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1. Simplicial categories

Write ∆ to be a category, whose objects consist of sets [n] = {0, 1, · · · , n} with
finite total order for any n ∈ N, and morphisms are order-preserving maps between
sets.

Definition 1.1. A simplicial object in category C is a contravariant functor
X : ∆→ C.

If C = Set, then a simplicial object is called a simplicial set. Write Fun(∆op, C) =
sC. In particular, Fun(∆op,Set) = sSet. One can easily check from definition that
Set is a full subcategory of sSet.

Remark 1.2. Dually, one can define what is called the cosimplicial objects by
replacing “contravariant” with “covariant”.

There are two collection of morphisms in ∆, called face maps and degeneracy
maps, defined as follows:

Definition 1.3. Let 0 ≤ i, j ≤ n. Face maps di : [n− 1] ↪→ [n] sends k to k when
k < i, and sends k to k + 1 when k ≥ i. In other words, di skips i. Degeneracy
maps sj : [n+1]→ [n] sends k to k when k ≤ j, and sends k to k− 1 when k > j.
In other words, sj doubles j.

We get the following theorem which is highly combinatorial:

Theorem 1.4. For any f ∈ hom∆([n], [m]), f can be uniquely decomposed into
f = di1 · · · dirsj1 · · · sjs , where m = n − s + r, i1 < · · · < ir, j1 < · · · < js, up to
linear order.

1



2 JINGHUI YANG

Example 1.5. Let f : [4] → [2]. Then f = s0 ◦ s2 because s0 doubles 0 and s2

doubles 2.

It is easy to check the face maps and the degeneracy maps satisfy the relation
stated as below:

Corollary 1.6.

djdi = didj−1, i < j;(1.7)

sjsi = sisj+1, i ≤ j;(1.8)

sjdi =


disj−1 i < j;

id i = j, j + 1;

di−1sj i > j + 1.

(1.9)

LetX∗ : ∆op → C be a simplicial object in C. DenoteXn = X∗([n]), di = X∗(d
i),

sj = X∗(s
j). Corollary 1.6 can be rewritten in the form:

Corollary 1.10.

didj = dj−1di, i < j;(1.11)

sjsi = si+1sj , j ≤ i;(1.12)

disj =


sj−1di i < j;

id i = j, j + 1;

sjdi−1 i > j + 1.

(1.13)

Example 1.14 (Standard simplex). The most important example of simplicial
sets is the standard simplices. Consider the category ∆. By Yoneda embedding,
any [n] ∈ ∆ associates to hom∆(−, [n]). Write ∆[n]∗ = hom∆(−, [n]) ∈ sSet, with
∆[n]k = hom∆([k], [n]). This is called a standard n-simplex. Observe that, from
Theorem 1.4,

∆[n]k ∼= {(j0, j1, · · · , jk) : 0 ≤ j0 ≤ · · · ≤ jk ≤ n}.
The first two terms goes ∆[0]k = {(0, · · · , 0)︸ ︷︷ ︸

k

} and ∆[1]k = {(0, · · · , 0︸ ︷︷ ︸
i

, 1, · · · , 1︸ ︷︷ ︸
k+1−i

) :

0 ≤ i ≤ k + 1}. Informally speaking, there are k + 2 simplices in ∆[1]k.
By Yoneda lemma, any simplicial set X∗ associates to homsSet(−, X∗). In par-

ticular,
homsSet(∆[n]∗, X∗) ∼= X∗([n]) = Xn.

So standard n-simplices recover the information in simplicial sets. Generally, since
∆ → sSet sending [n] 7→ ∆[n]∗ is a fully faithful functor, ∆[−]∗ is a cosimplicial
object in sSet.

Example 1.15 (∆-complexes). Recall that in classical algebraic topology,

∆n = {(x0, · · · , xn) ∈ Rn+1
≥0 :

∑
xi = 1}.

In our setting, the ∆-complex ∆∗ builds a cosimplicial set ∆→ Top.

Remark 1.16. We often work in category of CGWH (compactly generated and weak
Hausdorff) spaces instead of Top since the latter is not Cartesian closed, i.e. there
is no natural mapping

hom(−,−) : Topop × Top→ Top
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such that

hom(Z ×X,Y ) ∼= hom(Z,hom(X,Y )),

which makes it hard to discuss the right adjoint of the product functor.

Definition 1.17. Let x ∈ Xn. x is called degenerate if x ∈ im (sj : Xn−1 → Xn)
for some j. The set of degenerate n-simplices is given by

n−1⋃
j=0

sj(Xn−1) ⊂ Xn.

Example 1.18 (Simplicial spheres). Given a standard n-simplex ∆[n]∗. The
boundary of ∆[n]∗ is

∂∆[n]∗ =
⋃

0≤i≤n

di(∆[n− 1]∗) ⊂ ∆[n]∗.

The simplicial n-sphere is Sn∗ = ∆[n]∗/∂∆[n]∗. When n = 1,

∂∆[1]k = d0(∆[0]k) ∪ d1(∆[0]k)

= d0({(0, · · · , 0)}) ∪ d1({(0, · · · , 0)})
= {(1, · · · , 1)} ∪ {(0, · · · , 0)}
= {(0, · · · , 0), (1, · · · , 1)}.

By definition,

S1
k =

{(0, · · · , 0)︸ ︷︷ ︸
i

, (1, · · · , 1)︸ ︷︷ ︸
k+1−i

: i = 0, 1, · · · , k + 1}

{(0, · · · , 0), (1, · · · , 1)}
.

Non-degenerate simplices are those such that there is no y ∈ ∆[n + 1]∗ such that
sj(y) ∈ ∆[n]∗ for some j. So only possible candidate for j to make y degenerate is
j = 0 or 1. Note that sj doubles j, and (0), (1), (0, 0), (1, 1) are zero in S1

∗ . Hence
(0), (0, 1) are non-degenerate simplices in S1

∗ . Geometrically, this corresponds to
the fact that S1 = e0 ∪ e1.
Sn∗ can also be given by the pushout diagram:

∂∆[n]∗ ∆[n]∗

∗ Sn∗

where ∗ is the discrete simplicial set associated to the singleton {∗}.

