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1. Overview

The goal of the lectures is to state and prove the thick subcategory theorem,
which is very crucial in chromatic homotopy theory.

Let X be a p-local finite spectrum. Recall that the type of X is the smallest
integer such that K(n)∗(X) ̸= 0, where K(n) is the Morava K-theory. For n ≥ 0,
K(n) satisfies some important properties that will be used throughout the note:

• K(n)∗(X) = 0 implies K(n− 1)∗(X) = 0;
• K(n)∗(X) = K(n)∗ ⊗H∗(X;Z/p);
• K(n)∗(X) = Z/p[v±n ] and K(0)∗ = Q;
• Künneth isomorphism: K(n)∗(X × Y ) = K(n)∗(X)⊗K(n)∗ K(n)∗(Y ).

Let Ep =
∨

n≥0 K(n) and E =
∨

p∈P Ep, where P is the set of all primes. A spec-
trum is said to be harmonic, if it is E∗-local. It is dissonant, if it is E∗-acyclic. From
the definition, it suffices to discuss only the (Ep)∗-locality and acyclicity for prime p.
A standard result in [1, 4] showed that BP is harmonic. Moreover, Ravenel showed
in [1, 4] that if X is connective spectrum of finite type, and hom dimMU∗ MU∗X
(the minimal length of a resolution of MU∗X by projective graded MU∗-modules)
is finite, then X is harmonic. This implied that if X is finite, then X is harmonic.
A direct consequence is that all non-trivial finite p-local spectrum X have a type.
For example, the sphere spectrum S has type 0, and the mod p Moore spectrum
S/p has type 1.
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Recall that the spectra in the previous example admit self maps (called vn-self
map). Explicitly, for odd prime p, we have

v1 : Σ2(p−1)S/p→ S/p.

It induces an equivalence in K(1)∗-homology, and K(1)∗(v1) is a multiplication by
v1. Denote the cofiber of v1 by S/(p, v1). When p ≥ 5, there is a similar result by
Smith and Adams:

v2 : Σ2(p2−1)S/(p, v1)→ S/(p, v1).
This procedure leads us to

Proposition 1.1 (Periodicity). Suppose X has type n. Then there exists an vn-self
map vn : ΣNX → X for some number N = N(p), which induces a K(n)∗-homology,
given by some multiplication by some p-th power of vn.

The periodicity proposition allows us to construct a considerate amount of fam-
ilies of elements in π∗S. See Lecture 3 of my notes.

If we carefully study the previous process, we cannot ignore the strategy about
building new homotopy types; that is, quotienting out In = (p, v1, v2, cdots, vn).
Inspired by this, we have

Proposition 1.2 (Realizability). We can realize any ideal I ⊂ BP∗ by following
the strategy that quotienting out In from the sphere spectrum S. By doing that,
there is an associated vn-self map as in the Periodicity proposition.

Two immediate examples are the following:

Example 1.3. When p = 3, Behrens and Pemmaraju showed in [10] that

v92 : Σ144S/(3, v1)→ S/(3, v1),

with the associated v2-self map inducing a K(2)∗-homology by multiplying v92 .
When p = 2, Behrens, Hill, Hopkins, and Mahowald showed in [11] that

v322 : Σ192S/(2, v1)→ S/(2, v1),

with the associated v2-self map inducing a K(2)∗-homology by multiplying v322 .

In general, it is not clear that S/(p, v1) admits an v2-self map at any prime p
that is nilpotent. A natural question is if there is some spectrum X that could
detect such nilpotence, i.e. its kernel of its Hurewicz map π∗X → E∗X consists of
nilpotent elements.

Proposition 1.4 (Nilpotence). X = MU .

A remarkable corollary of the nilpotence proposition is the Nishida’s theorem
[6], which said that any element α ∈ πkS, k > 0, is nilpotent. Applying MU to S
yields MU∗ = Z[b1, b2, · · · ]. This is torsion-free. However, πkS has torsion by Serre
finiteness theorem. One showed that the Hurewicz map is zero when k > 0. So,
every element of positive degree is nilpotent.

Let’s switch to the geometric viewpoint. Let W → X → Y be a cofiber sequence,
and f : Y → ΣW be the connecting map which is null in MU∗-homology. By a
result in Bousfield class, ⟨X⟩ = ⟨W ⟩∨ ⟨Y ⟩. Informally speaking, ⟨X⟩, the Bousfield
class of X, is the set {X ∈ Sp : E ∧X = 0}. The famous class invariance theorem
says
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Proposition 1.5 (Class invariance). Let X,Y be p-local finite spectra of type m,n,
respectively. Then ⟨X⟩ = ⟨Y ⟩ iff m = n.

Class invariance proposition immediately leads to the telescope conjecture. Let
X be a spectrum of type n, f : X → Σ−kX be a self map, and f−1X = colim (X

f−→
Σ−kX

f−→ Σ−2kX
f−→ · · · ) be the invert of X w.r.t. f .

Conjecture 1.6 (Telescope).
〈
f−1X

〉
depends only on n, and〈

f−1X
〉
=

∨
⟨K(n)⟩ .

The telescope conjecture plays an important role in stating the smashing con-
jecture; that is, LnX ≃ X ∧ LnS, where Ln is the localization w.r.t. E(n) =
v−1
n BP/(vn+1, vn+2, · · · ), the Johnson-Wilson theory. Unfortunately, this conjec-

ture still remains open today.
The main references for this section are [12, 1] and [1, 10].
The work of Devinatz-Hopkins-Smith [13] finished the proof of the nilpotence

proposition (which now called the nilpotence theorem), the heart of the chromatic
homotopy theory. One can use a picture to show the logical sequence of the propo-
sitions mentioned above (except for the telescope conjecture):

Class Invariance

Nilpotence Thick Subcategory
Theorem (TST)

Periodicity Realization

Our task for this note is to prove the thick subcategory theorem (TST). This
is an extremely important theorem that will be the key to prove the periodicity
theorem and the class invariance theorem. It enables us to focus only on some much
manageable subcategories of category of p-local spectra (called thick) by ruling out
the spectra of type ≥ n. The structure of the note goes as follows:

(1) Setting the base: two important categories of interest CΓ and FH, and
definition of thick subcategories.

