Topological Cyclic Homology of Local Fields

Albert Jinghui Yang

Department of Mathematics University of Pennsylvania

Nov 2024

1 Motivation: Computation of Algebraic K-Theory

2 Topological Hochschild Homology and Topological Cyclic Homology

- Obscent Spectral Sequences
- 4 TC of Local Fields

2/31

1 Motivation: Computation of Algebraic K-Theory

2 Topological Hochschild Homology and Topological Cyclic Homology

- 3 Descent Spectral Sequences
- TC of Local Fields

3/31

Collection of Algebraic Number Theory

< □ > < @ >

æ

Let $F \mid \mathbb{Q}_p$ be a finite extension, and \mathcal{O}_F be its ring of integers.

Let $\Pi_F \in F$ be a uniformizer of F. Equivalently, $v(\Pi_F) = 1$ and $v(\Pi_F)$ generates $v(k^{\times})$ for the normalized valuation v.

4/31

Let $\Pi_F \in F$ be a uniformizer of F. Equivalently, $v(\Pi_F) = 1$ and $v(\Pi_F)$ generates $v(k^{\times})$ for the normalized valuation v.

Key examples: $F = \mathbb{Q}_p$ is the *p*-adic numbers, $\mathcal{O}_F = \mathbb{Z}_p$ is the *p*-adic integers, and *p* is a uniformizer of \mathbb{Q}_p .

Let $\Pi_F \in F$ be a uniformizer of F. Equivalently, $v(\Pi_F) = 1$ and $v(\Pi_F)$ generates $v(k^{\times})$ for the normalized valuation v.

Key examples: $F = \mathbb{Q}_p$ is the *p*-adic numbers, $\mathcal{O}_F = \mathbb{Z}_p$ is the *p*-adic integers, and *p* is a uniformizer of \mathbb{Q}_p .

Write e_F to be the ramification index of $F \mid \mathbb{Q}_p$, and f_K to be the inertia degree. Write $E_F(z) \in \mathcal{O}_F[z]$ to be the Eisenstein polynomial.

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

< 47 ▶

э

Question

What is $K_*(F)$? Or what is $K_*(\mathcal{O}_F)$?

Question

What is $K_*(F)$? Or what is $K_*(\mathcal{O}_F)$?

• *K*-theory of *F* verifies the Quillen-Lichtenbaum conjecture if *F* does not contain certain roots of unity. (Hesselholt-Madsen, 2003)

Question

What is $K_*(F)$? Or what is $K_*(\mathcal{O}_F)$?

- *K*-theory of *F* verifies the Quillen-Lichtenbaum conjecture if *F* does not contain certain roots of unity. (Hesselholt-Madsen, 2003)
- If F = W(𝔽_p), K_{*}(F/pⁿ) will recover the calculation of K_{*}(ℤ/pⁿ). (Antieau-Krause-Scholze, 2024)

5/31

Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields

イロト イヨト イヨト イヨト

3

Question

How to compute $K_*(R)$ for a general group/ring/field R?

< 4[™] > - (E э

Question

How to compute $K_*(R)$ for a general group/ring/field R?

Theorem (Dundas-Goodwillie-McCarthy)

Assume that I is a nilpotent ideal in R. Then there is a natural pullback square

$$\mathcal{K}(A) \longrightarrow \mathcal{K}(A/I)$$

cyclotomic trace \downarrow \downarrow cyclotomic trace
 $\mathsf{TC}(A) \longrightarrow \mathsf{TC}(A/I)$

Motivation: Computation of Algebraic K-Theory

2 Topological Hochschild Homology and Topological Cyclic Homology

- 3 Descent Spectral Sequences
- TC of Local Fields

Let *R* be a commutative ring spectrum, i.e. an \mathbb{E}_{∞} -ring. Write CAlg := Alg_{\mathbb{E}_{∞}}(Sp), and *S* is the ∞ -category of spaces.

4 A b 4

Let R be a commutative ring spectrum, i.e. an \mathbb{E}_{∞} -ring. Write $CAlg := Alg_{\mathbb{E}_{\infty}}(Sp)$, and S is the ∞ -category of spaces.

Definition

The topological Hochschild homology of R is defined to be THH $(R) = R \otimes_{R \otimes_{\mathbb{S}} R^{op}} R$.

Let R be a commutative ring spectrum, i.e. an \mathbb{E}_{∞} -ring. Write $CAlg := Alg_{\mathbb{E}_{\infty}}(Sp)$, and S is the ∞ -category of spaces.

Definition

The topological Hochschild homology of R is defined to be THH $(R) = R \otimes_{R \otimes_{\mathbb{S}} R^{op}} R$.

Definition/Proposition

The functor $\operatorname{Map}_{\operatorname{CAlg}}(R, -) : \operatorname{CAlg} \to S$ has a left adjoint, denoted by $R^{\otimes -} : S \to \operatorname{CAlg}$.

く 目 ト く ヨ ト く ヨ ト

Let R be a commutative ring spectrum, i.e. an \mathbb{E}_{∞} -ring. Write $CAlg := Alg_{\mathbb{E}_{\infty}}(Sp)$, and S is the ∞ -category of spaces.

Definition

The topological Hochschild homology of R is defined to be THH $(R) = R \otimes_{R \otimes_{\mathbb{S}} R^{op}} R$.

Definition/Proposition

The functor $\operatorname{Map}_{\operatorname{CAlg}}(R, -) : \operatorname{CAlg} \to S$ has a left adjoint, denoted by $R^{\otimes -} : S \to \operatorname{CAlg}$. Equivalently, $\operatorname{THH}(R) = R^{\otimes S^1}$. This is closely related to the universal characterization of THH (McClure-Schwänzl-Vogt).

< 口 > < 同 > < 回 > < 回 > < 回 > <

Let R be a commutative ring spectrum, i.e. an \mathbb{E}_{∞} -ring. Write $CAlg := Alg_{\mathbb{E}_{\infty}}(Sp)$, and S is the ∞ -category of spaces.

