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1 Introduction

In algebraic topology, we always want to detect the topological properties of a given space through some
topological invariant. In the study of the topological space with the topological group action, things will
become more difficult than normal. For which, we developed a theory called equivariant homotopy theory.
As one fundamental and famous theorem in the equivariant homotopy theory, Smith theory shows its power
in the original problem we are interested in: the way to detect the topological properties of spaces with
group action through topological invariant.

In 1940s, Paul Smith had proven several results related to the cohomology of the so-called G-CW complex
and fixed points set, which is known as the Smith Theory [4]. We define that a space is an Fp-cohomology
sphere if there is an isomorphism of graded abelian group H∗(X;Fp) ∼= H∗(Sn;Fp) for some n ≥ 1. The
main result is given as follow:

Theorem 1 (Smith). Let G be a finite p-group, and X be a finite G-CW complex and X is a Fp cohmology
n-sphere, then XG is empty or is a Fp cohomology m-sphere for some m ≤ n. If p is odd, then n −m is
even; and moreover if n is even, XG 6= ∅.

There are various way to prove the result, and some of them are rather tedious and highly technical, but
here we will follow the proof originally given using modern language of Bredon cohomology, which is proved
to be a very effective and elegant with much depth coming up.

Before we can use the power of Bredon cohomology, we need to do some works. The crucial part is showing
existence of Bredon cohomology. So we need to construct the Bredon cohomology. There are two ways to
construct it. The simplest and most energy-saving way is to construct a cochain complex in the category
of coefficient system, and taking homology to the cochain complex. In order to do that, we need to first
construct a chain complex through a coefficient system, namely Cn(X)(G/H) = Hn((Xn)H , (Xn−1)H ;Z),
where H∗ is the ordinary homology, and Cn(X) is a functor from homotopy category of orbit G-spaces
ho(OrbG) to Ab, which is a coefficient system. Then we take its dual CnG(X;M) = hom(Cn(X),M) under
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some coefficient system M . Finally consider the coboundary map δn and compute ker dn/im δn+1 to get the
Bredon cohomology Hn

G(X;M) = ker dn/im δn+1. The other way is concrete but rather abstract. We need
to first construct a Eilenberg-MacLane space K(G,n) through Elmendorf’s theorem and bar construction,
then connecting cohomology and homotopy groups through the Ω-spectrum K(G.n) like what we did in
non-equivariant homotopy.

In this paper, we will examine the construction of Bredon cohomology in either way in Section 3 and
present a detailed proof towards Smith Theory in Section 4.

2 Preliminary

2.1 Categorical Setting

In this part, we will introduce the fundamental background needed in constructing the Bredon cohomology.
First, we need some background knowledge in category theory.

Definition 1. A category C consists of

1. a class of objects Obj(C),

2. a class of morphisms Mor(C) between objects (a morphism is denoted by f : a → b, where a, b ∈
Obj(C)),

3. for every three objects a, b, c, a binary operator called composition hom(a, b)× hom(b, c)→ hom(a, c),
such that:

(a) (Associativity) If f : a→ b, g : b→ c, h : c→ d, then h ◦ (g ◦ f) = (h ◦ g) ◦ f and

(b) (Identity) for every object x, there exists a morphism 1x : x → x (called identity morhism) such
that for any f : a→ x, g : x→ b, we have 1x ◦ f = f and g ◦ 1x = g.

Example 1. The category of topological spaces Top. The category of G-spaces and G-maps GTop. The
category of abelian groups Ab.

Definition 2. Let C,D be categories. A (covariant) functor F is a mapping from C to D such that:

1. associate each object X in C an object F (X) in D,

2. associate each morphism f : a→ b in C a morphism F (f) : F (a)→ F (b) in D such that:

(a) F (1X) = 1F (X) for every object X in C and

(b) for all morphisms f : a→ b, g : b→ c in C, F (g ◦ f) = F (g) ◦ F (f).

Definition 3. A contravariant functor F is a functor satisfies all conditions listed above with the last
one replaced by

F (g ◦ f) = F (f) ◦ F (g).