(2) Algebraic TST:
• A generalization to P(n), category of all P (n)∗P (n)-comodule finitely

presented as P (n)∗-module.
• Proof of algebraic TST.

(3) Geometric TST:
• Geometric background: Sp, Spanier-Whitehead duality.
• Statement of nilpotence theorem, smash product form, and its connec-

tion to the classical nilpotence theorem.
• Statement of the key corollary.
• Bousfield class theory and class invariance theorem.
• Proof of the key corollary and the TST.
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2. Setting the base

In this section, we will introduce two main categories of interest, and illustrate
what thickness means for their subcategories. Before we start the discussion, we
need to introduce an action on the Lazard ring L.

Definition 2.1. Let Γ be the group of power series
Γ = {γ = x+ b1x

2 + b2x
3 + · · · : bi ∈ Z, i ≥ 1},

where the group operation is the composition.

Let G(x, y) be the universal formal group law (abbr. fgl) over L. By a theorem
of Mischenko,

logG(x) =
∑
i≥0

mix
i+1,

where mn = [CPn]/(n + 1) ∈ π2n(MU) ⊗ Q, and [CPn] is the cobordism class
represented by CPn.

Let γ ∈ Γ. γ−1(G(γ(x)), γ(y)) is then another fgl over L, inducing by an endo-
morphism ϕ of L. Since γ is invertible in Z[[x]], ϕ is an automorphism. So there is
a natural Γ-action on L. One can compare this action to the Steenrod algebra in
ordinary cohomology. Namely, it is analogous to the total Steenrod square

∑
Sqn

in mod 2 case.
Write CΓ and FH to denote the category of finitely presented graded L-modules

with compatible Γ-action and category of finite CW complexes and homotopy
classes of maps between them, respectively. After p-localization, we denote the
output of these categories by CΓ(p) and FH(p), respectively.

Let vn ∈ L be the coefficient of xpn in the p-series for G(x, y). It serves as
a polynomial generator of L in dimension 2(pn−1). Once we localize at p, vn’s
only polynomial generators of L = MU∗ that matter. Therefore, we can drop the
“redundant elements” by tensoring Z(p) and work in BP instead of MU . However,
one should be warned that there is no analogue of Γ-action on BP = L ⊗ Zp.
One must replace Γ by certain groupoid and transplant the whole story onto Hopf
algebroid, see [3, B.5].

Now we introduce the thickness and give a description of TST.

Definition 2.2. A full subcategory C of CΓ (or CΓ(p)) is thick if it satisfies: if
0→M ′ →M →M ′′ → 0

is a short exact sequence in C of CΓ (or CΓ(p)), then M ∈ C iff M ′,M ′′ ∈ C.

Correspondingly,

Definition 2.3. A full subcategory D of FH (or FH(p)) is thick if it satisfies:

(1) If X
f−→ Y → Cf is a cofiber sequence in FH (or FH(p)), and any two of

them are in D, then the rest is also in D.
(2) If X ∨ Y ∈ D, then both X and Y are in D.

They leads to the two main theorems central to the note. Fix a prime p.

Theorem 2.4 (Algebraic TST). Denote Cn as the full subcategory of CΓ(p) satis-
fying v−1

n M = 0 for M ∈ CΓ(p) (clearly C0 = CΓ(p)). Let C be the thick subcategory
of CΓ(p). Then C = Cn for some n ≥ 0.
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Likewise,

Theorem 2.5 (Geometric TST). Denote Dn as the full subcategory of FH(p) sat-
isfying v−1

n BP∗(X) = 0 for X ∈ FH(p) (clearly D0 = FH(p)). Let D be the thick
subcategory of FH(p). Then D = Dn for some n ≥ 0.

There are two nested sequences of thick subcategories:

CΓ(p) = C0 ⊃ C1 ⊃ C2 ⊃ · · · ,
FH(p) = D0 ⊃ D1 ⊃ D2 ⊃ · · · .

Mitchell [7] proved that the inclusions above are strict. So BP∗ (or MU∗ if you
prefer) sends each Dn to Cn. The next section aims to prove the algebraic TST,
which requires less tools to accomplish.

3. Algebraic thick subcategory theorem

The algebraic version of TST asks little knowledge in geometry and can be
generalized pure algebraically in an easy manner. The main reference for this part
is [4]. Fix a prime p.

Recall that there are several spectra related to BP . One is the Johnson-Wilson
theory spectrum BP ⟨n⟩, which is obtained from BP by killing the ideal (vn+1, vn+2, · · · ) ⊂
BP∗. It is clear BP ⟨n⟩∗ = Z(p)[v1, v2, · · · , vn] and BP ⟨0⟩ = HZ(p), the Eilenberg-
Mac Lane spectrum associated with Z(p). It has an associated fibration

Σ2(pn−1)BP ⟨n⟩ vn−→ BP ⟨n⟩ → BP ⟨n+ 1⟩ .

If we invert the vn-self map, i.e. taking the colimit of vℓn : BP ⟨n⟩ → Σ−2ℓ(pn−1)BP ⟨n⟩,
we get a new spectrum E(n) (not to confuse with the Morava E-theory!). We have
E(0) = HQ and E(n)∗ = Z(p)[v1, v2, · · · , vn, v−1

n ] as expected. In fact, BP ⟨1⟩ and
E(1) are summands of the connective and periodic complex K-theory localized at
p.

