
A Taste of Bott Periodicity Theorem

Jinghui Yang

December 5, 2019

Abstract

This paper gives a brief introduction to the fundamental theorem of
topological K-theory, the Bott Periodicity Theorem. We will examine the
motivation of the theorem and give a stretch of the proof of it. Some basic
computational examples will be provided. Background of vector bundles
is assumed.
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1 Introduction

In this paper, we always denote

Vect(X) = {isomorphism classes of complex vector bundles over X},

where X is assumed to be compact Hausdorff.
To begin with, we first define the concept of K-theory group:

Definition 1.1. Let A be an abelian semi-group. The K-theory group K(A)
is defined through the following universal property:

For α : A→ K(A) a semi-group homomorphism, ∀G a group, and γ : A→ G
a semi-group homomophism, ∃!β : K(A)→ G a group homomorphism such that
γ = βα.

With this definition, we would expect an abelian group structure arising
from the abelian semi-group. To see this actually works, Let F (A) be a free
abelian group generated by the elements of the given abelian semi-group A, then
modulo by the elements of the form a + a′ − a ⊕ a′, where ⊕ is the addition
in A and a, a′ ∈ A. Denote this new quotient group by K(A), easy to check it
satisfies the definition above. Moreover, if A is a semi-ring (i.e. it possesses a
multiplication which is distributive over the addition A), then K(A) is a ring,
called the K-theorey ring.

Now, note that for any space X, Vect(X) has the commutative semi-ring
structure (where addition is the Whitney sum and the multiplication is the
tensor product). So we may import the following notation:
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Notation 1.2. K(X) = K(Vect(X)).

One can check this is a commutative ring since it arises from a commutative
semi-ring.

Remark 1.3. Let n be trivial bundle over X of rank n. Then elements in K(X)
is of the form

[E]− [F ] = [E] + [G]− ([F ] + [G])

= [E ⊕G]− [F ⊕G]

= [H]− [n],

where E,F are vector bundles over X, G is a vector bundle over X s.t. F⊕G =
n, H = E ⊕G.

Example 1.4. Compute K(∗), where ∗ is a point. Then we know that the only
vector bundles over ∗ is trivial bundles of rank n, where n ∈ N. Therefore, one
can check Vect(∗) ∼= Z, hence K(∗) = Z.

Example 1.5. Compute K(S0). Note that S0 is just two points. Assigning
separate bundles to each component gives that K(S0) = Z× Z = Z2.

With these in hand, we can show that K has the functoriality: it maps from
the category of topological spaces Top to the category of commutative rings
CRing.

We can define the external product: µ : K(X) ⊗K(Y ) → K(X × Y ) by
µ(a⊗ b) = p∗X(a)p∗Y (b), where pX , pY are projections of X × Y onto X and Y ,
respectively. This is a ring homomorphism, since for a, b ∈ K(X), c, d ∈ K(Y ),
(a ⊗ b)(c ⊗ d) = ac ⊗ bd (tensor product of ring is again a ring), and we have
µ((a ⊗ b)(c ⊗ d)) = µ(ac ⊗ bd) = p∗X(ac)p∗Y (bd) = p∗X(a)p∗X(c)p∗Y (b)p∗Y (d) =
p∗X(a)p∗Y (b)p∗X(c)p∗Y (d) = µ(a⊗ b)µ(c⊗ d).

Let Y = S2 = CP1. Now what can we tell about this µ then? The best
result should be µ is an isomorphism. This is really the case of Bott periodicity
theorem. In the following sections, we will devote to give a stretch proof of this
isomorphism.

Theorem 1.6 (Bott Periodicity Theorem). For any compact Hausdorff space
X, the map

µ : K(X)⊗K(S2)→ K(X × S2) (1)

is a isomorphism of rings.

Let H be the canonical line bundle over S2 = CP1, then we know from
[Hatcher, Example 1.13] that (H ⊗H) ⊕ 1 ∼= H ⊕H, where we can write it in
K(S2) in the form H2 + 1 = 2H, i.e. (H − 1)2 = 0. So we have a natural ring
homomorphism Z[H]/(H − 1)2 → K(S2).

