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Overview

Kontsevich’s homological mirror symmetry is a vague conjecture about the derived equivalence of the

A -categories

D™Fuk(X) ~ DCoh(X")

for a mirror pair (X, XV) of Calabi-Yau varieties. The left-hand side is the derived Fukaya category
constructed from the symplectic geometry of X, known as the A-model, whereas the right-hand side

is the bounded derived category of coherent sheaves on XV, known as the B-model. These notes

aim to fill in the gaps between undergraduate algebraic geometry and the essential backgrounds of

understanding DPCoh(X) when X is a smooth projective variety.

Some topics and results in derived categories of sheaves to be covered:

Some initial results, e.g. DPCoh(X) = D2_, (QCoh(X));

DPCoh(P') = D Rep @ for the Kronecker quiver Q;

Derived category of projective n-spaces DPCoh(P") = (O(—n), ..., O(—1),0(0));
Smoothness, perfect complexes, Perf X = D}éoh(X ) for regular Noetherian scheme X;

Serre functor, derived Serre duality;


https://webusers.imj-prg.fr/~pierre.schapira/LectNotes/HomAL.pdf
http://www.tom-bridgeland.staff.shef.ac.uk/talks/warwick.pdf
http://www.math.wisc.edu/~andreic/publications/lnPoland.pdf
https://wwli.asia/downloads/books/Al-jabr-2-partial.pdf

e Grothendieck—Verdier duality;
e Ampleness, canonical bundle, Fano & Calabi—Yau varieties;

e Bondal-Orlov Theorem. Suppose that X is a projective variety with canonical bundle wx
ample or anti-ample, and Y is a projective variety. If DPCoh(X) = D"Coh(Y) as triangulated
categories, then X =Y as varieties;

o A o-structure on Coh(X).

I will continue from the notes ([YS]) Triangulated categories and derived categories by Jinghui Yang
& Shuwei Wang. Warning. Currently these notes grew out from a talk and was not self-contained
in nature. In the future they may be extended to a more inclusive version, where I aim to present

derived categories and localisations rigourously.

0 Derived Functors

This section mainly follows [223Cfg]. The relevant sections are 1.8, 1.11, 3.2, 4.6-4.9, 4.12.

Recall that from an Abelian category A we can build the homotopy category K(A) by taking
quotient by chain maps homotopic to zero in the chain complex category Ch(A), and the derived
category D(A) by (Verdier) localisation on the acyclic complexes in K(A). In particular, every quasi-
isomorphism of chains in A becomes an isomorphism in D(A) (and D(.A) is universal with respect to
this property by construction). In general, K(A) and D(A) are not Abelian, but rather triangulated
categories. For all the technical details we refer to the notes from the previous talk. If A has enough
injectives, then DT (A) is equivalent to Zy4, the full subcategory of injective objects of A.

There is a natural way to define derived functor under the viewpoint of derived categories. First
we recall the classical definition. Suppose that A is an Abelian category with enough injectives. For
A € Obj(A), let A — I°® be an injective resolution of A. Suppose that F': A — B is a left exact functor.
Then the n-th right derived functor of F' acting on X is given by R"F(A) := H"(F(I*)).

Let K and K’ be triangulated categories, and Q: K — K/N and Q': K" — K'/N' be Verdier localisa-
tions. Suppose that F': K — K’ is a triangulated functor (i.e. preserving distinguished triangles). The
naive idea is to seek for a functor G such that the following diagram commutes (and satisfies some

universal properties):

KIN --%o KN
For this we need the Kan extension from category theory. Let’s recap.
Definition 0.1. Consider functors @Q: C — D and F: C — £. The left Kan extension of F' by @
consists of the following data:

« A functor LangF': D — &;
« A natural transformation 7: F' = LangF o Q;

which satisfy the following universal property: for any functor L: D — £ and natural transformation
£: F = LoQ, there exists a unique x: LangF' = L such that £ = (x 0 Q) on.


http://jinghui-yang1998.com/files/Derived_Categories.pdf
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Considering left Kan extension in the opposite categories, we could define right Kan extension. The
corresponding diagram is given by reversing all natural transformations in the above diagram.