Definition 4. Let F : Cop×C → X be a functor. We define a wedge e : w → F to be an object w ∈ Obj(X)
and a map ec : w → F (c, c) for each c ∈ Obj(C), such that for any morphism f : c→ c′, the following diagram
commutes:

w F (c′, c′)

F (c, c) F (c, c′)

ec′

ec F (f,id)

F (id,f)
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Definition 5. An end of F defined above is a pair 〈w, e〉, where w ∈ Obj(X), and e : W → F a wedge
such that it is universal, i.e. for any pair 〈x, β〉, β : x → F a wedge, there exists a unique h : x → w with
βa = eah for any a ∈ Obj(C) and any morphism f : b→ c, the following diagram commutes:

x F (b, b)

F (b, c)

w F (c, c)

βb

∃!h

βc
F (id,f)

ec

eb

F (f,id)

We denote w =
∫
c∈C F (c, c).

We can define the concept of coend in a dual manner:

Definition 6. A coend is dual an end. Namely the pair 〈d, ζ〉, denote d =
∫ c∈C

F (c, c), such that the
following diagrams commutes in a dual manner as above: (we abuse the notation here)

x F (b, b)

F (b, c)

d F (c, c)

βb

ζb

F (f,id)

F (id,f)

∃!h

ζc

βc

Example 2. Let R be a commutative ring, and view it as a category. A right R-module A is an additive
functor A : Rop → Ab, and a left R-module B is an additive functor B : R → Ab. Using the usual tensor
product ⊗Z in Ab, we have the bifunctor A⊗Z B : Rop ×R→ Ab, with coend∫ R

A⊗Z B = A⊗R B,

a usual tensor product over R of a (left and right) R-module. From the example, we may observe that the
coend is really a coequalizer in the target category.

Example 3. Extend the Example 2 above. Let A be a monoidal category, F : Cop → A and G : C → A.
External tensor product defines a bifunctor F ⊗ G : Cop × C → A, and the coend gives the usual functor
tensor product: ∫ C

F ⊗G = F ⊗C G.

2.2 Geometric Setting

From now on, we will always denote ∆ to be the category of sets [n] = {0, 1, 2, · · · , n}, with the morphisms
are order-preserving maps between these sets.

Definition 7. A simplicial object in a category C is a contravariant functor ∆ → C. When C = Set or
Top, we call this functor a simplicial set or a simplicial space, respectively. In this case, we have two
following important definitions:

1. Face map of a simplicial set X : ∆op → Set are the images in that simplicial set of the morphisms
δn,0, · · · , δn,n : [n− 1]→ [n], where δn,i is the only order-preserving injection [n− 1]→ [n] that misses
i. Denote these face maps by dn,0, · · · , dn,n, with dn,i : Xn → Xn−1 and X(δn,i) = dn,i. When there
is no confusion, we simplify them by d0, · · · , dn.
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2. Degeneracy maps of a simplicial set X : ∆op → Set are the images in that simplicial set of the
morphisms σn,0, · · · , σn,n : [n+1]→ [n], where σn,i is the only order-preserving surjection [n+1]→ [n]
that hits i. twice. Denote these face maps by sn,0, · · · , sn,n, with sn,i : Xn → Xn+1 and X(σn,i) = sn,i.
When there is no confusion, we simplify them by s0, · · · , sn.

Remark 1. The defined maps satisfy the following simplicial identities:

1. didj = dj−1di, for 0 ≤ i < j ≤ n.

2. disj = sj−1di, for 0 ≤ i < j ≤ n.

3. disj = id, for i = j or i = j + 1.

4. disj = sjdi−1, for 0 ≤ j + 1 < i ≤ n.

5. sisj = sj+1si, for 0 ≤ i ≤ j ≤ n.

Moreover, if a sequence of simplicial sets Xn together with face and degeneracy maps di, si that satisfy the
simplicial identities above, then they define a unique simplicial set X satisfying all conditions.

Example 4. With face and degeneracy maps defined above, we obtain a covariant functor ∆∗ : ∆ → Top
in the usual way. Explicitly, ∆∗([n]) = {(x1, · · · , xn) : xi ≤ xi+1} ⊂ Rn.

Example 5. For a simplicial space X∗ : ∆op → Top, we have a functor

X∗ ×∆∗ : ∆op ×∆→ Top.

Definition 8. The geometric realization of X∗ is the coend |X∗| =
∫ ∆

X∗ ×∆∗.

Example 6. If X is a simplicial G-space (i.e. X∗ : ∆op → GTop), then |X∗| inherits a G-action such that
|X∗|H = |XH

∗ | for all H ⊂ G.