2. Kan extension and geometric realization

Definition 2.1. Let F : C → D and G : C → E be functors. A left Kan extension
of F along G is a functor LanGF : D → E together with a natural transformation
η : F =⇒ LanGF ◦ G that is universal from F to LanGF ◦ G. That is, for any

η′ : F =⇒ S ◦ G, there exist a unique natural transformation φ : LanGF =⇒ S
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making the diagram commute:

F S ◦G

LanGF

η′

η
φ◦id

Intuitively, a left Kan extension is a map such that the diagram commutes at
each object and morphism:

C D

E

G

F
LanGF

Dually, one can write down the right Kan extensions simply by reversing the
arrow in the definition of left Kan extensions. We use the notation RanGF to
denote a right Kan extension of F along G.

Corollary 2.2. There are two adjoint pairs

Fun(C, E) ⊤ Fun(D, E) ⊤ Fun(C, E)

LanGF

(−)◦G

(−)◦G

RanGF

Definition 2.3. Let Y : ∆ → sSet be the Yoneda functor (i.e. sending [n] to
∆[n]∗), ∆

∗ : ∆→ Top be the ∆-complex functor (i.e. sending [n] to ∆n). The left
Kan extension of ∆∗ along Y is then called the geometric realization, denoted
by | − | := LanY∆

∗. One can visualize it as the following diagram:

∆ sSet

Top

Y

∆∗
LanY ∆∗=|−|

Remark 2.4. Here we implicitly assume such a left Kan extension always exists.
We will prove that this is the case in Theorem 2.9.

Classically, there are three ways to define a geometric realization functor. The
most topology-intimate one goes: for X∗ a simplicial set,

(Defn 1) |X∗| =

⊔
n≥0

Xn ×∆n

 / ∼,

where (f∗(x), t) ∼ (x, f∗(t)) for any x ∈ Xn, t ∈ ∆n, and f∗ = X∗(f), f
∗ = ∆∗(f)

are induced by f : [m] → [n] in ∆. Equivalently, this can be described as a
coequalizer

(Defn 2) |X∗| = colim

 ⊔
f :[n]→[m]

Xm ×∆n
f∗

−−⇒
f∗

⊔
[n]

Xn ×∆n

 .
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A fancier way to say this is through the coend:

(Defn 3) |X∗| =
∫ ∆

Xn ×∆n.

Proposition 2.5. Defn 1 ∼ 3 provided above give the same data, which is functo-
rial.

Theorem 2.6. For any X∗ ∈ sSet, |X∗| is a CW complex with n-skeleton skn(X∗) =
⟨Xk | k ≤ n⟩.
Proof. By definition, we have a skeleton filtration

sk0(X∗) ⊂ sk1(X∗) ⊂ · · · ⊂ skn(X∗) ⊂ · · · ⊂ X∗,

and
X∗ =

⋃
n≥0

skn(X∗).

Recall that the boundary of ∆[n]∗ can be written as

∂∆[n]∗ = ⟨∆[n]k : k < n⟩ .
So we have pushout squares

⊔∂∆[n]∗ skn−1(X∗)

⊔∆[n]∗ skn(X∗)

⊔fx|∂∆[n]

⊔fx

where the disjoint unions are taken over all non-degenerate simplices x ∈ Xn, and
fx are the representing maps for such x ∈ Xn, i.e. fx : ∆[n]∗ → X∗ is the map
corresponding to x ∈ Xn under the isomorphism homsSet(∆[n]∗, X) ∼= Xn. Since
the geometric realization functor commutes with colimits, the previous pushout
diagram is preserved:

⊔|∂∆[n]∗| |skn−1(X∗)|

⊔|∆[n]∗| |skn(X∗)|

⊔|fx||∂∆[n]

⊔|fx|

Thus, we construct |X∗| inductively, by attaching cells one by one. Hence, |X∗| is
a cell complex. To see it is a CW complex, one only need to check the intersection
of any simplex with skn(X∗) for n ≥ 0. We leave it to readers. □

It can be seen from previous theorem that only non-degenerate simplices con-
tributes to the cell structure of |X∗|. This is why they get their names.

Corollary 2.7. |Sn∗ | = Sn.

Proof. By Corollary 2.2, | − | = LanY∆
∗ ⊣ ∆∗ ◦ Y . Since left adjoint functors

preserve colimits, we have the diagram

|∂∆[n]∗| |∆[n]∗|

|∗| |Sn∗ |

From the fact |∆[n]∗| = ∆n (see Corollary 2.11) we get the desired result. □
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A natural question is how to concretely describe the left (resp. right) Kan
extension; that is, how does it perform on each object and morphism? To answer
the question, we need the notion of comma categories. Recall that in a left comma
category F/d for a functor F : C → D and an object d ∈ D, the objects are defined
to be the collection {(c, f) : c ∈ C, f ∈ homD(F (c), d)}, and the morphisms are
given by

homF/d((c, f), (c
′, f ′)) = {h ∈ homC(c, c

′) : f = f ′ ◦ F (h)}.
One can similarly write down the definition of a right comma category d/F by
inverting the arrows. There are two natural functors associated to F/d:

• forgetful functor Forget : F/d→ C sending (c, f) to c;
• constant functor concentrated at d constd : F/d → D sending (c, f) 7→ d
and f 7→ idd.