Definition 0.2. Let F': K — K’ as above. If the left (resp. right) Kan extension Lang(Q’ o F)) (resp.
Rang(Q' o F')) exists and is a triangulated functor, then it is called the right (resp. left) derived
functor of F, denoted by RF' (resp. LF).

K —X K— K
o| | of A e
KIN — K'N' KIN —7 K'N'

Remark. Suppose that G: K — K’ is another triangulated functor with a natural transformation
n: F = G. If the right derived functor RG exists, then there is a canonical natural transformation
RF = RG by the universal property of right Kan extension.

G

1

K — K/
Q| / |@
K/N ﬁ K'JN?
R
RG
Then we focus on the derived categories. Note that an additive functor F': A — A’ between Abelian
categories induces the homotopy functor KF: K(A) — K(A’)! which is triangulated. Consider the

Kan extensions:

K(A) 5 K(A) K(A) 5 K(A)
@i / e @i / e
—5~ D(A) —5~ D(A)

Assuming existence, RF' (resp. LF) is called the right (resp. left) derived functor of F'. Their uniqueness
is ensured by the universal property. What about existence?

Definition 0.3. Let F': A — A’ be as above. Let J be a triangulated subcategory of K(.A). We say
that J is F-injective (resp. F-projective), if:

o Resolution: For X € Obj(Ch(.A)) there exists Y € Obj(J) and a quasi-isomorphism X — Y
(resp. Y — X).

o Preserving null system: F(Obj(N(A)NJ)) C Obj(N(A"))

Note that here the null system N (A) is the acyclic complexes in Ch(.A).

I The cases for K*, K7, and K" are identical.



Remark. There is a similar notion for subcategories of A. Let Z be an additive full subcategory of
A. We say that Z is of type I (resp. type P) relative to F, if:

o For any X € Obj(A) there exists Y € Obj(Z) and a monomorphism X — Y (resp. epimorphism
Y — X);

o For any short exact sequence 0 - X - Y — Z — 0in A, if X,Y € Obj(Z) then Z € Obj(Z).
(resp. f Y, Z € Obj(Z) then X € Obj(Z).) In this case 0 - F(X) — F(Y) — F(Z) — 0 is also

exact.

This should be considered as the generalisation of injective objects in A. Indeed the subcategory Z4
of injective objects of A is of type I relative to any additive functor F'.

The terminology is taken from [4= ), 4.8.2]. In fact, this notion is what [Schapira, 4.7.5] calls F-
injective. The two definitions are closely related. If Z C A is of type I relative to F', then K(Z) C K(A)

is F-injective.

Proposition 0.4

Let F': A — A’ be as above. Suppose that K(.A) has an F-injective (resp. F-projective) subcat-
egory. Then the right (resp. left) derived functor RF' (resp. LF') exists.

Proof. Let Z be an F-injective subcategory of K(A). By Theorem 3.5 in [YS], there is an equiva-
lence of category D(A) ~ Z/(N(A) NZ). Since F(Obj(N(A) NZ)) C Obj(N(A")), by the
universal property of Verdier localisation there is a functor F*: Z/(N(A) NZ) — D(A’). Take
RF: D(A) — D(A) to be the functor such that the following diagram commutes:

D(A4) —RE_5 D(A)
"_IHi %
I/(N(A)NT)

Next we need to verify that RF is indeed the Kan extension. See [2=3(f#, Prop 1.11.2, Prop
4.6.4]. m

Corollary 0.5

Suppose that A has enough injectives (resp. projectives). Then the right (resp. left) derived
functor *RE (resp. TLF) exists for any additive functor F: A — A’.