Corollary 1.7. The map

µ0 : Z[H]/(H − 1)2 → K(S2) (2)

is an isomorphism of rings.

This theorem is fundamental in the topological K-theory. From the theorem
and the corollary, one can compute a bunch of K-theory rings.
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2 Setting the Stage

First note the fact that vector bundles over S2 corresponds to homotopy classes
of maps S1 → GL(n,C) (similar idea to Čech cocycle), which we’ll call the
clutching functions. To prove the theorem, one need to generalize this con-
struction to create the vector bundle over X × S2 by means of the ”generalized
clutching function”, which we’ll give a sketch below.

For a vector fundle π : E → X, let f ∈ Aut(E × S1) of the product bundle
π×1 : E×S1 → X×S1. This gives an isomorphism f(x, z) : π−1(x)→ π−1(x),
for all (x, z) ∈ X ×S1. From this E and f one can construct a new bundle over
X ×S2 by taking two copies of E×D2 and identifying the subspace E×S1 via
f . Denote this new bundle as [E, f ], and call f the clutching function.

Proposition 2.1. If ft : E × S1 → E × S1 is a homotopy, t ∈ [0, 1], then
[E, f0] ∼= [E, f1].

Example 2.2. Taking X = ∗. Then [1, z] ∼= H. Moreover, we have [1, zn] ∼=
Hn. If we define H−1 = [1, z−1], then previous statement holds for n ∈ Z,
which is justified by the fact that H ⊗H−1 = 1.

Example 2.3. For arbitrary bundle E, we have [E, zn] ∼= µ(E⊗Hn) for n ∈ Z.
In general, we have [E, znf ] ∼= [E, f ] ⊗ Ĥn, where Ĥn denotes the pullback of
Hn via the projection X × S2 → S2.

Example 2.4. Every vector bundle E′ → X ×S2 is isomorphic to some [E, f ].

To see this, let the unit circle S1 ⊂ S2 = Ĉ decompose S2 into two disks D0

and D∞. Let Eα for α = 0,∞ be the restriction of E′ over X × Dα, with E
the restriction of E′ over X × {1}. Then the projection X ×Dα → X × {1} is
homotopic to the identity map of X × Dα, which implies Eα is isomorphic to
the pullback of E by the projection, and this pullback is E ×Dα. This gives an
isomorphism hα : Eα → E ×Dα. The clutching function is then f = h0h

−1
∞ .

We may assume a clutching function f is normalized to be the identity over
X × {1} since we may normalize any isomorphism hα : Eα → E × Dα by
composing it over each X ×{z} with the inverse of its restriction over X ×{1}.
Any two choices of these normalized hα for a given bundle are homotopic since
they differ by a map gα from Dα to the automorphisms of E, with gα(1) = 1.
Such gα is again homotopic to the constant map 1 by composing it with a
deformation retraction from Dα to {1}. This gives that any two choices of f0
and f1 of normalized clutching functions are joined by a homotopy of normalized
clutching functions ft.

So how we examine the clutching function, which is a continuous function,
for an arbitrary bundle?

Example 2.5. Consider the bundle ξ : X × S1 → S1, then ξ can be seen as
a C-valued function on X × S1 which we denote by z (here S1 is identified
with complex numbers of unit modulus). Hence we can consider functions on
X × S1, which are finite Laurant series in z with coefficients are functions on
X. Namely,

∑n
k=−n ak(x)zk, where ak : X → C.

Remark 2.6. Function in the above example can be used to approximate func-
tions on S1.
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3 Examine clutching functions

3.1 Approximation

In general, the strategy of proving the theorem is to approximate an arbitrary
clutching function by some simpler one. One efficient way is the generalization of
Example 2.5: consider the so-called Laurant (polynomial) clutching func-
tion, which has the form l(x, z) =

∑
|i|≤n ai(x)zi, where ai : E → E restricts to

a linear transformation ai(x) in each fiber p−1(x). We have the following result:

Proposition 3.1. ∀ [E, f ] ∼= [E, l] for some Laurant clutching function l. l0 and
l1 are homotopic via Laurant clutching function homotopy lt =

∑
i ai(x, t)z

i.