Definition

The topological Hochschild homology of R is defined to be THH $(R) = R \otimes_{R \otimes_{\mathbb{S}} R^{op}} R$.

Definition/Proposition

The functor $\operatorname{Map}_{\operatorname{CAlg}}(R, -) : \operatorname{CAlg} \to S$ has a left adjoint, denoted by $R^{\otimes -} : S \to \operatorname{CAlg}$. Equivalently, $\operatorname{THH}(R) = R^{\otimes S^1}$. This is closely related to the universal characterization of THH (McClure-Schwänzl-Vogt).

We will use these definitions interchangeably.

æ

THH(R) has a natural S^1 -action.

Image: A matrix

æ

THH(R) has a natural S^1 -action. What's more, it is a **cyclotomic spectrum**, i.e. there is a S^1 -equivariant map THH(R) \rightarrow THH(R)^{tC_p} for all prime p.

THH(R) has a natural S^1 -action. What's more, it is a **cyclotomic spectrum**, i.e. there is a S^1 -equivariant map THH(R) \rightarrow THH(R)^{tC_p} for all prime p.

Definition

• The negative topological cyclic homology of R is defined to be $TC^{-}(R) = THH(R)^{hS^{1}}$.

THH(R) has a natural S^1 -action. What's more, it is a **cyclotomic spectrum**, i.e. there is a S^1 -equivariant map THH(R) \rightarrow THH(R)^{tC_p} for all prime p.

Definition

- The negative topological cyclic homology of R is defined to be $TC^{-}(R) = THH(R)^{hS^{1}}$.
- The topological periodic cyclic homology of R is defined to be $TP(R) = THH(R)^{tS^1}$.

THH(R) has a natural S^1 -action. What's more, it is a **cyclotomic spectrum**, i.e. there is a S^1 -equivariant map THH(R) \rightarrow THH(R)^{tC_p} for all prime p.

Definition

- The negative topological cyclic homology of R is defined to be $TC^{-}(R) = THH(R)^{hS^{1}}$.
- The topological periodic cyclic homology of R is defined to be $TP(R) = THH(R)^{tS^1}$.
- The topological cyclic homology of *R*, denoted TC(*R*), is defined to be the equalizer of the canonical map

can :
$$\mathsf{TC}^{-}(R) \to \mathsf{TP}(R)$$
,

and the cyclotomic Frobenius

$$\varphi: \mathsf{TC}^-(R) \to \mathsf{TP}(R).$$

Consider $\mathbb{S}_p^{\wedge} \in CAlg(Sp)$ be the *p*-complete sphere spectrum.

∃ >

< 1 k

э

Consider $\mathbb{S}_p^{\wedge} \in CAlg(Sp)$ be the *p*-complete sphere spectrum. Let *k* be a perfect \mathbb{F}_p -algebra.

• $\mathbb{S}_{W(k)}$ is *p*-complete.

- $\mathbb{S}_{W(k)}$ is *p*-complete.
- 2 $\mathbb{S}_{W(k)}$ is flat over \mathbb{S}_{p}^{\wedge} .

- $\mathbb{S}_{W(k)}$ is *p*-complete.
- **2** $\mathbb{S}_{W(k)}$ is flat over \mathbb{S}_p^{\wedge} .
- $\pi_0(\mathbb{S}_{W(k)}) = W(k)$, the ordinary ring of Witt vectors.

10/31

- $\mathbb{S}_{W(k)}$ is *p*-complete.
- **2** $\mathbb{S}_{W(k)}$ is flat over \mathbb{S}_p^{\wedge} .
- $\pi_0(\mathbb{S}_{W(k)}) = W(k)$, the ordinary ring of Witt vectors.
- $Map_{CAlg}(S_{W(k)}, R) \rightarrow Map_{CAlg}(k, \pi_0(R)/p)$ is an equivalence, for all *p*-complete \mathbb{E}_{∞} -ring *R*.

- **2** $\mathbb{S}_{W(k)}$ is flat over \mathbb{S}_p^{\wedge} .
- $\pi_0(\mathbb{S}_{W(k)}) = W(k)$, the ordinary ring of Witt vectors.
- $Map_{CAlg}(S_{W(k)}, R) \rightarrow Map_{CAlg}(k, \pi_0(R)/p)$ is an equivalence, for all *p*-complete \mathbb{E}_{∞} -ring *R*.

Moreover, $S_{W(k)}$ is uniquely characterized by the above properties.
Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields

Let $\mathbb{S}_{W(k)}[z_0, z_1, \cdots, z_n] = \mathbb{S}_{W(k)} \otimes_{\mathbb{S}} \Sigma^{\infty}_{+} \mathbb{N}^{n+1}$ be the free \mathbb{E}_{∞} -ring generated by n+1 copies of commutative monoids \mathbb{N} .

э

Let $\mathbb{S}_{W(k)}[z_0, z_1, \cdots, z_n] = \mathbb{S}_{W(k)} \otimes_{\mathbb{S}} \Sigma^{\infty}_{+} \mathbb{N}^{n+1}$ be the free \mathbb{E}_{∞} -ring generated by n+1 copies of commutative monoids \mathbb{N} . We can define the related version of THH, TC⁻, TP, TC:

Definition

Let R be a $S_{W(k)}[z_0, \cdots, z_n]$ -algebra. Then

• THH
$$(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = R^{\otimes_{\mathbb{S}_{W(k)}[z_0,\cdots,z_n]}S^1}$$

Let $\mathbb{S}_{W(k)}[z_0, z_1, \cdots, z_n] = \mathbb{S}_{W(k)} \otimes_{\mathbb{S}} \Sigma^{\infty}_{+} \mathbb{N}^{n+1}$ be the free \mathbb{E}_{∞} -ring generated by n+1 copies of commutative monoids \mathbb{N} . We can define the related version of THH, TC⁻, TP, TC:

Definition

Let R be a $S_{W(k)}[z_0, \dots, z_n]$ -algebra. Then

• THH
$$(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = R^{\otimes_{\mathbb{S}_{W(k)}[z_0,\cdots,z_n]}S^1}$$
.