A natural transformation η : F◦Forget =⇒ constd exists because for any (c, f), (c
′, f ′) ∈

F/d, h : c→ c′ compatible with f , f ′, the diagram commutes:

d = constd(c, f) F (c) = F ◦ Forget(c, f)

d = constd(c
′, f ′) F (c′) = F ◦ Forget(c′, f ′)

id=constd(h) F (h)

f=η(c,f)

f ′=η(c′,f′)

Fix e ∈ E . Let F : C → D, G : C → E be functors. Consider the composition

G/e C D

(c, f) c F (c)

Forget F

Assume colim(F ◦ Forget) exists. Define

LGF (e) := colimG/e(F ◦ Forget) = colim (G/e→ C → D) .

Proposition 2.8. LGF is a well-defined functor from E to D.

Proof. For any φ : e → e′, φ induces a functor φ∗ : G/e → G/e′ sending (c, f) to
(c, φ ◦ f). It is obvious that the diagram commute:

G/e

C D

G/e

φ∗

Forget

F

Forget

The task is to describe LGF (φ). The universal property of colimit gives

F ◦ Forget(i1) F ◦ Forget(i2)

colim(F ◦ Forget)

colim(F ◦ Forget ◦ φ∗)

F◦Forget(ξ)

pi1

pi1◦φ∗

pi2

pi2◦φ∗

∃ !
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where ξ : i1 → i2 is any morphism in some small diagram I. So LGF (φ) =
colim(F ◦ Forget) → colim(F ◦ Forget ◦ φ∗) is well-defined. This is the desired
construction. Associativity can be easily checked (exercise). □

Theorem 2.9. Let C be a small category and D be a cocomplete category. Every
functor F : C → D has a left Kan extension along an arbitrary functor G.

Proof. Check LGF satisfies the universal property of LanGF . We leave it as an
exercise. □

Corollary 2.10. If G is fully faithful, then η : F =⇒ LanGF ◦ G is an natural

isomorphism.

Proof. Since G is fully faithful, for any f : Gc → Gc′, there exists a unique mor-
phism h : c→ c′ such that f = Gh. So (c, idd) is a terminal object in G/Gc. Note
that for any small diagram I with a terminal object ∗, and a functor J : I → C, we
have colimIJ = J(∗). This implies that

colimG/Gc F ◦ Forget ∼= LanGF (Gc) = (LanGF ◦G)(c)
= F ◦ Forget(c, idc) = F (c).

Hence η is a natural isomorphism. □

Corollary 2.11. |∆[n]∗| = ∆n.

Proof. Let Y be Yoneda embedding Y : ∆ → sSet, Y ([n]) = ∆[n]∗. Y is fully
faithful, so η : ∆∗ =⇒ LanY∆

∗ ◦ Y is a natural isomorphism. In particular, η([n]) :

∆n
∼=−→ |∆[n]∗|. □

3. Homotopy theory of categories

Before we proceed, we need the notion of nerve. From now on, we will assume
the underlying category C is small.

Definition 3.1. The nerve of C, denoted B∗C, is a simplicial set with

B0C = Obj C,
B1C = Mor C,
B2C = {composable morphisms c0 → c1 → c2},
· · ·
BnC = {composable morphisms c0 → c1 → · · · → cn},

with face maps

di : [c0 → · · · → cn] 7→ [c0 → · · · → ci−1 → ĉi → ci+1 → · · · → cn]

and degeneracy maps

sj : [c0 → · · · → cn] 7→ [c0 → · · · → cj → cj → · · · → cn].
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The nerve of a category C encodes every “critical” morphism that is not isolated
in C. Another way to see the n-cells in B∗C is through the pullback. Consider

Mor C ×C Mor C Mor C

Mor C C

s

t

where t, s are the target functor and source functor, respectively. Explicitly, t(x→
y) = y and s(x→ y) = x for any morphism x→ y. The pullback Mor C×CMor C =
{(f, g) ∈ Mor C × Mor C : sf = tg} contains exactly those morphisms that are
composable, i.e. f ◦ g ∈ B2C. So B2C ∼= Mor C ×C Mor C. This isomorphism
generalize to n-cells:

BnC ∼= Mor C ×C · · · ×C Mor C︸ ︷︷ ︸
n

.
Let I be a poset. Write

−→
I for the associated category whose objects are I itself,

and morphisms are given by

hom−→
I
(i, j) =

{
i→ j , i < j,

∅ , else.

Denote Cats by the category of small categories. Let F : ∆ → Cats be a functor

sending [n] to
−→
[n] = [0 → 1 → · · · → n]. It is straightforward to check that F is

fully faithful. Let C be any small category. C represents a functor

Catsop Set

D homCats(D, C).

hC

So

B∗C = ∆op Catsop Set

[n]
−→
[n] homCats(

−→
[n], C).

F op hC

If we take C =
−→
[n], then Bk

−→
[n] = homCats(

−→
[k],
−→
[n]) ∼= hom∆([k], [n]) = ∆[n]k. This

implies B∗
−→
[n] = ∆[n]∗, as we expected.

Example 3.2. Let X ∈ Top. Assume X has a open cover {Xα}α∈I . Write XI to
be the category whose objects are {(x,Xα) : x ∈ Xα} = ⊔α∈IXα, and

homXI
((x,Xα), (y,Xβ)) =

{
∅ , x ̸= y,

x 7→ y , x = y in Xα ∩Xβ .

So MorXI =
⊔
α,β Xα ∩Xβ = B1XI . Moreover, it is not hard to deduce that

BnXI =
⊔
Xα0

∩ · · · ∩Xαn
.

Example 3.3. Let G be a discrete group. Write G to be the one-point cate-
gory with morphism being the original group G. This is clearly a groupoid. It is
immediate that BnG = Gn.

Example 3.4 (Bar construction). LetX be some reasonable category like Top, Grp,
SmoothMfd, Set, etc. Define EX to be the category with object X and morphism
X × X. We denote B∗EX by E∗X. So EnX = Xn+1. If X = G, then EX =
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EG ̸= G (why?). One can justify that E∗G is a simplicial set with right G-action.
Furthermore, there exists a map E∗G→ B∗G, which is a fibration with fiber G.

