \nu}+2 R_{\mu}{ }^{\rho}{ }_{\nu}{ }^{\sigma} \delta g_{\rho \sigma}=0
$$

2. Pure indices $\delta g_{\bar{\imath}}$:

$$
\Delta_{\bar{\partial}} \delta g^{i}=0, \quad \delta g^{i}:=g^{i \bar{k}} \delta g_{\bar{k} \bar{\jmath}} \mathrm{~d} \bar{z}^{\bar{\jmath}}
$$

δg^{i} is a $\mathrm{T}_{M}:=\mathrm{T}^{1,0} M$-valued (0,1)-form.

$$
\mathrm{H}_{\bar{\partial}}^{0,1}\left(M, \mathrm{~T}_{M}\right) \cong \mathrm{H}^{1}\left(M, \mathrm{~T}_{M}\right) \cong \mathrm{H}^{2,1}(M), \text { so }
$$

$$
\Omega_{i j k} \delta g_{\bar{l}}^{k}=\sum_{a=1}^{h^{2,1}} t^{\alpha} b_{i j \bar{l}}^{\alpha}
$$

where $t^{\alpha} \in \mathbb{C}$ are the complex structure moduli.

Table of Contents

(1) Crash Course on String Theory
(2) Compactification
(3) Calabi-Yau Manifolds
(4) Mirror Symmetry

Massless Spectra of Type IIA \& Type IIB Theories

Type IIA on $X \longleftrightarrow$ Type IIB on X^{\vee} !

Table 14.1 Massless spectrum of the type II theories on CY_{3}

Multiplet	Component fields	Multiplicity
Type IIA		
Gravity Hyper Hyper Vector		1 1 $h^{2,1}$ $h^{1,1}$
Type IIB		
Gravity Hyper Hyper Vector		1 1 $h^{1,1}$ $h^{2,1}$