• $\mathsf{TC}^{-}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = \mathsf{THH}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n])^{hS^1};$ $\mathsf{TP}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = \mathsf{THH}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n])^{tS^1}.$

A (1) < A (2) < A (2) </p>

Let $\mathbb{S}_{W(k)}[z_0, z_1, \cdots, z_n] = \mathbb{S}_{W(k)} \otimes_{\mathbb{S}} \Sigma^{\infty}_{+} \mathbb{N}^{n+1}$ be the free \mathbb{E}_{∞} -ring generated by n+1 copies of commutative monoids \mathbb{N} . We can define the related version of THH, TC⁻, TP, TC:

Definition

Let R be a $S_{W(k)}[z_0, \cdots, z_n]$ -algebra. Then

• THH
$$(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = R^{\otimes_{\mathbb{S}_{W(k)}[z_0,\cdots,z_n]}S^1}$$
.

- $\mathsf{TC}^{-}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = \mathsf{THH}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n])^{hS^1};$ $\mathsf{TP}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = \mathsf{THH}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n])^{tS^1}.$
- Similarly can define the relative $TC(R/S_{W(k)}[z_0, \cdots, z_n])$.

く 同 ト く ヨ ト く ヨ ト

Let $\mathbb{S}_{W(k)}[z_0, z_1, \cdots, z_n] = \mathbb{S}_{W(k)} \otimes_{\mathbb{S}} \Sigma^{\infty}_{+} \mathbb{N}^{n+1}$ be the free \mathbb{E}_{∞} -ring generated by n+1 copies of commutative monoids \mathbb{N} . We can define the related version of THH, TC⁻, TP, TC:

Definition

Let R be a $S_{W(k)}[z_0, \cdots, z_n]$ -algebra. Then

• THH
$$(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = R^{\otimes_{\mathbb{S}_{W(k)}[z_0,\cdots,z_n]}S^1}$$
.

- $\mathsf{TC}^{-}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = \mathsf{THH}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n])^{hS^1};$ $\mathsf{TP}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n]) = \mathsf{THH}(R/\mathbb{S}_{W(k)}[z_0,\cdots,z_n])^{tS^1}.$
- Similarly can define the relative $TC(R/S_{W(k)}[z_0, \cdots, z_n])$.

Change-of-base formula:

$$\operatorname{THH}(R/S) \simeq \operatorname{THH}(R) \otimes_{\operatorname{THH}(S)} S.$$

11/31

・ 同 ト ・ ヨ ト ・ ヨ ト …

Motivation: Computation of Algebraic K-Theory

2 Topological Hochschild Homology and Topological Cyclic Homology

Obscent Spectral Sequences

TC of Local Fields

Let E be a ring spectrum.

< □ > < @ >

æ

Let *E* be a ring spectrum. Classically, the *E*-Adams resolution of a spectrum X is a long *E*-exact sequence

$$0 \to X \to I_0 \xrightarrow{i_0} I_1 \xrightarrow{i_1} I_2 \xrightarrow{i_2} \cdots,$$

where I_j 's are *E*-injective, $i_{j+1}i_j \simeq 0$ for all $j \ge 0$.

Let *E* be a ring spectrum. Classically, the *E*-Adams resolution of a spectrum X is a long *E*-exact sequence

$$0 \to X \to I_0 \xrightarrow{i_0} I_1 \xrightarrow{i_1} I_2 \xrightarrow{i_2} \cdots,$$

where I_j 's are *E*-injective, $i_{j+1}i_j \simeq 0$ for all $j \ge 0$.

Every E-Adams resolution will give rise to an E-Adams tower, and thus an E-Adams spectral sequence.

Let \hat{X} be the *E*-completion of *X*, and assume (π_*E, E_*E) is a Hopf algebroid.

Let \hat{X} be the *E*-completion of *X*, and assume (π_*E, E_*E) is a Hopf algebroid. Then the *E*-Adams spectral sequence looks like

$$E^{2} = \operatorname{Ext}_{E_{*}E}^{s,t}(\pi_{*}E, E_{*}(X)) \Rightarrow \pi_{s-t}(\widehat{X}).$$

Canonical Resolution

Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields

The canonical E-Adams resolution (augmented cosimplicial spectrum) is

$$0 \to X \to E \land X \xrightarrow{i_0} E \land E \land X \xrightarrow{i_1} E^{\land 3} \land X \xrightarrow{i_2} \cdots,$$

where $I_n = E^{\wedge (n+1)} \wedge X$, and $i_n = \sum_{i=0}^{n+1} \mathrm{id}^{\wedge i} \wedge e \wedge \mathrm{id}^{\wedge n+1-i} \wedge \mathrm{id}_X$.

15/31

(本部) (本語) (本語) (三語)

The canonical E-Adams resolution (augmented cosimplicial spectrum) is

$$0 \to X \to E \wedge X \xrightarrow{i_0} E \wedge E \wedge X \xrightarrow{i_1} E^{\wedge 3} \wedge X \xrightarrow{i_2} \cdots,$$

where $I_n = E^{\wedge (n+1)} \wedge X$, and $i_n = \sum_{i=0}^{n+1} id^{\wedge i} \wedge e \wedge id^{\wedge n+1-i} \wedge id_X$. E^1 -page of the Adams spectral sequence is the cobar complex

$$0 \to E_*(X) \to E_*E \otimes_{\pi_*E} E_*(X) \to E_*E^{\otimes 2} \otimes_{\pi_*E} E_*(X) \to \cdots.$$

The canonical E-Adams resolution (augmented cosimplicial spectrum) is

$$0 \to X \to E \land X \xrightarrow{i_0} E \land E \land X \xrightarrow{i_1} E^{\land 3} \land X \xrightarrow{i_2} \cdots,$$

where $I_n = E^{\wedge (n+1)} \wedge X$, and $i_n = \sum_{i=0}^{n+1} id^{\wedge i} \wedge e \wedge id^{\wedge n+1-i} \wedge id_X$. E^1 -page of the Adams spectral sequence is the cobar complex

$$0 o E_*(X) o E_*E \otimes_{\pi_*E} E_*(X) o E_*E^{\otimes 2} \otimes_{\pi_*E} E_*(X) o \cdots$$

The cohomology of this cobar complex is E^2 -page, i.e.

$$E^2 = H^*(E^1) = \operatorname{Ext}_{E_*E}^{s,t}(\pi_*E, E_*(X))$$

Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields Nor

Ξ.