Remark 2. The reason the ”geometric realization” has its name is because, by construction, |X∗| is a
topological space given by the quotient

|X∗| =
∐
n

Xn ×∆n/ ∼,

where the equivalence relation ”∼” is given by, for all [k]
f−→ [`] in ∆, the points (x, f∗p) ∈ Xn × ∆` are

identified with (f∗x, p) ∈ Xn ×∆k.

Remark 3. The geometric realization is actually a functor | − | : ∆op → Top, and |X∗| = X∗ ⊗∆ ∆∗ by
Example 3.

Now let D be a small category. Define B∗(D) to be the set of n-tuples f = (f1, · · · , fn) of composable
arrows of D, depicted by

x0
f1←− x1

f2←− x2
f3←− · · · fn←− xn,

where xi ∈ Obj(D), and topologized as a subspace of the n-fold product of the total morphism space∐
D(x, x′).

Definition 9. We say B∗(D) is the nerve of D, if we make it a simplicial set structure.

Remark 4. We’ll define what is mean to have a simplicial structure. By Remark 1, it suffices to find the
face and degeneracy maps.

Explicitly, the face map di : Bk(D) → Bk−1(D), where Bk(D) = {f (k) = (f
(k)
1 , · · · , f (k)

k ) : x0
f
(k)
1←−−

x1
f
(k)
2←−− · · ·

f
(k)
k←−− xk} and Bk−1(D) = {f (k−1) = (f

(k−1)
1 , · · · , f (k−1)

k ) : x0
f
(k−1)
1←−−−− x1

f
(k−1)
2←−−−− · · ·

f
(k−1)
i−1←−−−−

xi−1
δ←− xi+1

f
(k−1)
i+1←−−−− · · ·

f
(k−1)
k←−−−− xk}, and δ = f

(k)
i ◦ f

(k)
i+1. That is to say, di composes the morphisms f

(k)
i and

f
(k)
i+1 into a new morphism δ, yielding a (k − 1)-tuple for every k-tuple.

Similarly, we have the degeneracy map si : Bk(D) → Bk+1(D), given by inserting identity morphism at
object xi, yielding a (k + 1)-tuple for every k-tuple.
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Note 1. The geometric realization of B∗(D), |B∗(D)| =: BD, is called the classifying space.

Let T : D → Top be a continuous contravariant functor, and S : D → Top be a continuous covariant
functor.

Definition 10. The bar construction is defined to be

B(T,D, S) = |B∗(T,D, S)|,

where B∗(T,D, S) is the simplicial space whose set of n-simplices is {(t, f , s) : t ∈ T (x0), f ∈ Bn(D), s ∈
S(xn)}, topologized as a subspace of the product (

∐
(T (x)))× (

∐
D(x, x′))

n × (
∐

(S(x))).

Remark 5. B0 =
∐
T (x)× S(x). In the same way we did in Remark 4, we can give a simplicial structure

to B∗(T,D, S) to make the preceding Definition well-defined, with zeroth and last face using the evaluation
of the functors T and S. Also as we did in Example 3, B(T,D, S) = T ⊗D S.

Example 7. There is a GTop version. Let T, S : D → GTop, then B∗(T,D, S) is a simplicial G-space and
B(T,D, S) is a G-space, with B(T,D, S)H = B(T,D, SH).

Lemma 1. Let x ∈ Obj(D) be an object. Then it induces a homotopy equivalence

η : B(T,D,hom(x,−))→ T (x).

In a general setting, we have the following definition in categorical sense:

Definition 11. Let S : D → Top be a covariant functor. We define its homotopy colimit to be

hocolimS := B(∗,D, S),

where ∗ : D → Top is a trivial functor mapping every object to a one-point space.

It can be easily imagined there is a definition of homotopy limit in duality. We will briefly introduce the
concept and skip all details here since they won’t affect our main goal.

We have a cosimplicial space in dual to the simplicial space B∗(T,D, S). Use the notation before,
the cosimplicial space B∗(T,D, S) is the set of all n-cosimplices

∐
f∈Bn(D)(T (x0) × S(xn)), n ∈ N, and

B∗(T,D, S) is topologized as a subspace of Map(Bn(D),
∐
T (x)×S(x)) = (T (x0)×S(xn)Bn(D) with compact-

open topology. We can also define the coface and codegeneracy maps in duality to make it ”actually” a
cosimplicial space. Finally, we define its geometric realization (called totalization) to be

TotB∗(T,D, S) = |B∗(T,D, S)| =
∫
D

Map(T, S).