Example 3.5. Let X be a set with left G-action. Define C = G ⋉ X to be the
category whose objects are in X, and homC(x, y) = {g ∈ G : gx = y}. This
implies MorC = {(g, x) : g ∈ G, x ∈ X} = G × X since any f ∈ MorC defines
a map from x to x′ = gx. So C is a groupoid. It is straightforward to check
that BnC = Gn ×X with face map being dn(g1, g2, · · · , x) = (g1, · · · , gn, x). Now
B∗C = B∗(G⋉X) = E∗G×G X is called the simplicial Borel construction.

Definition 3.6 (Bousfield-Kan construction). Let F : C → Set be a functor. Define
the translation category CF with objects (c, x) : c ∈ C, x ∈ F (c), and

homCF
((c, x), (c′, x′)) = {h : c→ c′ : F (h) : F (c)→ F (c′) sends x 7→ x′}.

The homotopy colimit of F is then defined to be

hocolimF := B∗CF ∈ sSet.

The geometric realization of nerves reveals fruitful properties and is the key to
the homotopical algebra.

Definition 3.7. Let C be a category. We denote the geometric realization of
nerve of C by BC = ∥B∗C∥, called the classifying space of C. Then BC ∈ Top
(or CGWH). We say C is contractible, connected, etc. if BC is. For any functor
F : C → D, we say it is a covering, homotopy equivalence, fibration, etc. if the
induced map BF : BC → BD is.

In fact, BC can be characterized by the following axioms:

BC1 Naturality
C 7→ BC extends to a functor B : Cats→ Top.

BC2 Normalization
Let F : ∆→ Cats sending [n]→

−→
[n], and B |F= ∆

F−→ Cats
B−→ Top.

BC3 Gluing

There is a natural isomorphism BC ∼= colim([n],f)∈F/CB
−→
[n], i.e. BC is

obtained as the left Kan extension. That is,

BC = colim{F/C Forget−−−−→ ∆
B|F−−→ Top}.

Corollary 3.8. Additional, the following axiom of B can be deduced from BC1 to
BC3:
BC4 If C ⊂ D as a subcategory, then BC ⊂ BD as a subcomplex.
BC5 B preserves coproduct in Cats.
BC6 BC × BD ∼= B(C × D) in CGWH. Note that this does NOT hold in Top

(except either BC or BD is finite)!

Remark 3.9. BC3 tells us that BC is built from B
−→
[n]. Indeed, by BC2, B

−→
[0] ∼=

∆0 = {∗}, corresponding to Obj(C). Similarly, B
−→
[1] ∼= ∆1 = [0, 1], corresponding

to morphism 0→ 1 in C.
B
−→
[2] ∼= ∆2, corresponding to composable morphisms 0→ 1→ 2 in C.
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0

1

2

Figure 1. B
−→
[2], which is ∆2

0

1

2

3

Figure 2. B
−→
[3], which is ∆3

Hence, the skeletons of BC are given by

sk0BC = ∗,
sknBC = sknBC − skn−1BC

= { composable fn ◦ · · · ◦ f0} − { composable fn ◦ · · · ◦ f̂i ◦ · · · ◦ f0 : 0 ≤ i ≤ n}.

Example 3.10. Let C = Z/2. Then BC ∼= (Z/2)n. Looking at its 0- and 1-skeleton,
we find

sk0BC = ∗,

sk1BC = { composable ∗ → ∗} − {∗ id−→ ∗}.

This indicates that sk1BC ∼= RP1. In fact, we can show that sknBC ∼= RPn for all
n ≥ 1. Thus, BC = RP∞. The result corresponds to the ordinary classifying space
of Z/2.

3.1. Homotopy. To define a homotopy between functors, we need the following
lemma:

Lemma 3.11. Let h : F0 =⇒ F1 be a natural transformation of functors F0, F1 :

C → D. Then h defines a homotopy BC × [0, 1]→ BD.

Proof. Define functor H : C × [1]→ D by

H(c, 0) = F0(c), H(c, 1) = F1(c).
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This is well-defined: on each morphism (f : c → c′, 0 → 1), H(f, 0 → 1) =
hc′ ◦ F0(f) = F1(f) ◦ hc : F0(c)→ F1(c

′). The diagram reads

F0(c) F1(c)

F0(c
′) F1(c

′)

F0(f)

hc

F1(f)

hc′

By definition of natural transformation, it is easy to check that H satisfies associa-
tivity, so H is indeed a functor. Now consider BH : B(C × [0, 1])→ BD. By BC6,
B(C × [0, 1]) = BC ×B1 = BC ×∆1. Hence, BH : BC × [0, 1]→ BD is the desired
homotopy, with

BH |BC×{0}= BF0, BH |BC×{1}= BF1.

□

Corollary 3.12. Let L : C → D and R : D → C be a pair of adjoint functors.
Then BC ≃ BD. In particular, if C ∼= D, then BC ≃ BD.

Proof. Consider the unit and the counit, and apply Lemma 3.11. □

Corollary 3.13. If C has initial or terminal object, then BC is contractible.

Proof. Consider the constant functor and the inclusion functor, and apply Lemma
3.11. □

With the concept of homotopy established, we are able to talk about the homo-
topy groups. Starting with π0.

Definition 3.14. For a category C, we define its zeroth homotopy group to be
π0C = π0BC.

This definition makes sense. Indeed, ifX is a CW complex, then π0X = sk0X/ ∼
such that x0 and x1 being identifies if there is an 1-cell e connecting them. So
π0BC = sk0BC/ ∼= Obj(C)/ ∼ with c and c′ being identifies if there exists an
arrow c→ c′ or its inverse.

Example 3.15. Consider the category G ⋉X in the Example 3.5. Simple obser-
vation gives that π0(G⋉X) = X/G (Exercise).