In order to prove it, we need to seek a way to approximate the continuous
function f defined on the compact set X by the Laurant clutching function
l(x, z) =

∑
|n|≤N an(x)zn. Take z = eiθ. Then motivated by Fourier series, we

define that:

Definition 3.2. Fourier coefficient of f is defined by

an(x) =
1

2πi

∫ 2π

0

f(x, eiθ)e−inθdθ.

Let u(x, r, θ) =
∑
n∈Z an(x)r|n|einθ, where 0 < r < 1. This r controls the

series to be convergent. From the theory of Fourier series, we should have:

Lemma 3.3. u(x, r, θ)→ f(x, eiθ) uniformly in x and θ, as r → 1.

With this lemma in hand, we are ready to prove Proposition 3.1.

Proof. Endow a Hermitian inner product structure on E, we can define the
norm on End(E × S1) that ‖α‖ = sup|v|=1 |α(v)| (can verify this actually gives

a metric), which making End(E × S1) a vector space. Therefore, we can view
End(E×S1) as a topological space w.r.t. the metric, and so subspace Aut(E×
S1) is open in this space since it is the preimage of (0,∞) under continuous map
End(E × S1)→ [0,∞) by α→ inf(x,z)∈X×S1 |det(α(x, z))|. Hence it suffices to
prove that Laurent clutching functions are dense in End(E × S1), because a
sufficiently close Laurent clutching functions approximation l to f will then be
homotopic to f via the linear homotopy tl + (1 − t)f . The other half of the
statement follows similarly by approximating a homotopy from l0 to l1, viewed
as an element of Aut(E × S1 × I) by a Laurant clutching homotopy l′t, then
combining this with linear homotopies from l0 to l′0 and l1 to l′1 (Proposition
2.1).

Now to show Laurent clutching functions are dense in End(E × S1). First
choose open sets Ui covering X together with trivialization hi : π−1(Ui) →
Ui × Cni . We may assume hi takes the chosen inner product in π−1(Ui) to
the standard inner product in Cni , by applying the Gram-Schmidt process to
h−1i of the standard basis vectors. Let {ρi} be a partition of unity subordinate
to {Ui} and supp ρi ⊂ Ui. Then ∀ linear map f(x, z) ∈ End(E × S1), it can
be viewed as matrices via hi, with entries of these matrices defining functions
supp ρi×S1 → C. By Lemma 3.3 we can find Laurent clutching functions li(x, z)
(viewed as matrices) with entries uniformly approximating those of f(x, z) for
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x ∈ supp ρi. Thus it follows that li approximates f in the ‖ · ‖ norm defined
above. Let l =

∑
i ρili, we conclude our proof.

A Laurent clutching function can be written l = z−mq for a polynomial
clutching function q, and then we have [E, l] ∼= [E, q] ⊗ Ĥ−m by Example 2.3.
The following lemma gives reduction of clutching functions to linear clutching
functions.

Lemma 3.4. Let q be a polynomial clutching function of degree at most n, then
[E, q]⊕ [nE,1] ∼= [(n+ 1)E,Lnq] for a linear clutching function Lnq.

3.2 Linear clutching functions

For the linear clutching functions, we can write them in the form a(x)z + b(x).
Then we have the following result:

Lemma 3.5. Given a bundle [E, a(x)z+b(x)], there is a splitting E ∼= E+⊕E−
with [E, a(x)z + b(x)] ∼= [E+,1]⊕ [E−, z].

Remark 3.6. This splitting preserves the direct sum in the sense that for a
sum [E1 ⊕ E2, (a1z + b1)⊕ (a2z + b2)], we have (E1 ⊕ E2)± ∼= (E1)± ⊕ (E2)±.

The proof of this lemma is rather tedious and hard (see [Hatcher, Proposition
2.7]), but it will do no harm to skip it. Thus, We will always assume this lemma
from now on.