イロト イヨト イヨト イヨト

There is a canonical $\mathbb{S}_{W(k)}\text{-}\mathsf{Adams}$ resolution of \mathbb{S} by

$$0 \to \mathbb{S} \to \mathbb{S}_{W(k)}[z] \to \mathbb{S}_{W(k)}[z_0, z_1] \to \mathbb{S}_{W(k)}[z]^{\otimes [2]} \to \mathbb{S}_{W(k)}[z]^{\otimes [3]} \to \cdots$$

æ

.

Case for THH

There is a canonical $S_{W(k)}$ -Adams resolution of S by

$$0 \to \mathbb{S} \to \mathbb{S}_{W(k)}[z] \to \mathbb{S}_{W(k)}[z_0, z_1] \to \mathbb{S}_{W(k)}[z]^{\otimes [2]} \to \mathbb{S}_{W(k)}[z]^{\otimes [3]} \to \cdots$$

Regard $\mathcal{O}_{\mathcal{K}}$ as an \mathbb{E}_{∞} -algebra over $\mathbb{S}_{W(k)}[z]^{\otimes [-]}$ via

$$\mathbb{S}_{W(k)}[z]^{\otimes [-]} o W(k)[z]^{\otimes [-]} o \mathcal{O}_{K},$$

where the last map sends all variables z_i to Π_K .

There is a canonical $\mathbb{S}_{W(k)}$ -Adams resolution of \mathbb{S} by

$$0 \to \mathbb{S} \to \mathbb{S}_{W(k)}[z] \to \mathbb{S}_{W(k)}[z_0, z_1] \to \mathbb{S}_{W(k)}[z]^{\otimes [2]} \to \mathbb{S}_{W(k)}[z]^{\otimes [3]} \to \cdots$$

Regard $\mathcal{O}_{\mathcal{K}}$ as an \mathbb{E}_{∞} -algebra over $\mathbb{S}_{W(k)}[z]^{\otimes [-]}$ via

$$\mathbb{S}_{W(k)}[z]^{\otimes [-]} o W(k)[z]^{\otimes [-]} o \mathcal{O}_{K},$$

where the last map sends all variables z_i to Π_K .

By the change-of-base formula, we get an augmented cosimplicial $\mathbb{E}_\infty\text{-cyclotomic spectrum:}$

$$\mathsf{THH}(\mathcal{O}_{\mathcal{K}}/\mathbb{S}_{W(k)}) \to \mathsf{THH}(\mathcal{O}_{\mathcal{K}}/\mathbb{S}_{W(k)}[z]^{\otimes [-]}).$$

э

• THH $(\mathcal{O}_K/\mathbb{S}_{W(k)}) \simeq \lim_{n} \operatorname{THH}(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]^{\otimes [n]}).$

< A >

э

- $\mathsf{THH}(\mathcal{O}_{\mathcal{K}}/\mathbb{S}_{W(k)}) \simeq \lim_{n} \mathsf{THH}(\mathcal{O}_{\mathcal{K}}/\mathbb{S}_{W(k)}[z]^{\otimes [n]}).$
- $(\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]), \mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0, z_1]))$ is a Hopf algebroid.

- $\mathsf{THH}(\mathcal{O}_{\mathcal{K}}/\mathbb{S}_{W(k)}) \simeq \lim_{n} \mathsf{THH}(\mathcal{O}_{\mathcal{K}}/\mathbb{S}_{W(k)}[z]^{\otimes [n]}).$
- $(\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]), \mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0, z_1]))$ is a Hopf algebroid.
- As a result,

$$E^2 = \operatorname{Ext}_{\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0,z_1])}^{-s,t}(\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z])).$$

- $\mathsf{THH}(\mathcal{O}_K/\mathbb{S}_{W(k)}) \simeq \lim_{n} \mathsf{THH}(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]^{\otimes [n]}).$
- $(\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]), \mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0, z_1]))$ is a Hopf algebroid.
- As a result,

$$E^2 = \operatorname{Ext}_{\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0,z_1])}^{-s,t}(\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z])).$$

The same story happens if we replace THH_* by TP_0 .

Hopf Algebroid for THH

The explicit ring structures for the Hopf algebroid for THH are known:

∃ >

- $\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]) = \mathcal{O}_K[u]$, where $u \in \mathsf{THH}_2$ is the lift of Bökstedt element in $\mathsf{THH}_2(k)$.
- THH_{*}($\mathcal{O}_{K}/\mathbb{S}_{W(k)}[z_{0}, z_{1}]$) = $\mathcal{O}_{K}[u_{0}] \otimes_{\mathcal{O}_{K}} \mathcal{O}_{K} \langle t_{z_{0}-z_{1}} \rangle$, where $u_{0} = \eta_{L}(u)$, and $t_{z_{0}-z_{1}}$ is obtained by a variant of Hochschild-Konstant-Rosenberg theorem applying to $z_{0} z_{1} \in HH_{2}(\mathcal{O}_{K}/W(k)[z_{0}, z_{1}])$.

э

18/31

- $\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]) = \mathcal{O}_K[u]$, where $u \in \mathsf{THH}_2$ is the lift of Bökstedt element in $\mathsf{THH}_2(k)$.
- THH_{*}($\mathcal{O}_K / \mathbb{S}_{W(k)}[z_0, z_1]$) = $\mathcal{O}_K[u_0] \otimes_{\mathcal{O}_K} \mathcal{O}_K \langle t_{z_0-z_1} \rangle$, where $u_0 = \eta_L(u)$, and $t_{z_0-z_1}$ is obtained by a variant of Hochschild-Konstant-Rosenberg theorem applying to $z_0 z_1 \in HH_2(\mathcal{O}_K / W(k)[z_0, z_1])$.