Lemma 3.16. Consider the translation category CF for F : C → Set. Then

π0(CF ) ∼= colimCF.

Proof. Let i
f−→ j be any arrow in C. The definition of colimit gives

F (i) F (j)

colimF

F (f)

φi φi

Let φ : Obj (CF )→ colimF sending (i, x) to φi(x). Now if (i, x) ∼ (j, y), then there
exists f : i→ j such that F (f)(x) = y, where x ∈ F (i) and y ∈ F (j). So

φj(y) = φ(j, y) = φ(f(i), F (f)(x))

= φj(F (f)(x)) = φi(x).
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Hence φ induces a map φ̃ : π0(CF ) → colimF . On the other hand, the inverse

map ϕ̃ : colimF → π0(CF ) is induced by ϕ, which is defined to be (j, y) = ϕj(y) =

ϕj(F (f)(x)) = ϕi(x) = (i, x) for (i, x) ∼ (j, y). Instinctly, ϕ̃ is the unique morphism
in the following diagram:

F (i) F (j)

colimF

CF

F (f)

φi

ϕi

φi

ϕi

ϕ̃

□

Corollary 3.17. Let F : C → Set be a functor. Then

|hocolimF | = |B∗CF | = BCF .

Let C be a category, p : E → BC be a covering space. The fiber functor
E : C → Set is defined by

E(c) = Ec := p−1(c).

Now for any f : c → c′, f ∈ B1C ∼= homsSet(∆∗[1], B∗C). So f corresponds to
f : ∆∗[1] → B∗C, and under the action of geometric realization functor, |f | : ∆ →
BC is a path in BC. It lifts to E(f) : Ec → Ec′ sending e → e′ = f̃(e), where

f̃ : ∆1 → E is a lift of f with f̃(0) = e.

E

∆1 BC

p
f̃

|f |

E is called morphism-invertible, if it maps all morphisms in C to isomorphisms
in Set.

Proposition 3.18. Consider the forgetful functor Forget : CF → C sending (i, x)
to i, where F is a functor F : C → Set. Then BF : BCF → BC is a covering space
if F is morphism-invertible.

We end this section with some important definitions.

Definition 3.19. The fundamental groupoid of C, denoted by
∏
(C), is the

localization C[(Mor (C))−1].

Definition 3.20. The n-th homotopy group of C is πn(C) := πn(BC).

3.2. Homology. Let C•(C) be the complex whose n-th group is Cn(C) = Z[BnC],
with the differential ∂ : Cn → Cn−1 given by

∂ =

n∑
i=0

di,

where di is the i-th face map of the simplicial set B∗C.

Proposition 3.21. ∂2 = 0.
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Proof. For σ ∈ BnC,

∂2σ = ∂

(
n∑
i=0

diσ

)
=

n−1∑
j=0

n∑
i=0

(−1)i+jdjdiσ

=
∑

0≤i≤j≤n

(−1)i+jdjdiσ +
∑

0≤j<i≤n

(−1)i+jdjdiσ

=
∑

0≤i≤j≤n

(−1)i+jdjdiσ +
∑

0≤j<i≤n

(−1)i+jdi−1djσ

=
∑

0≤i≤j≤n

(−1)i+jdjdiσ + (−1) ·
∑

0≤j≤i≤n

(−1)i+jdidjσ

=
∑

0≤i≤j≤n

(−1)i+jdjdiσ + (−1) ·
∑

0≤i≤j≤n

(−1)i+jdjdiσ = 0.

Note that we used the formula in Corollary 1.6. □

The homology of C•(C) is said to be the homology of category C, which is
isomorphic to H•(BC;Z). If the coefficient of the homology is other than Z, then
we need the local system to make a shift.

Definition 3.22. A local system A :
∏
(C) → Ab is a covariant functor from

fundamental groupoid of C to the category of abelian groups Ab. Equivalently, A
can also be regarded as a morphism-invertible functor from C to Ab.

In the new complex C•(C, A) when the coefficient being the local systems A
instead of Z, we ask that

C0(C, A) =
∏

c∈Obj(C)

A(c),

C1(C, A) =
∏

f :c→c′∈Mor(C)

A(c),

· · · · · ·

Cn(C, A) =
∏

f :c0→c1→···→cn

A(c0).

The differential ∂An :
∑n
i=0(−1)iA(di) : Cn(C, A)→ Cn−1(C, A).

Example 3.23. When n = 1, ∂A1 :
∏
f :c0→c1

A(c0)→
∏
cA(c) restricts to

∂A1 |f :c0→c1= (A(d0)−A(d1)) |f :c0→c1 .

Note that d0(c0 → c1) = c1 and d1(c0 → c1) = c0. We have that

∂A1 |f : A(c0) 7→ A(c0)⊕A(c1),

sending x to (x,A(f)(x)). Hence,

H0(C, A) =
∏

c∈Obj(C)

A(c)
/
im ∂A1 = coker ∂A1 .

Lemma 3.24. Let A be a local system. Then there is a natural isomorphism
H0(C, A) ∼= colimA.
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Proof. We know from the definition that π0(CA) = Obj(CA)/ ∼ = {(c, x) : c ∈
C, x ∈ A(c)}/ ∼, where (c0, x0) ∼ (c1, x1) iff there exists f : c0 → c1 such that
A(f)(x0) = x1. Thus, we obtain that

π0(CA) = {(c, x) : c ∈ C, x ∈ A(c)}
/
⟨(x,A(f)(x)) : x ∈ A(c0), f : c0 → c1⟩

= coker ∂A1 = H0(C, A).

So we proved our desired result. □

The previous result generalizes naturally:

Theorem 3.25 (Quillen). For n ≥ 0, Hn(C, A) ∼= colimnA. Here colimn =
Ln(colim)(−) is the n-th left derived functor of colim. This is well-defined because
colim : Fun(

∏
C,Ab)→ Ab can be proved to be an additive right exact functor, and

Fun(
∏
C,Ab) has enough projectives and injectives.