Another relevant spectrum is k(n), which is obtained from BP by killing the ideal
(p, v1, v2, · · · , vn−1, vn+1, vn+2, · · · ) ⊂ BP∗. So k(n)∗ = Z(p)[vn] without doubt. It
also has an associated fibration

Σ2(pn−1)k(n)
vn−→ k(n)→ HZ(p).

After inverting the vn-self map, we obtain the Morava K-theory K(n) = v−1
n k(n)

with K(0) = HQ. Similarly, if we kill the ideal (p, v1, v2, · · · , vn−1) ⊂ BP∗, we can
obtain a new spectrum P (n) with P (0) = BP . The vn-self map again induces an
fibration

Σ2(pn−1)P (n)
vn−→ P (n)→ P (n+ 1).

Inverting vn on P (n), we get a new spectrum B(n) = v−1
n P (n).

One can regard CΓ(p) as the abelian category of all BP∗BP -comodules finitely
presented as BP∗-modules. See [1, 7]. If we replace CΓ(p) by P(n), the abelian
category of all P (n)∗P (n)-comodules finitely presented as P (n)∗-modules, and C∥
by P(n)k in the statement of TST, we get a generalized TST as follows:

Theorem 3.1 (Generlized algebraic TST, version 1). If C is a thick subcategory of
P(n), then C = P(n)k for some k ≥ n.
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In particular, if n = 0, it is identical to the classical algebraic TST.
One might further generalize this theorem. Let E∗ be the commutative P (n)∗-

algebra such that E∗ ⊗P (n)∗ (−) us exact on P(n). By Landweber exact functor
theorem, E∗ ⊗P (n)∗ P (n)∗(−) is a homology theory [9]. Let E∗E = E∗ ⊗P (n)∗

P (n)∗P (n)⊗P (n)∗ E∗. We can make (E∗, E∗E) a Hopf algebroid by extending the
structure maps of ones in P (n)∗P (n). Since P (n)∗P (n) is flat P (n)∗-module, and
for every E∗-module N ,

E∗E ⊗E∗ N = E∗ ⊗P (n)∗ P (n)∗P (n)⊗P (n)∗ E∗ ⊗E∗ N

= E∗ ⊗P (n)∗ P (n)∗P (n)⊗P (n)∗ N,

E∗E is then a flat E∗-module. Let M be an object in P(n). E∗ ⊗P (n)∗ M is an
E∗E-comodule because

M → P (n)∗P (n)⊗P (n)∗ M
extension−−−−−−→ E∗E ⊗P (n)∗ M → E∗E ⊗E∗ (E∗ ⊗P (n)∗ M).

Let S be the category of E∗ ⊗P (n)∗ M , where M ∈ P(n). The morphisms are
given by E∗ ⊗ f : E∗ ⊗P (n)∗ M1 → E∗ ⊗P (n)∗ M2, for f : M1 → M2 ∈ P(n). It
can be shown that S is abelian, and E∗ ⊗P (n)∗ (−) : P(n) → S is exact. Write
Sk = (E∗ ⊗P (n)∗ (−))(P(n)k). As in the classical case, there is a nested sequence
of categories:

· · · ⊂ Sk+1 ⊂ Sk ⊂ · · · ⊂ Sn = S .

In contrast to the classical case, there is no evidence that the inclusions are strict.
However, this is not important for our concern.

Theorem 3.2 (Generlized algebraic TST, version 2). If C is a thick subcategory of
S , then C = Sk for some k ≥ n.

The proof of the generalized version of algebraic TST is identical to the one
we are presenting now. The main tool to tackle the problem is the Landweber
Filtration Theorem. We will take the validity of this theorem for granted. For
interested readers, see [15].

Theorem 3.3 (Landweber Filtration Theorem). Any module M in CΓ(p) admits
a finite filtration

0 = Ms ⊂ · · · ⊂M1 ⊂M0 = M,

such that for any 0 ≤ i ≤ s − 1, we have Mi/Mi+1

∼=−−−→
stable

BP∗/Ini
, where

Ini = (p, v1, · · · , vni−1) is the invariant prime ideal of BP , and “stable” means
isomorphism eventually (i.e. after a dimension shift).

Here the term “invariant prime ideal” comes from a theorem by Landweber and
Morava. Explicitly,

Theorem 3.4 (Morava-Landweber). The only invariant prime ideals in BP∗ are
In = (p, v1, v2, · · · , vn) for 0 ≤ n ≤ ∞. There is a short exact sequence of comodules

0→ Σ2(pn−1)BP∗/In
vn−→ BP∗/In → BP∗/In+1 → 0.

The proof of the theorem can be found in [14] and [2, 4.3].

Remark 3.5. The original statement of the theorem by Morava and Landweber was
that the only Γ-invariant prime ideals in MU∗. However, there is no well-defined
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candidate for analogous Γ-action on BP∗. So the definition of invariance used in 3.3
goes as follows: a regular ideal (x1, x2, · · · , xk) is invariant in BP∗ if the sequence

0→ BP∗/(x1, x2, · · · , xk)
xk+1−−−→ BP∗/(x1, x2, · · · , xk)→ BP∗/(x1, x2, · · · , xk+1)→ 0

is exact as comodules. This is slightly different from the one in the original state-
ment. See [2, 4.3].

Let A be commutative unital ring. Recall that an A-module M is finitely pre-
sented if there is a surjective A-module map φ : Aq → M with a finite kerφ for
some q ≥ 0. A finitely presented module over a colimit of Noetherian rings ad-
mits filtrations. Notice that a finite generated M module over a Noetherian ring R
admits a finite filtration

0 = F0M ⊂ F1M ⊂ · · · ⊂ FkM = M,

and FiM/Fi−1M ∼= R/Ii for each prime ideal Ii ⊂ R, 1 ≤ i ≤ k. Combining the
fact that MU∗ is a colimit of Noetherian rings implies Theorem 3.3.