The other operations are given as follows:

- $\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]) = \mathcal{O}_K[u]$, where $u \in \mathsf{THH}_2$ is the lift of Bökstedt element in $\mathsf{THH}_2(k)$.
- THH_{*}($\mathcal{O}_K / \mathbb{S}_{W(k)}[z_0, z_1]$) = $\mathcal{O}_K[u_0] \otimes_{\mathcal{O}_K} \mathcal{O}_K \langle t_{z_0-z_1} \rangle$, where $u_0 = \eta_L(u)$, and $t_{z_0-z_1}$ is obtained by a variant of Hochschild-Konstant-Rosenberg theorem applying to $z_0 z_1 \in HH_2(\mathcal{O}_K / W(k)[z_0, z_1])$.

The other operations are given as follows:

• Right unit:
$$\eta_R(u) = u_1 = u_0 - E'_K(\Pi_K)t_{z_0-z_1}$$
.

- $\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]) = \mathcal{O}_K[u]$, where $u \in \mathsf{THH}_2$ is the lift of Bökstedt element in $\mathsf{THH}_2(k)$.
- THH_{*}($\mathcal{O}_K / \mathbb{S}_{W(k)}[z_0, z_1]$) = $\mathcal{O}_K[u_0] \otimes_{\mathcal{O}_K} \mathcal{O}_K \langle t_{z_0-z_1} \rangle$, where $u_0 = \eta_L(u)$, and $t_{z_0-z_1}$ is obtained by a variant of Hochschild-Konstant-Rosenberg theorem applying to $z_0 z_1 \in HH_2(\mathcal{O}_K / W(k)[z_0, z_1])$.

The other operations are given as follows:

- Right unit: $\eta_R(u) = u_1 = u_0 E'_K(\Pi_K)t_{z_0-z_1}$.
- Comultiplication: $\Delta(t^{[i]}_{z_0-z_1}) = \sum_{o \leq j \leq i} t^{[j]}_{z_0-z_1} \otimes t^{[i-j]}_{z_0-z_1}$.

- $\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]) = \mathcal{O}_K[u]$, where $u \in \mathsf{THH}_2$ is the lift of Bökstedt element in $\mathsf{THH}_2(k)$.
- THH_{*}($\mathcal{O}_K / \mathbb{S}_{W(k)}[z_0, z_1]$) = $\mathcal{O}_K[u_0] \otimes_{\mathcal{O}_K} \mathcal{O}_K \langle t_{z_0-z_1} \rangle$, where $u_0 = \eta_L(u)$, and $t_{z_0-z_1}$ is obtained by a variant of Hochschild-Konstant-Rosenberg theorem applying to $z_0 z_1 \in HH_2(\mathcal{O}_K / W(k)[z_0, z_1])$.

The other operations are given as follows:

- Right unit: $\eta_R(u) = u_1 = u_0 E'_K(\Pi_K)t_{z_0-z_1}$.
- Comultiplication: $\Delta(t_{z_0-z_1}^{[i]}) = \sum_{o \leq j \leq i} t_{z_0-z_1}^{[j]} \otimes t_{z_0-z_1}^{[i-j]}$.

• Counit:
$$\varepsilon(t_{z_0-z_1}) = 0.$$

3

くぼう くほう くほう

- $\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]) = \mathcal{O}_K[u]$, where $u \in \mathsf{THH}_2$ is the lift of Bökstedt element in $\mathsf{THH}_2(k)$.
- THH_{*}($\mathcal{O}_K / \mathbb{S}_{W(k)}[z_0, z_1]$) = $\mathcal{O}_K[u_0] \otimes_{\mathcal{O}_K} \mathcal{O}_K \langle t_{z_0-z_1} \rangle$, where $u_0 = \eta_L(u)$, and $t_{z_0-z_1}$ is obtained by a variant of Hochschild-Konstant-Rosenberg theorem applying to $z_0 z_1 \in HH_2(\mathcal{O}_K / W(k)[z_0, z_1])$.

The other operations are given as follows:

- Right unit: $\eta_R(u) = u_1 = u_0 E'_K(\Pi_K)t_{z_0-z_1}$.
- Comultiplication: $\Delta(t_{z_0-z_1}^{[i]}) = \sum_{o \leq j \leq i} t_{z_0-z_1}^{[j]} \otimes t_{z_0-z_1}^{[i-j]}$.

• Counit:
$$\varepsilon(t_{z_0-z_1}) = 0.$$

• Antipode: $c(u_0) = u_1$, $c(u_1) = u_0$, $c(t_{z_0-z_1}) = t_{z_1-z_0}$.

э

4 A b 4

э

Taking the injective resolution of A as a left Γ -modules:

Taking the injective resolution of A as a left Γ -modules:

$$0 \to A \xrightarrow{\eta_L} \Gamma \xrightarrow{x \mapsto D(x)dz} \Gamma dz \to 0,$$

where
$$D: t_{z_0-z_1}^{[i]} \mapsto t_{z_0-z_1}^{[i-1]}$$
, and $|dz| = 2$.

Taking the injective resolution of A as a left Γ -modules:

$$0 \to A \xrightarrow{\eta_L} \Gamma \xrightarrow{x \mapsto D(x)dz} \Gamma dz \to 0,$$

where $D: t_{z_0-z_1}^{[i]} \mapsto t_{z_0-z_1}^{[i-1]}$, and |dz| = 2.

Apply $\operatorname{Hom}_{\Gamma}(A, -)$ to it, and by $\operatorname{Hom}_{A}(M, N) \cong \operatorname{Hom}_{\Gamma}(M, \Gamma \otimes N)$, we get
Write $(A, \Gamma) = (\mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]), \mathsf{THH}_*(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0, z_1]))$. Want to calculate $\operatorname{Ext}_{\Gamma}(A, A)$.