Definition 12. Let T : D → Top be a contravariant functor. We define its homotopy limit to be

holimT := TotB∗(T,D, S),

where ∗ : D → Top is a trivial functor mapping every object to a one-point space.

2.3 Basic Concepts in Equivariant Homotopy Theory

Let G be a topological group. In this part, we will introduce some basic concepts in equivariant homotopy
theory.

Definition 13. A G-space is a topological space with the group action G y X such that ex = x and
g(g′x) = (gg′)x for any x ∈ X.

Definition 14. A map f : G×X → X is a G-map if gf(x) = f(gx) for any g ∈ G.
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The category of G-maps and G-spaces forms a subcategory of Top, denoted by GTop. We assume for
simplicity that subgroups of G are closed. For H ⊂ G, we define the H-fixed points set XH = {x : hx =
x∀h ∈ H}. Define the Weyl groups NH to be the normalizer of H in G, WH = NH/H, it is clear that XH

is a WH-space. In equivariant theory, the orbit G/H plays the role of points, and the set of G-maps from
G/H to itself can be identified with the group WH.

Like what did in Top, we can define the G-CW complex X to be the union of G-spaces (the n-skeleton)
Xn such that X0 is the disjoint union of orbits G/H and Xn+1 is obtained from Xn by attaching G-cells
G/H × Dn+1 along the attaching G-maps G/H × Sn → Xn. Namely, such that the following diagram
commutes:

∐
αG/Hα × Sn Xn

∐
αG/Hα ×Dn+1 Xn+1

attaching

attaching

Same stories, such as Whitehead Theorem, Cellular Approximation, CW Approximation, happen in
analogue of those in non-equivariant homotopy theory, and we will not discuss the details here (would
mention them as long as we need). Readers may refer to [1] or a brilliant online note [5].

Define the Orbit category associated to a group G, denoted by OrbG, is a category with objects are
G-orbits G/H (where H ⊂ G) and morphisms are G-maps. The homotopy category of OrbG is denoted by
ho(OrbG), which is obtained by Bousfield localization of OrbG.

Definition 15. A coefficient system A is a contravariant functor A : ho(OrbG) → Ab, where Ab is the
category of abelian groups.

Remark 6. One can regard it as a continuous contravariant functor from OrbG to Ab.

Definition 16. Consider a finite field Fp, the argumentation ideal I of Fp[G] (a group ring) is defined to
be the kernel of the map Fp[G]→ Fp sending all g ∈ G to 1.

Remark 7. In is nth power of I, and can be viewed as a coefficient system whose value on G is In and on
points is 0. Also we have Ip = 0 and In/In+1 ∼= Fp for 0 ≤ n ≤ p− 1.

Definition 17. The reduced Euler characteristic for a space X is χ̃(X) =
∑
i(−1)irank H̃n(X).

3 Construction of Bredon Cohomology

3.1 Basic Construction

Now we are ready to construct the Bredon Cohomology. But first we need to introduce a useful category,
which would be useful later on.

Definition 18. Define the Orbit category associated to a group G, denoted by OrbG, is a category with
objects are G-orbits G/H (where H ⊂ G) and morphisms are G-maps.

Recall that a contravariant functor from category C to Set is called a presheaf. An evident example is
when C = ∆, then the simplicial set is a presheaf. Let P(OrbG) be the category of presheaves P : OrbG

op →
Top.

Let X ∈ Obj(GTop). Consider the ”fixed point functor” X(−) for every H ⊂ G, that is to say, it sends
every H to a fixed point space XH . This gives a functor φ : GTop→ P(OrbG), sending X to X(−).

Lemma 2. φ has a left adjoint θ : P(OrbG)→ GTop, i.e.

P(OrbG)(P, φX) ∼= GTop(θP,X),

for every presheaf P ∈ Obj(P(OrbG)) and G-space X ∈ Obj(GTop).
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Proof. Define θ : P(OrbG)→ GTop, sending a presheaf P to P (G/e), on which G-action is induced by the
group action on the orbit G/e. That means, for every G-space X, φ(X) = X(−), and θ(φ(X)) = Xe = X.
So θφ = id.

On the other hand, the quotient map G → G/H induces ϕ : P (G/H) → P (G/e)H , where P (G/e)H is
the space of morphisms P (G/H) → P (G/e), and these maps together specify a natural map ρ : P → φθP .
Passage from φ : P → φX to θφ : θP → X is a bijection whose inverse sends f : θP → X to φf ◦ ρ.