3.3. Quillen’s theorem A. We first state the theorem.

Theorem 3.26 (Quillen’s theorem A). Let F : C → D be a functor such that an
arbitrary comma category F/d or d/F is contractible, for any object d ∈ D. Then
BF : BC → BD is homotopy equivalent.

Example 3.27. Let L : C → D and R : D → C be a pair of adjoint functors. The
unit e and the counit η are

e : idC =⇒ RL,

η : LR =⇒ idD.

So we obtain a functor L : L/d → idC/Rd sending f : Lc → d to RLc → Rd.
The inverse of L can be easily defined, denoted L−1 : idC/Rd → L/d. It sends
g : c → Rd to LRd → Lc. L and L−1 are indeed mutual inverse because we

have LRL
L◦η
===⇒ L and RLR

e◦L
===⇒ L. Now idC/Rd is contractible because it has a

terminal object (Rd, idRd). Therefore, by Quillen’s theorem A, BF : BC → BD is
a homotopy equivalence.

Example 3.28. Let ı : N ↪−→ Z. Consider the comma category ∗/ı. Its objects are
in the form {(∗, f) : f : ∗ → ∗ ∈ Z}, and

hom∗/ı((∗, f1), (∗, f2)) =

h ∈ N :

∗ ∗

∗

h∈Z

f1∈Z f2∈Z
commutative

 .

Looking at the nerve of ∗/ı, we can show that it is contractible (Exercise). By
Quillen’s theorem A, Bı : BN→ BZ = S1 is a homotopy equivalence.

Before presenting the proof of theorem 3.26, we need some technical construc-
tions.

Definition 3.29. Let F : C → D be a functor. The left global comma category
F/D is a category whose objects are in the form {(c, d, f) : c ∈ C, d ∈ D, f :
Fc → d}, and homF/D((c, d, f), (c

′, d′, f ′)) is the set {(h, g) : h ∈ homC(c, c
′), g ∈
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homD(d, d
′)} such that the diagram commutative:

F (c) F (c′)

d d′

F (h)

f f ′

g

Similarly we can define the right global comma category D/F . We omit the
details for simplicity.

Definition 3.30. A bisimplicial object X∗,∗ is a simplicial object in sC. In
other words, X∗,∗ : ∆op ×∆op → C. Write Xp,q = X∗,∗([p], [q]). It obsesses a pair
of horizontal face/degeneracy maps (corresponding to X∗,q, denoted d

h
i , s

h
j ) and a

pair of vertical face/degeneracy maps (corresponding to Xp,∗, denoted d
v
i , s

v
j ). We

use the notation ssC to denote the category of bisimplicial objects in C.

There is a natural map

d : ∆op ∆op ×∆op C
[n] [n]× [n] Xn,n.

id×id X∗,∗

d is called the diagonalization. It is functorial, sending elements in ssSet to ones
in sSet. Let X = X∗,∗ be a bisimplicial object. Then d(X)n = Xn,n, whose face
maps and degeneracy maps are given by

di = dhi ◦ dvi = dvi ◦ dhi , sj = shj ◦ svj = svj ◦ shj .
Notice that horizontal and vertical maps are independent, so they are free to com-
mute.

Proposition 3.31. There exists a coequalizer⊔
f :[m]→[n]

Xn ×∆m

⊔
−−⇒n≥0 Xn ×∆n γ−→ dX,

where γn : Xn × ∆n → dX. Its action on r-simplices yields (x, τ : [r] → [n]) 7→
γ∗(x) ∈ Xr,r.

Definition 3.32. The geometric realization of X = X∗,∗ is

BX :=
⊔
p,q≥0

Xp,q ×∆p ×∆q
/
∼,

where ∼ is the same as the one in the equation Defn 1, but given as p and q
respectively.

Proposition 3.33. d induces a homotopy equivalence BX
≃−→ B(dX).

Let f = f∗,∗ : X∗,∗ → Y∗,∗ be a map of bisimplicial objects in C (i.e. compatible
with face and degeneracy maps). For any c ∈ C, c ∈ B0C. From the fact

homsSet(∆[0]∗, B∗C) ∼= B0C
we deduce that sp0 = s0 ◦ · · · ◦ s0︸ ︷︷ ︸

p

(c) ∈ BpC, p ≥ 0. The fiber of f at c is

f−1(c) = {f−1
p,q (c) ⊂ Xp,q}p,q.
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Any map α : c → c′ yields a map of bisimplicial sets f−1(c)
α∗−−→ f−1(c′). The

following lemma is important in our setting:

Lemma 3.34. Let X = X∗,∗ be a bisimplicial object in C.
(1) If p ≥ 0 and fp,∗ : Xp,∗ → Yp,∗ is a homotopy equivalence, then Bf : BX →

BY is a homotopy equivalence.

(2) If for any map α : c→ c′, Bf−1(c)
α∗−−→ Bf−1(c′) is a homotopy equivalence,

then f−1(c) ↪−→ X∗,∗ fits into a homotopy fibration sequence:

(♯) Bf−1(c)→ BX → BC.

We will discuss the homotopy fibration sequence in the next section. For now,
we leave it as a black box with one important result kept in mind: if Bf−1(c) in
the homotopy fibration sequence (♯) is contractible, then BX ≃ BC.

Lemma 3.35. Let F : C → D be a functor. Then the forgetful functor

Forget : D/F C

(c, d, f) c

is a homotopy equivalence.

Proof. Define X = {Xp,q}p,q with

Xp,q = {dp → · · · → d0 → F (c0), c0 → · · · → cq}p,q,

where c0, d0, c1, d1, · · · ∈ D/F . This is the same data as the tripledp → · · · → d0 → F (c0), c0 → · · · → cq,

dp dp−1 · · · d0

F (cp) F (cp−1) · · · F (c0)

 .