Before we start to prove Theorem 2.4, we need one more corollary of Theorem
3.3.

Corollary 3.6. Let M ∈ CΓ(p). Then v−1
n M = 0 implies v−1

n−1M = 0 for all n.

Proof. By Theorem 3.3, M admits a finite filtration
0 = Ms ⊂ · · · ⊂M1 ⊂M0 = M

with Mi/Mi+1
∼= BP∗/Im eventually, for m > n. v−1

n M = 0 implies that any
element x ∈ M satisfies vℓ1n (x) = 0 for some ℓ1 ≥ 1. This x must fall into some
Mi/Mi+1. Since vn−1 ∈ Im and Im is invariant, it follows that vℓ2n−1(x) = 0 for
some ℓ2 ≥ 1. Hence, v−1

n−1M = 0. □

Proof of Theorem 2.4. Choose an arbitrary object M ∈ CΓ(p). Define ∥M∥ = {m ≥
1 : v−1

m−1M = 0} ∪ {0}. We make the convention that v0 = p. If M ̸= 0, then
∥M∥ = {0, 1, 2, · · · , NM} for some NM ≥ 0. Let C be a thick subcategory of CΓ(p),
and k = max∩M∈C∥M∥. By definition of k, it is clear that C ⊂ Ck and C ̸⊂ Ck+1.
It suffices to show that C ⊃ Ck.

Let M ∈ Ck. M admits a filtration
0 = Ms ⊂ · · · ⊂M1 ⊂M0 = M

by Theorem 3.3. For each i, there is an associated short exact sequence
0→Mi+1 →Mi →Mi/Mi+1 → 0.

By induction on i, we know that all Mi and Mi/Mi+1
∼= BP∗/Ini

are in C. Since
localization is an exact functor, v−1

k−1Mi = v−1
k−1Mi/Mi+1 = 0. It is straightforward

that ni ≥ k holds for all 0 ≤ i ≤ s − 1. On the other hand, v−1
k M ̸= 0 implies

that there is some j ∈ [0, s − 1] such that v−1
k BP∗/Inj . So nj ≤ k. It follows that

nj = k, and BP∗/Ik ∈ C. Consider the short exact sequence in CΓ(p):

0→ BP∗/Ik+r
vk+r−−−→ BP∗/Ik+r → BP∗/Ik+r+1 → 0.

Inductively, we see that all BP∗/Ik+r ∈ C for r ≥ 0.
We are ready to give the last shot to our problem. The previous discussion

indicates that, inductively, for each associated short exact sequence
0→Mi+1 →Mi →Mi/Mi+1 → 0,
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we have Mi/Mi+1
∼= BP∗/Ini

∈ C (ni ≥ k) and Mi+1 ∈ C (inductive hypothesis).
This yields that Mi ∈ C for all i. Thus, M ∈ C, and hence Ck ⊂ C. □

4. Geometric background

The proof of geometric TST requires a background in Spanier-Whitehead duality
and Bousfield classes. We will discuss them in details in this section. The readers
are assumed to have a fair understanding of the category of spectra Sp.

4.1. Spanier-Whitehead duality. Let X be a finite spectrum. We denote its
Spanier-Whitehead (S-W) duality by DX (unique up to homotopy), which satisfies
the following properties:

Theorem 4.1. (1) D2X = D(DX) ≃ X, and [X,Y ]∗ ∼= [DY,DX]∗.
(2) For any homology theory E∗, there is an natural isomorphism EkX ∼=

E−kDX.
(3) D(−) is a contravariant functor.
(4) For every finite spectrum Y , D(X∧Y ) = DX∧DY . In particular, DΣX =

Σ−1DX.
(5) For any spectrum Y , there is an isomorphism [X,Y ]∗ ∼= π∗(DX ∧ Y ) that

is natural in X and Y .
(6) K(n)∗(X) is free over K(n)∗, and

homK(n)∗(K(n)∗(X),K(n)∗(Y )) ∼= K(n)∗(DX ∧ Y ).

The isomorphism still holds if we replace K(n)∗ by the ordinary homology
H∗.

To keep in mind, the slogan of S-W duality is to rephrase the linear dual to a
vector space over some algebraic closed field in the category Sp. For example, one
see statement 1 in Theorem 4.1 as a reformulation of (V ∗)∗ ∼= V . 4 in Theorem 4.1
is similar to (V ⊗W )∗ ∼= V ∗⊗W ∗, and 5 in Theorem 4.1 is similar to hom(V,W ) ∼=
V ∗ ⊗W .

A proof of the theorem can be found in [8, III.5], omitted in our context for
simplicity. Instead, we would like to demonstrate some of its geometric intuitions.
Again, you may find rich content in [8, III.5].

The origin of S-W duality came from the Alexander duality. If X ⊂ Sn is a
compact, locally contractible subspace, and X ̸= Sn,∅, then Alexander duality
says H

n−i−1
(X;Z) ∼= Hi(S

n − X;Z), where 0 ≤ i ≤ n − 1 and H is the reduced
homology. From the isomorphism, one concludes that X determines the homology
of its complement in Sn. However, there is nothing to say about the homotopy
type of Sn − X. For instance, if we fix n = 3 and X = S1, then K = S3 − X is
a knot. In addition to the trivial embedding as a rigid circle S1, the knot diagram
can also be either the (right-handed) trefoil 31



THICK SUBCATEGORY THEORY 9

Figure 1. The (right-handed) trefoil 31.

or the left-handed trefoil 32, which is the mirror of 31,

Figure 2. The left-handed trefoil 32.