Proof. Immediate by [YS, Prop 3.10]. O

Proposition 0.6

Suppose that A has enough injectives. Let F': A — A’ be a left exact additive functor. Then for
A € Obj(A). we have
R"F(A) = H" o RF(QA),

where QA € DT(A) and H": DT (A’) — Ab is the n-th cohomology functor.


http://jinghui-yang1998.com/files/Derived_Categories.pdf
https://wwli.asia/downloads/books/Al-jabr-2-partial.pdf
https://wwli.asia/downloads/books/Al-jabr-2-partial.pdf
http://jinghui-yang1998.com/files/Derived_Categories.pdf

Proof. Take an injective resolution A — I®. This gives rise to a quasi-isomorphism A — I in KT (A),
where I lies in the F-injective subcategory K*(Z4) of KT (A). Now we have the isomorphisms

RF(QA) 2 RF(QI) = Q'KTF(I).

Applying H" gives the result. O

Proposition 0.7. Long Exact Sequence

Suppose that F': A — A’ has a right derived functor RF. For any distinguished triangle X —
Y — Z — X[1] in D(A), there is a canonical long exact sequence:

o — R"YZ) - R"F(X) — R"F(Y) — R"F(Z) — R"MF(X) — --.

Proof. Since RF' is a triangulated functor, the result follows from applying the cohomology functor
HO. O

Comparing to the classical definition, a great advantage of derived functors in this viewpoint is that
they compose in a canonical way.

Proposition 0.8
Consider the additive functors among Abelian categories:
AL

Suppose that the right derived functors RF, RF" and R(F’ o F') all exist. Then there is a natural
transformation R(F’ o F') = (RF') o (RF).

Moreover, if Z is an F-injective subcategory of K(A) and Z’ is an F’-injective subcategory of
K(A") such that F'(Obj(Z)) C Obj(Z'), then Z is F’ o F-injective. And the natural transformation
above is an isomorphism:

R(F'o F) = (RF') o (RF).

Proof. For the first part, the natural transformation R(F’ o F) = (RF’) o (RF) is induced by the
universal property of left Kan extensions (check it!) For the second part, take I € Obj(Z).
Using the construction in Proposition 0.4 we obtain

(RF") o (RE)(QI) = Q" o F' o F(I) = R(F' o F)(QI)

For X € Obj(K(A)), by choosing quasi-isomorphism X — I we obtain the isomorphism
(RF") o (RF)(QX) = R(F' o F)(QX). Finally check that this is compatible with the natu-
ral transformation given above. O

Derived Bi-Functors

The tensor functor — ® — and the Hom functor Hom(—, —) are two typical examples of bi-functors of
Abelian categories. Since we are interested in these functors, it is useful to treat the derived bi-functors
separately.



Definition 0.9. Let K, K1, Ko be triangulated categories. A bi-functor F': K1 x K9 — K is triangu-
lated, if
o Fis triangulated in both slots;

e For any A € K; and B € Ky, the following diagram anti-commutes?:

F(T1A, T,B) —— TF(A,T,2B)

J |

TF(T1A,B) — T2F(A, B)

The definition of the left/right derived functor of a triangulated bi-functor is essentially identical.
We are interested in the cases where the triangulated categories are homotopy categories of Abelian
categories.

Now we consider Abelian categories A, A1, 43, where A admits countable products and coproducts.
Let F': A; x Ay — A be an additive bi-functor. Let

Che F := Totg oCh?(F): Ch(A;) x Ch(As) — Ch(A);
Chy F' := Toty oCh?(F): Ch(A;) x Ch(As) — Ch(A).

Then induce the triangulated bi-functors Ko F, KipF': K(A1) x K(As) — K(A).

Let 77,75 be triangulated subcategories of K(Aj),K(As) respectively. We say that (Zy,Zs) is F-
injective (resp. F-projective), if Zy is F/(Ay, —)-injective for any A; € Obj(K(A1)), and Z; is F(—, Ag)-
injective for any As € Obj(K(A2)).

Proposition 0.10
Let F': A1 x Ay — A be as above.