4 Proof of Periodicity Theorem

With so many tools in hand, we are ready to prove the theorem. We address
the question of showing that the following homomorphism

µ : K(X)⊗ Z[H]/(H − 1)2 → K(X × S2)

is an isomorphism.

4.1 Surjectivity of µ

Propositon 3.1 tells us that in K(X × S2) we have

[E, f ] = [E, z−mq] = [E, q]⊗ Ĥ−m

= [(n+ 1)E,Lnq]⊗ Ĥ−m − [nE,1]⊗ Ĥ−m (By Lemma 3.4)

= [((n+ 1)E)+,1]⊗ Ĥ−m + [((n+ 1)E)−, z]⊗ Ĥ−m − [nE,1]⊗ Ĥ−m (By Lemma 3.5)

= µ(((n+ 1)E)+ ⊗H−m) + µ(((n+ 1)E)− ⊗H1−m)− µ(nE ⊗H−m).

Therefore, µ is surjective.
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4.2 Injectivity of µ

In order to prove the injectivity of µ, we want to construct a map ν : K(X ×
S2)→ K(X)⊗ Z[H]/(H − 1)2 s.t. νµ = 1.

IDEA 4.1. Define ν([E, f ]) to be the linear combination of E ×Hk and ((n+
1)E)± ⊗Hk.

In order to construct ν, we first need the following results:

Lemma 4.2. Let deg q ≤ n, then

1. [(n+ 2)E,Ln+1q] ∼= [(n+ 1)E,Lnq]⊕ [E,1],

2. [(n+ 2)E,Ln+1(zq)] ∼= [(n+ 1)E,Lnq]⊕ [E, z]

Proof. The matrix representation of Ln+1q is given by
1 −z 0 · · · 0 0
0 1 −z · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −z
0 an an−1 · · · a1 a0


Adding first column z times to second column, yielding the matrix representa-
tion of [(n+ 1)E,Lnq]⊕ [E,1], which proves ”1”. Similarly, one can prove ”2”
in the same pattern.

After we obtain the formula in Lemma 4.2, we have the observations:

Lemma 4.3. For splitting of [E,1] and [E, z], we have

1. For [E,1] the summand E− is 0 and E+ is E.

2. For [E, z] the summand E+ is 0 and E− is E.

These are not hard to prove by using some facts in the proof of Lemma 3.5,
which we’ll skip the details.

Under Lemma 4.2 ”1” and Lemma 4.3 ”1”, we have ((n + 2)E)− ∼= ((n +
1)E)−, by the fact in Remark 3.6 that the splitting preserves the ”−”. Thus
”−” part summand is independent of n.

Notation 4.4. Let

ν([E, z−mq]) = ((n+ 1)E)− ⊗ (H − 1) + E ⊗H−m ∈ K(X)⊗ Z[H]/(H − 1)2,

where deg q ≤ n.

Claim 4.5. This is well-defined.

Proof. We’ve checked this definition is independent of the choice of n. Now to
check it doesn’t depend on m. Considering z−m−1(zq), we have by Lemma 4.2
”2” and Lemma 4.3 ”2” that

ν([E, z−m−1(zq)]) = ((n+ 1)E)− ⊗ (H − 1) + E ⊗ (H − 1) + E ⊗H−m−1
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Since (H − 1)2 = 0, and H(H − 1) = H − 1 = H2 − H, inductively we have
H − 1 = H−m−1(H − 1) = H−m −H−m−1. Thus

ν([E, z−m−1(zq)]) = ((n+ 1)E)− ⊗ (H − 1) + E ⊗ (H−m −H−m−1) + E ⊗H−m−1

= ((n+ 1)E)− ⊗ (H − 1) + E ⊗H−m

= ν([E, z−mq]).

Finally, note that by Proposition 3.1 we know that every bundle over X ×S2 is
uniquely of the form [E, l] for some Laurent polynomial clutching function l, up
to homotopy. We conclude this ν is dependent only on E but not the clutching
function z−mq. Hence we finish the proof of well-definiteness of ν.