In 1914, Dehn showed that 31 is chiral (i.e. 31 ̸≃ 32) (see this post), so they
cannot be transformed into each other by Reidemeister moves. Their geometric
properties (e.g. Jones polynomial) are quite different. Passing to π1, one shows
π1(S

3 − K) =
〈
x, y | x3 = y2

〉
by Wirtinger presentation. This is far from the

fundamental group of S3 −K if we choose K embedded as a rigid circle S1.
It is for those and other similar and compelling reasons that the homotopy type

of K depends on both X and the embedding. So how far does a bare condition on
X determine anything about K beyond its homology?

Let X ⊂ Sn be a compact and locally contractible subspace. Embed Sn as an
equatorial sphere in Sn+1, and ΣX in Sn+1 by joining to the two poles. It is clear
that Sn+1−ΣX ≃ Sn−X. If X ⊂ Sn and Y ⊂ Y m and f : ΣpX

≃−→ ΣqY for some
p, q ≥ 0, one can embed ΣpX in Sn+p and ΣqY in Sm+q simultaneously without
changing the equivalence and the complements.

From now on, we assume the equivalence between spaces are piecewise linear
(PL). Suppose X ′ ⊂ Sn′ . Embed Sn′ as an equatorial sphere in Sn′+1 as before
without changing X ′. Then the complement of X ′ in Sn′+1 is the suspension of

https://math.stackexchange.com/questions/2511364/how-did-dehn-prove-that-the-trefoil-is-chiral
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that in Sn′ . Recall that the join of two space x and Y , denoted X ∗ Y , is the line
segments joining the points in X and Y . That is, X ∗ Y = X × Y × I/{(x, y1, 0) ≃
(x, y2, 0), (x1, y, 0) ≃ (x2, y, 0)}. An easy exercise in undergraduate topology course
shows that Sn′ ∗ Sm′

= Sm′+n′+1. Let Y ′ ⊂ Sm′ , f ′ : X ′ → Y ′ be a homotopy
equivalence, and M be the mapping cylinder of f ′. In the total sphere Sm′+n′+1

one has Sm′+n′+1 − X = Σm′+1(Sn′ − X) and Sm′+n′+1 − Y = Σn′+1(Sm′ − Y ).
The maps

Sm′+n′+1 −X Sm′+n′+1 −M Sm′+n′+1 − Y
gf

induced by the inclusions X
f−→ M

g←− Y , induce isomorphisms in homology. By
Alexander duality, they induce isomorphisms of cohomology. We can further embed
Sm′ and Sn′ into higher dimensional spheres without changing the homotopy type
of X and Y in the total sphere. Iterate the process until everything is simply-
connected, the isomorphisms will hold and the homotopy type remains unchanged.
This means that X, or even the stable homotopy type of X, determines the stable
homotopy type of its complement.

The preceding recipe still depends on the embedding. The next step is to elimi-
nate the effect of the embedding. Let K,L be two disjoint finite simplicial complexes
embedded in Sn. Let L be a PL path from K to L joining only one points in each of
them, say x ∈ K and y ∈ L. Take some point in the middle of the path as the point
at ∞. We can now embed R and L into Rn by defining a map µ : K × L→ Sn−1

with µ(k, ℓ) = (k − ℓ)/∥k − ℓ∥. Since the restrictions of µ at {x} × L and K × {L}
are null-homotopic, we get a map µ : K ∧ L→ Sn−1.

Using the framework we have, we can set up everything in Sp. Let X be a finite
spectrum, then we can form [W ∧X, S]0, which is a Brown functor of W . By Brown
representability, there is a unique spectrum DX up to homotopy such that

[W ∧X, S]0
Φ−→∼= [W,DX]0.

The isomorphism actually holds for all [−,−]∗. Take W = DX and id : DX → DX,
there is a map called unit η = Φ(id) : DX ∧ X → S. Dually, we have the counit
e : S→ DX ∧X. For any f : W → DX, we have

W ∧X
f∧id−−−→ DX ∧X

η−→ S.

Take g : X → Y . It induces g∗ : DY → DX with

DY ∧X DY ∧ Y

DX ∧X S

id∧g

g∗∧id ηY

ηX

which further induces a natural transformation

[W ∧X, S]∗ [W ∧ Y, S]∗

[W,DX]∗ [W,DY ]∗

∼= ∼=

(id∧g)∗

g∗

It follows that we have an adjoint pair as expected: if W,X are finite spectra, then
[W,Z ∧DX]∗ ∼= [W ∧X,Z]∗ for any spectrum Z.
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We can directly check statement 1 in Theorem 4.1 as follows: since the smash
product is commutative, the result follows from

[X,D2X]
∼=−→ [X ∧DX, S] = [DX ∧X, S]

∼=−→ [DX,DX].

Adams [8, III.5] showed that if X is finite, then so is DX. The existence of DX is
easy. Since every finite CW complexes can be built up by attaching spheres along
the attaching maps, one can build the dual of finite CW complexes via the obvious
relation DSn = S−n (exercise!). By DΣX = Σ−1DX, the dual of finite spectra
exist.