Note BX ≃ BdX. On the other hand, B∗dX = X∗,∗ = B∗(D/F ) by the data. So
BX ≃ B(D/F ). Consider the natural projection f = f∗,∗′ : X∗,∗′ → B∗′C. On
(p, q)-simplex,

fp,q : Xp,q BqC

{dp → · · · → d0 → F (c0), c0 → · · · → cq}p,q (c0 → · · · → cq),

and sq0(c0) = c0 → · · · → c0︸ ︷︷ ︸
q

∈ BqC. So

f−1(c0) = {f−1
p,q (s

q
0(c0)) ⊂ Xp,q}p,q

= {dp → · · · → d0 → F (c0), c0 → · · · → c0︸ ︷︷ ︸
q

}p,q

∼= B∗(D/F (c0)).

Since D/F (c0) has an initial object (F (c0), idF (c0)), it is contractible. Hence,

Bf−1(c0) is contractible. By (2) of Lemma 3.34, BX ≃ BC ≃ B(D/F ). □

Now we are ready to prove theorem 3.26.
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Proof of theorem 3.26. Consider the following functors:

C D/F Dop

c (c, d, f) d.

ForgetC ForgetD

By Lemma 3.35, ForgetC is a homotopy equivalence. It suffices to check ForgetD
is a homotopy equivalence. Write Mor (D) to be a category whose objects are
morphisms in D, and

(♭) homMor (D)(a
f−→ b, c

g−→ d) =

(ϕ, ψ) :

a b

c d

f

ψ ϕ

g

 .

Let t, s be the target, and the source functors, respectively. t : Mor (D)→ D sends

(a
f−→ b) to b, and sends the commutative diagram in (♭) to b

ϕ−→ d. Similarly,

s : Mor (D) → Dop sends (a
f−→ b) to a, and sends the commutative diagram in (♭)

to a
ψ−→ c. Clearly, Mor (D) = D/idD. So Lemma 3.35 tells us that t is a homotopy

equivalence. Moreover, with slight amendation, s is also a homotopy equivalence.
Working on the diagram:

C D/F Dop

D Mor (D) Dop
F

∼=

ForgetMor (D)

∼=
t

∼=
s

It suffices to show that the functor D/F → Dop on the top right is a homotopy
equivalence.

Let X = X∗,∗ be a bisimplicial object, with

Xp,q = {dp → · · · → d0 → F (c0), c0 → · · · → cq}p,q.

Let P : X∗,∗′ → B∗Dop be the projection onto the d-factor. By a similar argu-
ment in the proof of Lemma 3.35, P−1(d0) ∼= B∗(d0/F ), which is contractible.

B(D/F )→ BDop factors through B(D/F ) ≃−→ BX
BP−−→ BDop. Hence, B(D/F ) ≃

BX ≃ BDop. We get our desired result. □

3.4. Quillen’s theorem B. Before we proceed, we first pick up some basic knowl-
edge of homotopy theory. Most of propositions in this section will not be proved.

3.4.1. Homotopy fibration sequence. Let C be a locally small category. Recall that
for any i : A → B, p : X → Y ∈ Mor(C), i is said to have left lifting property
(LLP) w.r.t. p if there is a map h : B → X such that f = h ◦ i; p is said to have
right lifting property (RLP) w.r.t. i if there is a map h : B → X such that
g = p ◦ h.

A X

B B

f

i p

g

h
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Let p : E → B be a surjective map. It is called a fibration if for any i : Dn ↪−→
Dn × I (n ≥ 0), i has LLP w.r.t. p. That is, there exists a map h : Dn × I → E
such that the diagram commutes:

Dn E

Dn × I B

i p
h

Proposition 3.36. Pullback of a fibration is again a fibration.

Proof. Let p : E → B be a fibration, and f : A→ B be any map. We need to prove
the pullback p̃ : A×f E → A is a fibration. Look at the diagram:

Dn A×f E E

Dn × I A B

g

i0 p̃ p
ϕ

h f

By definition of fibration, there exists a map ϕ : Dn × I → E such that two big
triangles with diagonal from Dn × I to E are commutative. Note that we already
have p ◦ ϕ = f ◦ h. The universal property of pullback yields that there exists a
unique map ψ : Dn × I → A×f E, which is exactly the desired morphism. □

As we would expect from classical homotopy theory, we have the following propo-
sition:

Proposition 3.37. Let E → B be a fibration with fiber F . Then there exists a
long exact sequence associated to it:

· · · → πn+1(B)→ πn+1(E)→ πn+1(F )→ πn(B)→ · · ·

Let X be a path-connected space. The path space of X, denoted XI , is
Map(I,X) with compact-open topology (i.e. generated by UC of paths map-
ping a fixed compact subset C ⊂ I into a fixed open subset U ⊂ X). Write
PX = {γ ∈ XI : γ(0) = x}, the space of paths based at x ∈ X.

Proposition 3.38. There is a fibration PX
p−→ X sending γ to γ(1). The fiber of

this fibration is ΩX = {γ ∈ XI : γ(0) = γ(1)}, called the loop space of X.

Proposition 3.39. (1) PX is contractible.
(2) If X is homotopy equivalent to a CW complex, then so is ΩX.

Definition 3.40. Let f : X → Y be any morphism, with Y path-connected. The
mapping path space Nf is the pullback

Nf PY

X Y

g

π p

f

where p sends γ to γ(1). In other word,

Nf = X ×f PY = {(x, γ) ∈ X × Y I : f(x) = γ(1)}.

Proposition 3.41 (Example of fibrant replacement). Any morphism f : X → Y
in Top can be written as a composite of a homotopy equivalence and a fibration.
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Definition 3.42. Let f : X → Y be any morphism, with Y path-connected.

Suppose we have Nf
P−→ Y , where P = f ◦ π = p ◦ g in the Definition 3.40.