Theorem 2 (Elmendorf). There is a functor ψ : P(OrbG) → GTop and a natural transformation ε :
φψ → id, such that ε : (ψS)H → S(G/H) is a homotopy equivalence. Moreover, if X has the type of a
G-CW complex, then there is a natural bijection

[X,ψS]GTop
∼= [φX, S]P(OrbG).

Proof. Let T : OrbG → GTop be the covariant functor given by G/H (as a orbit) 7→ G/H (as a G-space),
and OrbG(G/H,G/K) 7→ GTop(G/H,G/K). Let S ∈ Obj(P(OrbG)), we define ψS = B(S,OrbG, T ). We
have

TH(G/K) = (G/K)H = GTop(G/H,G/K) = OrbG(G/H,G/K).

Note B(S,OrbG, T ) = S ⊗OrbG
T , and B(S,OrbG, T )H = B(S,OrbG, T

H). So we have a homotopy equiva-
lence by Lemma 1:

ε : (ψS)H → S(G/H),

which defines a natural transformation ε : φψ → id. From θφ = id, we see θε : θφψS = ψS 7→ θS is a weak
homotopy equivalence of G-space for any S. Write S = φX, this gives a weak equivalence θε : ψφX 7→ X.
Hence ψφX has the G-CW complex of X has. In this case, Whitehead Theorem implies θε is actually a
homotopy equivalence. Thus it has an inverse (θε)−1.

Let α : [X,ψS]GTop → [φX, S]P(OrbG) by α(f) = ε ◦ φf ; and β : [φX, S]P(OrbG) → [X,ψS]GTop by
β(g) = ψg ◦ (θε)−1. Then one can check

αβ(g) = α(ψg ◦ (θε)−1) = ε ◦ φ(ψg ◦ (θε)−1) ' g
βα(f) = β(ε ◦ φf) = ψ(ε ◦ φf) ◦ (θε)−1 ' ψε ◦ (θε)−1 ◦ f

From the fact ψε is weak homotopy equivalence, we have βα bijection by Whitehead Theorem, which implies
α, β are inverse bijections.

Now we’re ready to construct the Bredon cohomology. Let B be the classifying space functor and M be
a coefficient system (a contravariant functor from ho(OrbG) to Ab). Then Bn ◦M ∈ P(OrbG). Then from
Elmendorf’s Theorem, ε : ψ(Bn ◦M)H → (Bn ◦M)(G/H) is a homotopy equivalence.

Definition 19. The Eilenberg-MacLane space is defined by

K(M,n) = ψ(Bn ◦M),

where ψ : P(OrbG) → GTop defined above is the geometric realization ψ(−) = B(−,OrbG, T ), and T :
OrbG → GTop is the covariant functor sending a orbit G/H to the corresponding G-space G/H.

Finally, in analogue to what we did in connecting the cohomology theory with homotopy groups via
Ω-spectrum of Eilenberg-MacLane spaces in the non-equivariant homotopy case, we have the following defi-
nition:

Definition 20. The Bredon cohomology H̃n
G is defined to be

H̃n
G(X;M) := [X,K(M,n)]GTop

∼= [φX,Bn ◦M ]P(OrbG).
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3.2 Elementary Example

We now examine an elementary example. Consider the simplest case: the circle S1, with C2 acting on it.
C2 is the group {1,−1}, where −1 is the antipodal map.

Then we can regard this circle (a C2-space) is decomposed into:

0-cell: C2/{1} ×D0,

1-cell: C2/{1} ×D1.

The attaching maps can be identified through the following diagram: (x0, x1 are two antipodal points on
the circle, and 0-skeleton is given by X0 = {x0, x1})

C2/{1} × S0 X0

C2/{1} ×D1 X1 = S1

attaching

attaching

And we identify points through x0 ∼ {1}×{0}, x1 ∼ {1}×{1}, x0 ∼ −1{1}×{1} and x1 ∼ −1{1}×{0}.
This gives the C2-CW complex structure of X = S1.