1. If (Z1,Z,) is F-injective, then RF := RKF exists. We call it the right derived functor of
F;

2. If (P1,P2) is F-projective, then LF := LKgF exists. We call it the left derived functor of
F.

Ext and RHom

Recall that in C2.2 Homological Algebra. we define the Ext" (A, B) to be the n-th right derived functor
of Hom4(A, —) acting on B € Obj(.A). If A has enough injectives or projectives, then Ext" (A, B) is
computed by an injective resolution B — I°® of B or a projective resolution P* — A of A. By acyclic
assembly lemma, Ext" (A, B) can also be computed as the n-th cohomology of the total complex
Tot! (Hom4(P,, Q.)) using projective resolutions P, — A and Q. — B.

Using the derived category, the Ext group can be defined without using injective or projective resolu-

tions:

Definition 0.11. Let A be an Abelian category. For chain complexes A, B in Ch(.A), we define the
(hyper-)Ext group as
Ext’ (A, B) := Homp4(A, Bln]).

2The term is used in [223)g]. It means that the two composite morphisms in the square differ by a sign.




This definition gives an obvious multiplication structure on Ext:
Ext’y (B, C) x Ext}(A,B) ——— Ext’{"™(A,C)
(f,9) flmleg
In particular it makes Ext% (A, A) a graded ring for any A € Obj(A).

Next we will consider Ext as the right derived functor of Hom bi-functor Hom 4: A°® x A — Ab. It
induces the functor on the double complexes:

Hom®"(—, —): Ch(A)°" x Ch(A) — Ch(Ab) x Ch(Ab).

Define Ch Hom4(—, —) := Totr Hom®%®(—, —): Ch(A)°" x Ch(A) — Ch(Ab). It is not hard to verify
that ChHomy is naturally isomorphic to the Hom complex Hom?¥:

Hom"(A, B) := H Hom 4 (A, B¥7), no(f)=dgof—(=1)"fody.
keZ
Lemma 0.12

Homg (4, Bn]) = H" (Hom (A, B), dfjom )-

Proof. Trivial by definition. O
The bi-functor Ch Hom 4 or Hom$; induces the triangulated bi-functor
KHom 4: K™ (A)° x KT (A) — KT (Ab).
If A has enough injectives or projectives, then the right derived functor
RHom_4: D™ (A)°P x DT(A) — D" (Ab)
exists.

Proposition 0.13

Suppose that A has enough injectives or projectives. For A € Obj(D~(A)) and B € Obj(D*(A)),
there exists a canonical isomorphism

H" RHom4(A, B) = Homp4(4, B[n]).

Proof. Taking the right derived functor in the previous lemma and note that the cohomology functor
H" factors through the derived functor. O



Corollary 0.14

Suppose that A4 has enough injectives. Let A, B € Obj(A) (viewed as complexes concentrated at
degree 0). Then there is a canonical isomorphism

Homp4)(A, B[n]) = R" Hom(A, —)(B)

Therefore the hyper-Ext is a generalisation of the usual Ext.

Tor and ®"
In this part we only consider R-modules. For A, B € Ch(R-Mod), from C3.1 Algebraic Topology we
recall the tensor product of complexes is given by the total complex A®pr B := Totg(A®* @z B®).

Definition 0.15. For A, B € Ch(R-Mod), the total tensor product of A and B is the left derived
functor
ALY B:=L(—®r—)(4,B).

L(— ®r —): D™ (Mod-R) x D™ (R-Mod) — D~ (Ab) exists because R-Mod has enough projectives. By
taking cohomology we have the (hyper-)Tor groups:

Tor®(A, B) := H,(A®% B).?

Similar as hyper-Ext, using the theory of derived functors we can verify that the hyper-Tor reduces
to the usual Tor on Obj(R-Mod) (defined using projective resolutions).

Remark. In general QCoh(X) does not have enough projectives. We will have to instead use flat

resolutions to compute the total tensor product. See later.
Proposition 0.16. Derived Tensor-Hom Adjunction
Let A € D(Mod-R), B € D(R-Mod), and C' € D(Ab). There are canonical isomorphisms in D(Ab):

R Homap(X ®% Y, Z) 2 RHompoedz(X, R Homap(Y, Z))
=R HomR-Mod (}/, R HOIIlAb(AX7 Z))

3Cohomology and homology make no difference in algebra. By convention, H,, := H™".
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