Taking the injective resolution of A as a left Γ -modules:

$$0 \to A \xrightarrow{\eta_L} \Gamma \xrightarrow{x \mapsto D(x)dz} \Gamma dz \to 0,$$

where $D: t_{z_0-z_1}^{[i]} \mapsto t_{z_0-z_1}^{[i-1]}$, and |dz| = 2.

Apply $\operatorname{Hom}_{\Gamma}(A, -)$ to it, and by $\operatorname{Hom}_{A}(M, N) \cong \operatorname{Hom}_{\Gamma}(M, \Gamma \otimes N)$, we get

$$A \xrightarrow{f \mapsto (D_0 \circ \eta_R) dz} A dz,$$

where $D_0: t_{z_0-z_1}^{[i]} \mapsto 1$ iff i = 0, and 0 else.

THH of Local Fields

Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields

イロト イヨト イヨト イヨト

3

THH of Local Fields

By the cobar complex, we obtain for $n \ge 1$, the only non-zero Ext groups are

$$\begin{split} & \operatorname{Ext}_{\Gamma}^{0,0}(A) = \mathcal{O}_{\mathcal{K}}, \\ & \operatorname{Ext}_{\Gamma}^{1,2n}(A) = \mathcal{O}_{\mathcal{K}}/(nE_{\mathcal{K}}'(\Pi_{\mathcal{K}})). \end{split}$$

< A IN

By the cobar complex, we obtain for $n \ge 1$, the only non-zero Ext groups are

$$\begin{split} & \operatorname{Ext}_{\Gamma}^{0,0}(A) = \mathcal{O}_{\mathcal{K}}, \\ & \operatorname{Ext}_{\Gamma}^{1,2n}(A) = \mathcal{O}_{\mathcal{K}}/(nE_{\mathcal{K}}'(\Pi_{\mathcal{K}})). \end{split}$$

The descent SS for THH($\mathcal{O}_{\mathcal{K}}/\mathbb{S}_{W(k)}$) collapses at E^2 -page for degree reason.

By the cobar complex, we obtain for $n \ge 1$, the only non-zero Ext groups are

$$\begin{split} & \operatorname{Ext}_{\Gamma}^{0,0}(A) = \mathcal{O}_{\mathcal{K}}, \\ & \operatorname{Ext}_{\Gamma}^{1,2n}(A) = \mathcal{O}_{\mathcal{K}}/(nE_{\mathcal{K}}'(\Pi_{\mathcal{K}})). \end{split}$$

The descent SS for THH($\mathcal{O}_K/\mathbb{S}_{W(k)}$) collapses at E^2 -page for degree reason.

Corollary

$$\mathsf{THH}_m(\mathcal{O}_K/\mathbb{S}_{W(k)}) = \begin{cases} \mathcal{O}_K, & m = 0; \\ \mathcal{O}_K/(nE'_K(\Pi_K)), & m = 2n - 1; \\ 0, & \text{else.} \end{cases}$$

Motivation: Computation of Algebraic K-Theory

2 Topological Hochschild Homology and Topological Cyclic Homology

3 Descent Spectral Sequences

4 TC of Local Fields

21/31

Descent SS for TC

3

イロト イヨト イヨト

The descent spectral sequence for $TC(\mathcal{O}_{\mathcal{K}}/\mathbb{S}_{W(k)})$ is obtained by looking at the filtration given by fiber of can $-\varphi$ at each level, and

$$E_{i,j}^1 \Rightarrow \mathsf{TC}_{i+j}(\mathcal{O}_K/\mathbb{S}_{W(k)}).$$

22/31

The descent spectral sequence for $TC(\mathcal{O}_K/\mathbb{S}_{W(k)})$ is obtained by looking at the filtration given by fiber of can $-\varphi$ at each level, and

$$E_{i,j}^1 \Rightarrow \mathsf{TC}_{i+j}(\mathcal{O}_K/\mathbb{S}_{W(k)}).$$

The E^2 -page is computed by another (multiplicative) spectral sequence, for k = 0, 1:

$$\widetilde{E}_{i,k,j}^2 \Rightarrow E_{i-k,j}^2,$$

The descent spectral sequence for $TC(\mathcal{O}_K/\mathbb{S}_{W(k)})$ is obtained by looking at the filtration given by fiber of can $-\varphi$ at each level, and

$$E_{i,j}^1 \Rightarrow \mathsf{TC}_{i+j}(\mathcal{O}_K/\mathbb{S}_{W(k)}).$$

The E^2 -page is computed by another (multiplicative) spectral sequence, for k = 0, 1:

$$\widetilde{E}_{i,k,j}^2 \Rightarrow E_{i-k,j}^2$$

where

$$\begin{split} \widetilde{E}_{i,0,j}^2 &= \ker \left(\operatorname{can} - \varphi : E_{i,j}^2(\mathsf{TC}^-) \to E_{i,j}^2(\mathsf{TP}) \right), \\ \widetilde{E}_{i,1,j}^2 &= \operatorname{coker} \left(\operatorname{can} - \varphi : E_{i,j}^2(\mathsf{TC}^-) \to E_{i,j}^2(\mathsf{TP}) \right). \end{split}$$

Algebraic Tate SS/HFPSS

Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

æ

 E^1 -term of Descent SS for TC⁻ and TP have Nygaard filtrations, which gives rise to new spectral sequences by looking at the graded associated:

 E^1 -term of Descent SS for TC⁻ and TP have Nygaard filtrations, which gives rise to new spectral sequences by looking at the graded associated:

•
$$E^1_{i,j,k}(\mathsf{TC}^-) = H^i(\mathsf{gr}^{2k} \mathsf{TC}^-_j(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]^{\otimes [n]})) \Rightarrow E^2_{-i,j}(\mathsf{TC}^-);$$

•
$$E^1_{i,j,k}(\mathsf{TP}) = H^i(\mathsf{gr}^{2k} \operatorname{TP}_j(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]^{\otimes [n]})) \Rightarrow E^2_{-i,j}(\operatorname{TP}).$$

23/31

 E^1 -term of Descent SS for TC⁻ and TP have Nygaard filtrations, which gives rise to new spectral sequences by looking at the graded associated:

•
$$E^1_{i,j,k}(\mathsf{TC}^-) = H^i(\mathsf{gr}^{2k} \mathsf{TC}^-_j(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]^{\otimes [n]})) \Rightarrow E^2_{-i,j}(\mathsf{TC}^-);$$

•
$$E^1_{i,j,k}(\mathsf{TP}) = H^i(\mathsf{gr}^{2k} \operatorname{TP}_j(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]^{\otimes [n]})) \Rightarrow E^2_{-i,j}(\operatorname{TP}).$$

The differentials are $d^r: E^r_{i,j,k} \to E^r_{i+1,j,k+r}$.