The statement 4 in Theorem 4.1 can also be checked easily. This is because
[W,DX ∧ DY ]∗ ∼= [W ∧ Y,DX]∗ ∼= [W ∧ Y ∧ X, S]∗ ∼= [W,D(Y ∧ X)]∗, indicates
DX ∧DY ∼= D(X ∧ Y ). Note that ηX∧Y : D(X ∧ Y )∧ (X ∧ Y )→ S is the same as
ηX ∧ ηY : DX ∧X ∧DY ∧ Y → S ∧ S = S. Thus, we have a commutative diagram

D(X ∧ Y ) ∧X ∧ Y S

DX ∧DY ∧X ∧ Y DX ∧X ∧DY ∧ Y

ηX∧Y

∼=

=

ηX∧ηY

We need one more lemma that is important in the proof of TST. Let W,X be
finite spectra, and f : W → S fit into a cofiber sequence W

f−→ S e−→ DX ∧X. Such
a map always exists in Sp. Let Cf = Cf(1) = DX ∧X be the mapping cone.
Lemma 4.2. For k > 1, then there is a cofiber sequence

Cf(k) → Cf(k−1) → ΣW (k−1) ∧ Cf ,

where f (k) denotes the k-th smash of f , i.e. f (k) : W (k) = W ∧ · · · ∧W︸ ︷︷ ︸
k

→

X ∧ · · · ∧X︸ ︷︷ ︸
k

= X(k).

Proof. Recall that in classical homotopy theory, for any sequence X
f−→ Y

g−→ Z,
there is a commutative diagram

Cf ∗ ΣCf

Y Z Cg

X Z Cgf

g

f

gf

=

such that each column and row is a cofiber sequence. Let X = W (k), Y = W (k−1),
Z = S, and g = f (k−1), we have

W (k−1) ∧ Cf ∗ ΣW (k−1) ∧ Cf

W (k−1) ∧ S = W (k−1) S Cf(k−1)

W (k−1) ∧W = W (k) S Cf(k)

f(k−1)

f

f(k)

=
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The last column is the desired cofiber sequence. □

4.2. Bousfield localization. Let E∗ be a generalized homology theory. Recall
that Y is E∗-local if for any spectrum X with E∗X = 0, [X,Y ]∗ = 0. An E∗-
localization of X is a map η : X → LEX, where LEX is E∗-local, such that E∗η is
an isomorphism.

Proposition 4.3. (1) For any cofiber sequence W → X → Y , if any two of
the ingredients are E∗-local, then the rest is also E∗-local.

(2) If X ∨ Y is E∗-local, then so are X and Y .

One might wish to compare this proposition with the definition of thick subcat-
egories. Be warned that the colimit of a direct system of E∗-local spectra needs not
to be E∗-local.

Theorem 4.4 (Bousfield localization). For any homology theory E∗ and any spec-
trum X, there is a unique (up to homotopy) E∗-localization LEX. In other words,
LE(−) is functorial.

Lemma 4.5. Let E be a ring spectrum, then E ∧X is E∗-local for all X ∈ Sp.

Proof. We want to show that for all W ∈ Sp, E∗W = 0, we have [W,E ∧X] = 0.
Choose an arbitrary map f : W → E ∧X. Denote the multiplication and unit of
E by m : E ∧ E → E and η : S → E, respectively. Then from the commutative
diagram

W E ∧X

E ∧W E ∧ E ∧X E ∧X

f

η∧id η∧id id

id∧f m∧id

we conclude E ∧W = 0. So f is null-homotopic. □

We introduce some new concepts that will not be used in our context. They
have good taste in the general picture described in §1.

Definition 4.6. Let E be a ring spectrum. Define an associated new class A that
satisfies:

(1) E ∈ A .
(2) If N ∈ A . then N ∧X ∈ A for all X ∈ Sp.
(3) For any f : X → Y with X,Y ∈ A , the cofiber of f is also in A .
(4) Any retract of the element in A is also in A .

Elements in A are called E∗-nilpotent. If X ∈ Sp is E∗-equivalent to an E∗-
nilpotent spectrum, then X is called E∗-prenilpotent.

From the definition, we can immediately derive a corollary:

Corollary 4.7. Any E∗-nilpotent spectrum is E∗-local.

Definition 4.8. Let E,F be spectra. We say they are Bousfield equivalent, if
for any spectrum X, E ∧ X being contractible implies F ∧ X being contractible,
and vice versa. One can show that Bousfield equivalence is an equivalence relation.
Denote the Bousfield equivalence class of E by ⟨E⟩, called the Bousfield class of
E. We use the notation ⟨E⟩ ≥ ⟨F ⟩ to indicate that the contractibility of E ∧ X
implies that of F ∧X for any X ∈ Sp, and ⟨E⟩ > ⟨F ⟩ if ⟨E⟩ ≥ ⟨F ⟩ but ⟨E⟩ ̸= ⟨F ⟩.
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Remark 4.9. Alternatively, one sees that
⟨E⟩ = {X ∈ Sp : E ∧X = 0}.

Therefore, ⟨E⟩ ≥ ⟨F ⟩ can be interpreted as E ∧X = 0 implying F ∧X = 0. This
is a more computation-friendly way to see the Bousfield classes. An easy corollary
(exercise) is to show

• ⟨E⟩ ∧ ⟨F ⟩ = ⟨E ∧ F ⟩.
• ⟨E⟩ ∨ ⟨F ⟩ = ⟨E ∨ F ⟩.

It is not hard to show that the Bousfield classes satisfy the distribution laws.
That is,

• (⟨X⟩ ∨ ⟨Y ⟩) ∧ ⟨Z⟩ = (⟨X⟩ ∧ ⟨Z⟩) ∨ (⟨Y ⟩ ∧ ⟨Z⟩),
• (⟨X⟩ ∧ ⟨Y ⟩) ∨ ⟨Z⟩ = (⟨X⟩ ∨ ⟨Z⟩) ∧ (⟨Y ⟩ ∨ ⟨Z⟩).

From the definition, the following proposition is also immediate:

Proposition 4.10. If ⟨E⟩ = ⟨F ⟩, then LE = LF . What’s more, if ⟨E⟩ ≤ ⟨F ⟩,
then LELF = LE, and there is a natural transformation LF =⇒ LE.