In general, we can move our view to n-dimensional case. Consider C2-CW complex X = Sn. In the same
way we did above, we can identify that the C2-CW complex structure of X is given by

n-cell: C2/{1} ×Dn,

Lower dimensional cells: C2/C2 × cells of Sn−1 in non-equivariant case .
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The attaching maps can be identified through the following diagram:

C2/{1} × Sn−1 Xn−1 = Sn−1

C2/{1} ×Dn Xn = Sn

attaching

attaching

with attaching map given by C2/{1} × Sn−1 → Sn−1, (g{1}, x) 7→ x. Use this information, we are able
to give a concrete description of its Bredon cohomology. Let M be a coefficient system. For topological
group C2 and one of its subgroup H, we have Ck(Sn)(C2/H) = Hk((Sn)H , (Sn−1)H ;Z). Notice from the
definition of C2 (H is either trivial or C2 itself) and equivariant cellular structure of Sn, we have that (note
(Sn)C2 = ∗) Ck(Sn)(C2/H) = Z2 for C2/H = C2 and k ≤ n, and 0 elsewhere. This implies that the cochain
complex is given by

CkC2
(Sn) = hom(Ck(Sn),M) = hom(Z2,M). (∗)

If M(C2) = 0, then hom(Z2,M) ≡ 0, the Bredon cohomology always vanishes. So we assume M(C2) 6= 0.
For simplicity, we assume M(C2) = Z. It is equivalent to regard M here is just the ‘Z-coefficient’ in the
non-equivariant situation. Therefore from (∗), we get

CkC2
(Sn) =

{
Z , k ≤ n
0 , otherwise

Note from previous discussion, the attaching map for k-skeleton has two parts: one is through 1 ∈ C2, which
has degree 1. While the other is given by −1 ∈ C2, which has degree (−1)k. Hence the coboundary map
δk : CkC2

(Sn) → Ck+1
C2

(Sn) is given by δk(·) = (1 + (−1)k)(·). Therefore it is not hard to compute Bredon
cohomology via its definition (kernel/image):

Hk
C2

(Sn;M) =


Z , k = n, k = 0 if k odd

C2 , k ≤ n if k even

0 , otherwise

This coincides the usual cohomology of RPn. This is valid, because if we consider C2 acting on Sn, this is
really the definition of real projective space in n-dimension. This reveals a connection between equivariant
homotopy and usual homotopy.

4 Smith Theory

In this section, unless stated otherwise, we will always assume G is a finite topological p-group and the
G-CW complex X is finite. We restate the main result as follow:

Theorem 3 (Smith). X is Fp-acyclic implies XG is empty or Fp-acyclic.
Explicitly, if X is a Fp-cohomology n-sphere, then XG is a Fp-cohomology m-sphere for some m ≤ n. If

p is odd, then n−m is even; and moreover if n is even, XG 6= ∅.

We will use Bredon Cohomoly to tackle this theorem. Nevertheless, the critical tools we need is the
axioms of cohomology theory for Bredon cohomology H∗G(X;A) with some coefficient system A:

Theorem 4. For G a topological group, A a coefficient system. ∃! functors H̃∗G(−;A) : GTopop∗ → Ab

together with an isomorphism H̃n
G(X;A)

∼=−→ H̃n+1
G (ΣX;A) satisfying the following axioms:

1. (Addivity) Xα ↪→
∨
αXα induces isomorphisms

H̃∗G(
∨
α

Xα;A) ∼=
∏
α

H̃∗G(Xα;A)
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2. (Exactness) If X
f−→ Y → Cf is a cofiber sequence, then the sequence H̃n

G(Cf ;A) → H̃n
G(Y ;A) →

H̃n
G(X;A) is exact.

3. (Weak Equivalences) H̃∗G(−;A) sends weak equivalences to isomorphisms.

4. (Dimension) Let G/H ∈ Obj(OrbG), then H̃n
G(G/H;A) = A(G/H) for n = 0, and 0 otherwise.

We can check he Bredon cohomology H∗G constructed in Section 3 truly satisfies the axioms. Now we can
present the proof.

Proof of Theorem 3. Observe that XG = (XH)G/H . By Sylow’s theorem, one can induct on the order of
group G. So the whole proof reduces to the situation G = Z/p. WLOG, we assume G = Z/p.

Now a exact sequence of coefficient systems 0→ L→M → N → 0 induces a long exact sequence

· · · → Hn
G(X;L)→ Hn

G(X;M)→ Hn
G(X;N)→ Hn+1

G (X;L)→ · · ·

by Bockstein homomorphism. Define FX = X/XG with the free action of G on it.