 E^1 -term of Descent SS for TC⁻ and TP have Nygaard filtrations, which gives rise to new spectral sequences by looking at the graded associated:

•
$$E^1_{i,j,k}(\mathsf{TC}^-) = H^i(\mathsf{gr}^{2k} \mathsf{TC}^-_j(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]^{\otimes [n]})) \Rightarrow E^2_{-i,j}(\mathsf{TC}^-);$$

•
$$E^1_{i,j,k}(\mathsf{TP}) = H^i(\mathsf{gr}^{2k} \operatorname{TP}_j(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]^{\otimes [n]})) \Rightarrow E^2_{-i,j}(\operatorname{TP}).$$

The differentials are $d^r : E_{i,j,k}^r \to E_{i+1,j,k+r}^r$. These two spectral sequences are called **algebraic homotopy fixed point spectral sequence** and **algebraic Tate spectral sequence**, respectively.

• • • • • • • • • •

3

The E^1 -term of the algebraic HFPSS/Tate SS can be computed by the cobar complex associated with the associated graded of Nygaard filtration on the Hopf algebroid

 $(\mathsf{TP}_0(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]),\mathsf{TP}_0(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0,z_1])).$

25/31

The E^1 -term of the algebraic HFPSS/Tate SS can be computed by the cobar complex associated with the associated graded of Nygaard filtration on the Hopf algebroid

```
(\mathsf{TP}_0(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]),\mathsf{TP}_0(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0,z_1])).
```

Proposition

In fact, in \mathbb{F}_p -coefficient, the associated graded of the (refined) Nygaard filtration on the Hopf algebroid above is given by

$$(k[z], k[z_0] \otimes_k k \langle t_{z_0-z_1} \rangle),$$

which is also a Hopf algebroid.

The E^1 -term of the algebraic HFPSS/Tate SS can be computed by the cobar complex associated with the associated graded of Nygaard filtration on the Hopf algebroid

```
(\mathsf{TP}_0(\mathcal{O}_K/\mathbb{S}_{W(k)}[z]),\mathsf{TP}_0(\mathcal{O}_K/\mathbb{S}_{W(k)}[z_0,z_1])).
```

Proposition

In fact, in \mathbb{F}_p -coefficient, the associated graded of the (refined) Nygaard filtration on the Hopf algebroid above is given by

$$(k[z], k[z_0] \otimes_k k \langle t_{z_0-z_1} \rangle),$$

which is also a Hopf algebroid.

The E^1 -term of the algebraic HFPSS/Tate SS can be identified with the cobar complex for $k[z][\sigma^{\pm}]$ with respect to the Hopf algebroid as above. Note that $E^1(TC^-)$ is just a truncation of $E^1(TP)$.

- (日)

æ

The action of the cyclotomic Frobenius is given by, for $n \ge e_{\mathcal{K}} j$,

$$\varphi(z^n\sigma^j)=\overline{\mu}^{-pj}z^{p(n-e_{\mathcal{K}}j)}\sigma^j.$$

The action of the cyclotomic Frobenius is given by, for $n \ge e_K j$,

$$\varphi(z^n\sigma^j)=\overline{\mu}^{-pj}z^{p(n-e_{\mathcal{K}}j)}\sigma^j.$$

Proposition

Work in \mathbb{F}_p -coefficient. • can $-\varphi : \mathcal{N}^{\geq m} E^2_{-1,2j}(\mathsf{TC}^-) \to \mathcal{N}^{\geq m} E^2_{-1,2j}(\mathsf{TP})$ is surjective for $j \geq 1$ and $m \geq \frac{p^j - 1}{p - 1}$. • can $-\varphi : E^2_{-1,2j}(\mathsf{TC}^-) \to E^2_{-1,2j}(\mathsf{TP})$ is isomorphic for $j \leq 0$.

The action of the cyclotomic Frobenius is given by, for $n \ge e_K j$,

$$\varphi(z^n\sigma^j)=\overline{\mu}^{-pj}z^{p(n-e_{\mathcal{K}}j)}\sigma^j.$$

Proposition

Work in \mathbb{F}_p -coefficient. • can $-\varphi : \mathcal{N}^{\geq m} E^2_{-1,2j}(\mathsf{TC}^-) \to \mathcal{N}^{\geq m} E^2_{-1,2j}(\mathsf{TP})$ is surjective for $j \geq 1$ and $m \geq \frac{p^j - 1}{p - 1}$. • can $-\varphi : E^2_{-1,2j}(\mathsf{TC}^-) \to E^2_{-1,2j}(\mathsf{TP})$ is isomorphic for $j \leq 0$.

So far, we are able to compute the E^2 -term of the descent SS for TC by algebraic HFPSS/Tate SS.

The action of the cyclotomic Frobenius is given by, for $n \ge e_K j$,

$$\varphi(z^n\sigma^j)=\overline{\mu}^{-pj}z^{p(n-e_{\mathcal{K}}j)}\sigma^j.$$

Proposition

Work in \mathbb{F}_p -coefficient. • can $-\varphi : \mathcal{N}^{\geq m} E^2_{-1,2j}(\mathsf{TC}^-) \to \mathcal{N}^{\geq m} E^2_{-1,2j}(\mathsf{TP})$ is surjective for $j \geq 1$ and $m \geq \frac{p^{j-1}}{p-1}$. • can $-\varphi : E^2_{-1,2j}(\mathsf{TC}^-) \to E^2_{-1,2j}(\mathsf{TP})$ is isomorphic for $j \leq 0$.