Corollary 4.11. Let E be any spectrum, and 0 be the trivial (contractible) spectrum.
(1) ⟨S⟩ ≥ ⟨E⟩ ≥ ⟨0⟩.
(2) ⟨E⟩ ∧ ⟨S⟩ = ⟨E⟩.
(3) ⟨E⟩ ∨ ⟨S⟩ = ⟨S⟩.
(4) ⟨E⟩ ∧ ⟨0⟩ = ⟨0⟩.
(5) ⟨E⟩ ∨ ⟨0⟩ = ⟨E⟩.

The corollary tells us, under the partial order ≥, ⟨S⟩ is the biggest one, and ⟨0⟩ is
the smallest one. Any spectrum must be in the middle. This motivates us to think
about whether every spectrum fits into some partially-ordered chain. Surprisingly,
we have a famous theorem by Tetsusuke Ohkawa [17] stated as follows.

Theorem 4.12 (Ohkawa). {⟨E⟩ : E ∈ Sp} is a set.

We refer the interested readers to [16].

Proposition 4.13. Let f : ΣdX → X be a self map, and g : X → Y .
(1) If W → X

g−→ Y → ΣW is a cofiber sequence, then ⟨W ⟩ ≤ ⟨X⟩ ∨ ⟨Y ⟩.
If f is smash nilpotent, i.e. f (k) is null-homotopic for some k > 1, then
⟨W ⟩ = ⟨X⟩ ∨ ⟨Y ⟩.

(2) Let X̂ = colim
(
X

f−→ Σ−dX
f−→ Σ−2dX

f−→ · · ·
)

, and Cf be the cofiber of
f . Then

⟨X⟩ =
〈
X̂
〉
∨ ⟨Cf ⟩ ,〈

X̂
〉
∧ ⟨Cf ⟩ = ⟨0⟩ .

Assume we have already proved TST. One famous theorem as a direct corollary
is the class invariance proposition, as claimed in §1.

Theorem 4.14 (Class invariance theorem). Let X and Y be p-local finite spectra
of types m and n, respectively. Then ⟨X⟩ = ⟨Y ⟩ iff m = n. In general, ⟨X⟩ ≥ ⟨Y ⟩
if m ≤ n.
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Proof. Let CX (resp. CY ) be the smallest thick subcategories of FH(p) containing
X (resp. Y ). In other words, CX (resp. CY ) contains all finite complexes that can
be built up from X (resp. Y ) by taking cofibrations and retractions. So for any
X ′ ∈ CX , ⟨X⟩ ≥ ⟨X ′⟩.

Since X is of type m, K(m− 1)∗(X) = 0, and so K(m− 1)∗(X
′) = 0. By TST,

CX = Dm for some m ≥ 0. Similarly, CY = Dn for some n ≥ 0. Hence, m = n is
equivalent to CX = Dm = Dn = CY , which is the same to say ⟨X⟩ = ⟨Y ⟩. Moreover,
⟨X⟩ < ⟨Y ⟩ follows from the strict inclusion Dm ⊃ Dn. □

Proposition 4.15. Let SQ, S(p), and S/p be rational sphere spectrum, p-local sphere
spectrum, and mod p Moore spectrum, respectively. Then

•
〈
S(p)

〉
= ⟨SQ⟩ ∨ ⟨S/p⟩.

• ⟨SQ⟩ ∧ ⟨S/p⟩ = ⟨0⟩.
• ⟨S/p⟩ ∧ ⟨S/q⟩ = ⟨0⟩, if p ̸= q.
• ⟨S⟩ = ⟨SQ⟩ ∨

∨
p∈P ⟨S/p⟩.

This proposition leads to the critical theorem as follows. See [1, 2].

Theorem 4.16. Let the spectra B(n),K(n), E(n), BP ⟨n⟩ , k(n) be as defined in
§3.

(1) (Johnson-Wilson) ⟨B(n)⟩ = ⟨K(n)⟩.
(2) (Johnson-Yosimura)

〈
v−1
n BP

〉
= ⟨E(n)⟩.

(3) ⟨P (n)⟩ = ⟨K(n)⟩ ∨ ⟨P (n+ 1)⟩.
(4) ⟨E(n)⟩ =

∨n
i=0 ⟨K(i)⟩.

(5) ⟨k(n)⟩ = ⟨K(n)⟩ ∨ ⟨HZ/p⟩.
(6) ⟨BP ⟨n⟩⟩ = ⟨E(n)⟩ ∨ ⟨HZ/p⟩.
(7) ⟨K(m)⟩ ∧ ⟨K(n)⟩ = ⟨0⟩ if m ̸= n.
(8) ⟨K(n)⟩ ∧ ⟨HZ/p⟩ = ⟨0⟩.

From the theorem, we know that
〈
v−1
n BP

〉
= ⟨E(n)⟩ = ⟨K(0)⟩ ∨ ⟨K(1)⟩ ∨ · · · ∨

⟨K(n)⟩. So v−1
n BP∗(X) = 0 in the statement of Theorem 2.5 is equivalent to

K(n)∗(X) = 0.

5. Proof of thick subcategory theorem

We are now fully prepared to tackle Theorem 2.5. One last tool in need is the
nilpotence theorem. Recall that the classical nilpotence theorem says

Theorem 5.1 (Nilpotence theorem). Let R be a connective ring spectrum of finite
type, and π∗R

h−→ MU∗R be the Hurewicz map. Then any α ∈ π∗R is nilpotent if
hα = 0.

What we need is another form of the classical nilpotence theorem, which states

Theorem 5.2 (Nilpotence theorem, smash product form). Let f : F → X be a
map of spectra, and F be finite. If MU ∧ f is null-homotopic, then f is smash
nilpotent. If we localize at p, then the theorem still holds after replacing MU by
BP .