Goal 1. We need to construct L,M,N such that we can connect Bredon cohomology to ordinary cohomology:

Hn
G(X;L) ∼= H̃n(FX/G;Fp) (1)

Hn
G(X;M) ∼= H̃n(X;Fp) (2)

Hn
G(X;N) ∼= H̃n(XG;Fp). (3)

This part is rather easy. Just applying the dimension axiom and taking X = G and X = ∗, we have

L(G) = Fp, L(∗) = 0,
N(G) = 0, N(∗) = Fp,

M(G) = Fp[G], M(∗) = Fp.

Notice that GG = ∅, ∗G = ∗, F (∗)/G = ∅ and FG/G = G+/G, where G+ is G disjoint with a fixed
basepoint. Now let I be the argumentation ideal of Fp[G]. Clearly we have M/I ∼= Fp and Ip−1 ∼= Fp ∼= L,
by looking at the evaluations at X = G and X = ∗.

From previous discussion, we have the following exact sequences of coefficient systems (1 ≤ n < p− 1):

0→ I →M → N ⊕ L→ 0 (4)

0→ L→M → N ⊕ I → 0 (5)

0→ In+1 → In → L→ 0 (6)

The exactness is easy to show by looking at the evaluations. Sequences (4) and (5) coincide when p = 2. Plus,
Sequences (4) and (5) induce long exact sequences accordingly (use (1)∼(3), and all ordinary cohomology
are in Fp-coefficient):

· · · → Hq
G(X; I)→ Hq(X)→ H̃q(FX/G)⊕Hq(XG)→ Hq+1

G (X; I)→ · · · (4′)

· · · → H̃q(FX/G)→ Hq(X)→ Hq
G(X; I)⊕Hq(XG)→ H̃q+1(FX/G)→ · · · (5′)

Define aq = rankHq(XG;Fp), bq = rankHq(X;Fp), cq = rank H̃q(FX/G;Fp), dq = rankHq
G(X; I). It’s

evident that cq = dq when p = 2.
Exactness of (4′) and (5′) implies that

aq + cq ≤ bq + dq+1 (4′′)

aq + dq ≤ bq + cq+1 (5′′)

Adding (4′′) for q even and (5′′) for q odd together, we have for r, q ≥ 0,

cq +

q+r∑
i=q

ai ≤ cq+r+1 +

q+r∑
i=q

bi, (7)
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and by taking q = 0, r →∞ (note X is finite, so cq vanishes eventually), we have∑
ai ≤

∑
bi.

Now we have a simple fact stated as follow:

Lemma 3. For the long exact sequence of finite dimensional vector spaces

→ Cn−1 → An → Bn
φn−−→ Cn → An+1 · · ·

we have χ(B) = χ(A) + χ(C).

This is easy to check by directly writing out the definition of χ(A), χ(B), χ(C) and then comparing, and
noticing that dimBn = dim(imφn) + dim(kerφn) (similar for A,C).

Use either (4′) or (5′), we can write

χ(X) = χI(X) + χ(XG) + χ̃(FX/G),

where χI(X) is the Euler characteristic associated to Bredon cohomology of X with coefficient I. The
sequence (6), by similar argument, induces

χIn(X) = χIn+1(X) + χ̃(FX/G).

Using the fact Ip−1 ∼= L, and Summing them together over 1 ≤ n < p− 1, we obtain

χ(X) = χ(XG) + pχ̃(FX/G),

which implies
χ(X) ≡ χ(XG) mod p. (8)

Goal 2. Now we need to use the previous results to prove the theorem.

Since X is a Fp-cohomology n-sphere,
∑
bi = 2, and hence

∑
ai = 0 or 1 or 2. The possibility of 1 is

ruled out by equation (8). So
∑
ai = 0 or 2. If it is 0, then XG is empty. Now assume

∑
ai = 2, then XG

is another Fp-cohomology m-sphere. We have m ≤ n by taking r →∞ and p = n+ 1 in equation (7).
If p is odd, then p > 2, and (8) holds iff χ(X) = χ(XG), which implies n−m is even. Moreover, if n is

even, χ(X) = 2, and thus χ(XG) = 2, implying XG 6= ∅.

The converse of Smith theorem also holds partly, proved by Lowell Jones (1971) and Robert Oliver (1975).
We will state them without proofs:

Theorem 5 (Jones). If X is Z/n-acyclic, then X = Y Z/n for a contractible Y with semi-free Z/n-action.

Theorem 6 (Oliver). Let G be a group with order not a prime power, then there is a number nG such that
X = Y G for a contractible Y with G-action iff χ(X) ≡ 1 mod nG.
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