So far, we are able to compute the E^2 -term of the descent SS for TC by algebraic HFPSS/Tate SS. The computation shows that it collapses at E^2 -page for degree reason.

Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields

<ロト <回ト < 回ト < 回ト < 回ト -

Ξ.

Theorem (Liu-Wang, 2022)

Write $d = [K(\zeta_p) : K]$. As a $\mathbb{F}_p[\beta]$ -module, where $\beta \in E^2_{0,2d}(\mathsf{TC})$ detects the Bott element, one has

$$\begin{aligned} \mathsf{TC}_*(\mathcal{O}_{\mathsf{K}};\mathbb{F}_p) &= \mathbb{F}_p[\beta]\{1,\gamma,\lambda,\lambda\gamma\} \oplus \\ & \mathbb{F}_p[\beta]\{\alpha_{i,\ell}^{(j)} \mid 1 \le i \le e_{\mathsf{K}}, 1 \le j \le d, 1 \le \ell \le f_{\mathsf{K}}\}, \end{aligned}$$

with $|\beta| = 2d$, $|\lambda| = -1$, $|\gamma| = 2d + 1$, $|\alpha_{i,\ell}^{(j)}| = 2j - 1$.

Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields

→

• • • • • • • • • •

3

• Antieau-Krause-Scholze: prismatic analogue.

< 47 ▶

• Antieau-Krause-Scholze: prismatic analogue.

Associated graded of motivic (even) filtration of $TC(R/S_{W(k)})$ is given by the shift of the syntomic complex $\mathbb{Z}_p(i)(R/S_{W(k)})$, which is the fiber of

$$\mathcal{N}^{\geq i}\widehat{\mathbb{A}}^{(1)}_{R/\mathbb{S}_{W(k)}}\{i\} \xrightarrow{\mathsf{can}-\varphi} \widehat{\mathbb{A}}^{(1)}_{R/\mathbb{S}_{W(k)}}\{i\}.$$

• Antieau-Krause-Scholze: prismatic analogue.

Associated graded of motivic (even) filtration of $TC(R/S_{W(k)})$ is given by the shift of the syntomic complex $\mathbb{Z}_p(i)(R/S_{W(k)})$, which is the fiber of

$$\mathcal{N}^{\geq i}\widehat{\mathbb{A}}^{(1)}_{R/\mathbb{S}_{W(k)}}\{i\} \xrightarrow{\mathsf{can}-\varphi} \widehat{\mathbb{A}}^{(1)}_{R/\mathbb{S}_{W(k)}}\{i\}.$$

Augmented cosimplicial Breuil-Kisin twist:

$$\begin{split} \widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}}\{i\} &\simeq \operatorname{Tot} \widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z]^{\otimes [-]}}, \\ \mathcal{N}^{\geq i} \widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}}^{(1)}\{i\} &\simeq \operatorname{Tot} \mathcal{N}^{\geq i} \widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z]^{\otimes [-]}}^{(1)}. \end{split}$$

• Antieau-Krause-Scholze: prismatic analogue.

Associated graded of motivic (even) filtration of $TC(R/S_{W(k)})$ is given by the shift of the syntomic complex $\mathbb{Z}_p(i)(R/S_{W(k)})$, which is the fiber of

$$\mathcal{N}^{\geq i}\widehat{\mathbb{A}}^{(1)}_{R/\mathbb{S}_{W(k)}}\{i\} \xrightarrow{\operatorname{can}-\varphi} \widehat{\mathbb{A}}^{(1)}_{R/\mathbb{S}_{W(k)}}\{i\}.$$

Augmented cosimplicial Breuil-Kisin twist:

$$\widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}}\{i\} \simeq \operatorname{Tot} \widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z]^{\otimes [-]}},$$
$$\mathcal{N}^{\geq i}\widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}}^{(1)}\{i\} \simeq \operatorname{Tot} \mathcal{N}^{\geq i}\widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z]^{\otimes [-]}}^{(1)}.$$

Hopf algebroid: $(\widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z]}, \widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z_0, z_1]}).$

• Antieau-Krause-Scholze: prismatic analogue.

Associated graded of motivic (even) filtration of $TC(R/\mathbb{S}_{W(k)})$ is given by the shift of the syntomic complex $\mathbb{Z}_p(i)(R/\mathbb{S}_{W(k)})$, which is the fiber of

$$\mathcal{N}^{\geq i}\widehat{\mathbb{A}}^{(1)}_{R/\mathbb{S}_{W(k)}}\{i\} \xrightarrow{\mathsf{can}-\varphi} \widehat{\mathbb{A}}^{(1)}_{R/\mathbb{S}_{W(k)}}\{i\}.$$

Augmented cosimplicial Breuil-Kisin twist:

$$\widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}}\{i\} \simeq \operatorname{Tot} \widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z]^{\otimes [-]}},$$
$$\mathcal{N}^{\geq i}\widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}}^{(1)}\{i\} \simeq \operatorname{Tot} \mathcal{N}^{\geq i}\widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z]^{\otimes [-]}}^{(1)}.$$

Hopf algebroid: $(\widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z]}, \widehat{\mathbb{A}}_{R/\mathbb{S}_{W(k)}[z_0, z_1]}).$

(Relative-to-absolute) Descent spectral sequences for the syntomic cohomology.

28/31

Albert Jinghui Yang (UPenn) Topological Cyclic Homology of Local Fields

→

• • • • • • • • • •

3

• Motivic spectral sequence converging to $K_*(K; \mathbb{F}_p)$:

э

29/31
Relation to Other Works

• Motivic spectral sequence converging to $K_*(K; \mathbb{F}_p)$:

Descent SS for $TC(\mathcal{O}_K; \mathbb{F}_p)$:

29/31

R. Liu, G. Wang, Topological Cyclic Homology of Local Fields. Invent. math. 230, 851–932 (2022).

< 4³ ► <

Thank you!

3