Proof of Theorem 5.1 implying Theorem 5.2. Under the assumption of Theorem 5.2,
f is adjoint to f̂ : S→ X ∧DF . E ∧ f being null-homotopic is equivalent to E ∧ f̂
being null-homotopic, for each ring spectrum E for which Theorem 5.1 holds. It
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suffices to prove for the case F = S. Our task is to prove the smash nilpotence of
f , given

S f−→ X = S ∧X
η∧id−−−→ E ∧X

is null-homotopic. Recall that in Sp, every spectrum X is a homotopy colimit of its
finite subspectra Xα. Both f and the desired null-homotopy factor through some
finite Xα, i.e.

S fα−→ Xα = S ∧Xα
η∧id−−−→ E ∧Xα

is null-homotopic. Let Y = ΣnXα, where n is such that Y is 0-connected. Let
R =

∨
j≥0 Y

(j). This is a connective ring spectrum of finite type with multiplication
given by smashing with more copies of Y (j). Theorem 5.1 implies that z ∈ π∗R

is nilpotent if hz = 0. Let E = MU . Then S fα−→ Xα
η∧id−−−→ MU ∧ Xα is null-

homotopic. Suspending n times yields

ΣnS fα−→ Y
η∧id−−−→MU ∧ Y

being null-homotopic. If we further suspend ingredients of this map according
the definition of R, we get π∗R → π∗MU ∧ R = MU∗R. Now f (or fα, if you
prefer) corresponds to some z ∈ π∗R such that hz = 0. Hence, f is itself smash
nilpotent. □

The proof of TST needs the following key corollary of Theorem 5.2.

Corollary 5.3. Let W,X, Y be p-local finite spectra, and f : X → Y . If K(n)∗(W∧
f) = 0 for all n ≥ 0, then W ∧ f (k) is null-homotopic for large k.

Proof. Write R = DW ∧W . Let e, η be as defined in §4.1, i.e. the unit η : R→ S
and the counit e : S → R. We claim that R is a ring spectrum. Indeed, the
multiplication m is given by

m : R ∧R
=−→ DW ∧W ∧DW ∧W

id∧De∧id−−−−−−→ DW ∧ S ∧W
=−→ DW ∧W = R.

Here we note D2W = W . f is adjoint to f̂ : S→ DX ∧ Y , and W ∧ f is adjoint to

S f̂−→ DX ∧ Y = S ∧DX ∧ Y
e∧id∧id−−−−−→ R ∧DX ∧ Y.

Denote R ∧DX ∧ Y by F , and the composite of the maps by g. Then W ∧ f (k) :
W ∧X(k) →W ∧ Y (k) is adjoint to

S g(k)

−−→ F (k) = R(k) ∧DX(k) ∧ Y (k) mk−1

−−−→ R ∧DX(k) ∧ Y (k).

The goal is to show W ∧ f (k) is null-homotopic for large k, which is the same
to show g(k) is null-homotopic. By Theorem 5.2, it suffices to show BP ∧ g(k) is
null-homotopic.

Let Tk = R ∧DX(k) ∧ Y (k) and T = colim
(
S g−→ T1

id∧f̂−−−→ T2
id∧f̂−−−→ · · ·

)
. BP ∧

g(k) being null-homotopic is equivalent to BP ∧T being contractible. From the fact
([1, 2, 4] and Theorem 4.16)

⟨BP ⟩ = ⟨K(0)⟩ ∨ ⟨K(1)⟩ ∨ · · · ∨ ⟨K(n)⟩ ∨ ⟨P (n+ 1)⟩ ,
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it suffices to show P (m)∧T is contractible for large m, since K(n)∧T is contractible
for all n by assumption. Since we are working in the category of finite spectra, we
have

K(m)∗(W ∧ f) = K(m)∗ ⊗H∗(W ∧ f),

P (m)∗(W ∧ f) = P (m)∗ ⊗H∗(W ∧ f).

By assumption, H∗(W ∧ f) = 0. So P (m)∗(W ∧ f) = 0, indicating that P (m) ∧ T
is contractible. We conclude our proof. □

Proof of Theorem 2.5. Let C ⊂ FH(p) be a thick subcategory, and n be the smallest
integer such that C contains p-local finite spectra X with K(n)∗(X) ̸= 0. Our goal
is to show C = Dn. From the definition it follows that C ⊂ Dn. It suffices to prove
the converse.

Let Y ∈ Dn. For any p-local finite spectrum F , X ∧ F ∈ C from the thickness
of C, and so X ∧ DX ∧ Y ∈ C. Let W be a finite spectra, and f : W → S fit
into a cofiber sequence W

f−→ S e−→ DX ∧ X. It is clear that W ∈ FH(p). Let
Cf = Cf(1) = DX ∧ X be the mapping cone. By Lemma 4.2, Cf(k) ∧ Y ∈ C
for k ≥ 1. K(i)∗(f) = 0 when K(i)∗(X) ̸= 0 because DW ∈ FH(p) = D0, and
by statement 6 in Theorem 4.1 K(i)∗(f) ∼= K(i)∗(DW ) for i ≥ n. When i < n,
K(i)∗(Y ) = 0 by assumption. Thus, K(i)∗(Y ∧ f) = 0 for all i. By Corollary
5.3, Y ∧ f (k) is null-homotopic for some large k. Recall that in classical homotopy
theory, the cofiber of a null-homotopy is equivalent to the wedge of its target and
the suspension of its source, i.e.

Y ∧ Cf(k) ≃ Y ∨
(
ΣY ∧W (k)

)
.

Since both Y ∧ Cf(k) ∈ C and
(
ΣY ∧W (k)

)
∈ C, we know that Y ∈ C. Hence,

C ⊃ Dn as desired. □
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