It is easy to check that ν defined above takes sums to sums, so we can extend
it to a homomorphism ν : K(X × S2)→ K(X)⊗ Z[H]/(H − 1)2.

The last step is to check νµ = 1. Note that in Z[H]/(H − 1)2 we have
(H − 1)2 = 0, which implies H + H−1 = 2. So one can regard that it is
generated by 1, H−1. From

νµ(E ⊗H−m) = ν([E, z−m]) = E− ⊗ (H − 1) + E ⊗H−m

= E ⊗H−m,

since we have q = 1, so n = 0 and by Lemma 4.3 ”1” E− = 0. Hence we’ve
checked that νµ = 1.

So far, we’ve done the proof that µ : K(X) ⊗ Z[H]/(H − 1)2 → K(X × S2

is an isomorphism. And this is really the proof Bott Periodicity Theorem we’re
seeking for.

5 A simple observation of modern Bott Period-
icity Theorem

In the modern vision of Bott Periodicity Theorem, we don’t want our statement
of theorem involving the K(S2), and it totally depends on the given original
space X. In order to do that, we first introduce the concept of reduced K-
theory group.

Definition 5.1. Let x0 ∈ X. The reduced K-theory group of X, denoted
as K̃(X), is defined to be K̃(X) = ker{K(X) → (x0)}, which induced by the
obvious inclusion map {x0} ↪−→ X.

Remark 5.2. In practice, we can regard K(X) = K̃(X)× Z, by Example 1.4.

Example 5.3. From Example 1.4, we know that K̃(∗) = 0.

Example 5.4. From Example 1.5, we know that K̃(S0) = Z.

Example 5.5. By definition, we have a split short exact sequence

0→ K̃(S2)→ K(S2)
g→ K(∗)→ 0.

We’ve proved that K(∗) = Z, and K(S2) = Z[H]/(H − 1)2 is generated by
1, H. The homomorphism g sends aH + b to a+ b. Hence by exactness, ker g =
K̃(S2) = Z.
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To begin with, we introduce a fundamental property of reduced K-theory
group without proof:

Proposition 5.6. For X compact Hausdorff, A ⊂ X a closed subspace, then

the inclusion and the quotient map A
i
↪−→ X

π→ X/A induce an exact sequence

K̃(X/A)
π∗

→ K̃(X)
i∗→ K̃(A).

This gives rise to

Corollary 5.7. We have a long exact sequence associated to the short exact
sequence defined above:

· · · → K̃(SX)→ K̃(SA)→ K̃(X/A)→ K̃(X)→ K̃(A),

where SX means the suspension of X, namely SX = (X×I)/ ∼, where (x, i) ∼
(y, i) for all x, y ∈ X and i = 0, 1.

From Proposition 5.6 and Corollary 5.7, one can choose a pair (X×Y,X∨Y )
to obtain

K̃(S(X×Y ))→ K̃(SX)⊕K̃(SY )→ K̃(X∧Y )→ K̃(X×Y )→ K̃(X)⊕K̃(Y ),

which implies the splitting

K̃(X × Y ) ∼= K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ).

From which, we obtain the modern vision of our main theorem:

Theorem 5.8 (Bott Periodicity Theorem). Let X be compact Hausdorff, then
we have an isomorphism

K̃(X)→ K̃(Σ2X),

where ΣX is the reduced suspension of X.

Proof. By definition of reduced K-theory group and the discussion above, we
have the commutative diagram:

K(X)⊗K(S2) ∼= K̃(X)⊗ K̃(S2) ⊕ K̃(X)⊕ K̃(S2)⊕ Z

K(X × S2) ∼= K̃(Σ2X) ⊕ K̃(X)⊕ K̃(S2)⊕ Z,

The left homomorphism and the right homomorphism are isomophisms, so the
middle one is also an isomorphism. From Example 5.5 that K̃(S2) = Z we’re
done the proof.

Finally, we have a simple application:

Corollary 5.9. For Sn, we have K̃(S2n) = Z and K̃(S2n+1) = 0.
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