P (x, γ) = γ(1). The homotopy fiber of f over y ∈ Y is P−1(y) = {(x, γ) ∈
X ×Y I : γ(1) = f(x), γ(0) = y}. When the choice of y is specified or unimportant,
then we denote P−1(y) by Ff .

Equivalently, we see Ff as the pullback

Ff Nf

{y} Y

P

Let F
j−→ X

f−→ Y be any morphism in Top such that f ◦j is constant. The univer-
sal property of Ff gives a canonical map g : F → Ff , sending x to (j(x), γf◦j(x)):

F X

Ff NF

{y} Y

g

j

f

i

Definition 3.43. The sequence F
j−→ X

f−→ Y is called a homotopy fibration
sequence if the induced map g is a homotopy equivalence.

Proposition 3.44. Let F
j−→ X

f−→ Y be a homotopy fibration sequence. Then
there exists a long exact sequence associated to it:

· · · → πn+1(F )→ πn+1(X)→ πn+1(Y )→ πn(F )→ · · ·

3.4.2. Quillen’s theorem B. Let F : C → D be a functor. Fix an object d ∈ D.

Definition 3.45. The fiber of F over d is the category F−1(d), whose objects
and morphisms consist of {c ∈ C : F (c) = d} and {f ∈ Mor(C) : F (f) = idd},
respectively.

There are natural functors

i∗ : F−1(d) d/F

c (d 7→ Fc, c) = (c, idd),

and

i∗ : F−1(d) F/d

c (Fc 7→ d, c) = (c, idd).

However, i∗ and i∗ are not homotopy equivalences in general.

Definition 3.46. F is called pre-cofibered if for any object d ∈ D, i∗ has a right
adjoint, denoted by i! : d/F → F−1(d). Dually, F is called pre-fibered if for any
object d ∈ D, i∗ has a left adjoint, denoted by i! : F/d→ F−1(d).
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Corollary 3.47. If F is pre-cofibered, then B(d/F ) ≃ BF−1(d). If F is pre-fibered,
then B(F/d) ≃ BF−1(d).

Definition 3.48. Let F be pre-fibered. Fix a morphism f : d → d′ in D. The
base change functor f∗ : F−1(d′)→ F−1(d) is given by

f∗ : F−1(d′) d′/F d/F F−1(d)

(c, d′
g−→ Fc) (c, d

f−→ d′
g−→ Fc)

i′∗ f i!

Let d
f−→ d′

g−→ d′′ be a chain of morphism in D. There exists a natural transfor-
mation α = f∗g∗ =⇒ (g ◦ f)∗, induced by the counit ε : i′∗ ◦ (i′)! =⇒ idd/F :

F−1(d′′) d′′/F d′/F F−1(d′)

d′/F

d/F

F−1(d)

i′′∗ g (i′)!

ε
i′∗

f

i!

Dually, we can present the previous constructions with the assumption that F
is pre-cofibered.

Definition 3.49. Let F be pre-fibered. F is fibered if any composable pair
f, g ∈ Mor(D) induces the natural isomorphism α = f∗g∗ =⇒ (g ◦ f)∗ defined as

above. Dually, let F be pre-cofibered. F is cofibered if any composable pair
f, g ∈ Mor(D) induces the natural isomorphism α = f∗g∗ =⇒ (g ◦ f)∗.

The following is an easy corollary of Quillen’s theorem A:

Corollary 3.50. Let F be cofibered (resp. fibered). If F−1(d) is contractible for
any object d ∈ D, then BF : BC → BD is a homotopy equivalence.

Example 3.51 (Grothendieck). There is an one-to-one correspondence:

{cofibered C → D} [←→]{functors D → Cats}.

To see why it is true, one can take any cofibered functor F : C → D, and then
define F−1 : D → Cats sending d 7→ F−1(d). Conversely, for any G : D → Cats,
one can associate it to G′ : DG → D, which is cofibered.

Now we come to another meta-theorem of the context:

Theorem 3.52 (Quillen’s theorem B). Let F : C → D be a functor such that
any (f : d → d′) ∈ Mor(D) induces a homotopy equivalence in the associated base
change functor f∗:

F−1(d′)
i′∗−→ d′/F

f−→
≃
d/F

i!−→ F−1(d).



SIMPLICIAL CATEGORIES, KAN EXTENSIONS AND HOMOTOPICAL ALGEBRA 21

Then, for any object d ∈ D, there is a homotopy fibration sequence:

B(d/F )
B◦Forget−−−−−−→ BC BF−−→ BD.

Proof. Again, we use the same technique as proving Quillen’s theorem A. Let X =
{Xp,q}p,q be a bisimplicial object in C. Xp,q = {dp → · · · → d0 → F (c0), c0 →
· · · → cq}. Let π : X∗,∗′ → B∗Dop be as in the proof of Quillen’s theorem A (see
Theorem 3.26). We know

π−1(d0) ∼= B∗(d0/F ).

From the assumption, d′/F
f−→
≃
d/F . (2) of Lemma 3.34 tells us that there exists a

homotopy fibration sequence

Bπ−1(d) ∼= B(d/F )→ BX → BC.
On the other hand, since BX ≃ BdX and B∗(D/F ) = B∗dX, BX ≃ B(D/F ), and
so by Lemma 3.35,

B ◦ Forget : B(d/F ) ≃ BX ≃ B(D/F ) ≃−→ BC.
We obtain the following diagram:

B(d/F ) B(D/F ) ≃ BX BDop

B(d/F ) BC BD

Bπ

≃ ≃

B◦Forget BF

Note that Bπ is a homotopy equivalence by factoring through

B(D/F ) ≃ BX Bπ−−→ BDop.
Hence, the upper row of the diagram is a homotopy fibration sequence. Therefore,
the upper row of the diagram is also a homotopy fibration sequence. □
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