導来圈 et 導来函手 en Géométrie Algébrique

Peize Liu 27 July 2022

Contents

0 Derived Functors

References

Expository notes:

- Schapira, Categories and Homological Algebra.
- Bridgeland, $D^b(Intro)$.
- Căldăraru, Derived Categories of Sheaves: A Skimming.

Books:

- Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry.
- Hartshorne, *Residues and Duality*.
- 李文威,代数学方法 Ⅱ (未定稿).
- Weibel, An Introduction to Homological Algebra (Chap. 10 on derived categories).
- Bocklandt, A Gentle Introduction to Homological Mirror Symmetry (Chap. 7 on the B-side).

Overview

Kontsevich's homological mirror symmetry is a vague conjecture about the derived equivalence of the A_{∞} -categories

$$\mathsf{D}^{\pi}\mathsf{Fuk}(X)\simeq\mathsf{D}^{\mathrm{b}}\mathsf{Coh}(X^{\vee})$$

for a mirror pair (X, X^{\vee}) of Calabi–Yau varieties. The left-hand side is the derived Fukaya category constructed from the symplectic geometry of X, known as the A-model, whereas the right-hand side is the bounded derived category of coherent sheaves on X^{\vee} , known as the B-model. These notes aim to fill in the gaps between undergraduate algebraic geometry and the essential backgrounds of understanding $\mathsf{D}^{\mathsf{b}}\mathsf{Coh}(X)$ when X is a smooth projective variety.

Some topics and results in derived categories of sheaves to be covered:

- Some initial results, e.g. $\mathsf{D}^{\mathrm{b}}\mathsf{Coh}(X) \cong \mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(\mathsf{QCoh}(X));$
- D^bCoh(ℙ¹) ≅ D Rep Q for the Kronecker quiver Q;
- Derived category of projective *n*-spaces $\mathsf{D}^{\mathsf{b}}\mathsf{Coh}(\mathbb{P}^n) = \langle \mathcal{O}(-n), ..., \mathcal{O}(-1), \mathcal{O}(0) \rangle$;
- Smoothness, perfect complexes, $\operatorname{\mathsf{Perf}} X = \mathsf{D}^{\mathrm{b}}_{\mathsf{Coh}}(X)$ for regular Noetherian scheme X;
- Serre functor, derived Serre duality;

[Schapira]

[李文威]

 $\mathbf{2}$

- Grothendieck–Verdier duality;
- Ampleness, canonical bundle, Fano & Calabi-Yau varieties;
- Bondal–Orlov Theorem. Suppose that X is a projective variety with canonical bundle ω_X ample or anti-ample, and Y is a projective variety. If $\mathsf{D^bCoh}(X) \cong \mathsf{D^bCoh}(Y)$ as triangulated categories, then $X \cong Y$ as varieties;
- A_{∞} -structure on $\mathsf{Coh}(X)$.

I will continue from the notes ([YS]) *Triangulated categories and derived categories* by Jinghui Yang & Shuwei Wang. **Warning.** Currently these notes grew out from a talk and was not self-contained in nature. In the future they may be extended to a more inclusive version, where I aim to present derived categories and localisations rigourously.

0 Derived Functors

This section mainly follows [李文威]. The relevant sections are 1.8, 1.11, 3.2, 4.6-4.9, 4.12.

Recall that from an Abelian category \mathcal{A} we can build the **homotopy category** $\mathsf{K}(\mathcal{A})$ by taking quotient by chain maps homotopic to zero in the chain complex category $\mathsf{Ch}(\mathcal{A})$, and the **derived category** $\mathsf{D}(\mathcal{A})$ by (Verdier) localisation on the acyclic complexes in $\mathsf{K}(\mathcal{A})$. In particular, every quasiisomorphism of chains in \mathcal{A} becomes an isomorphism in $\mathsf{D}(\mathcal{A})$ (and $\mathsf{D}(\mathcal{A})$ is universal with respect to this property by construction). In general, $\mathsf{K}(\mathcal{A})$ and $\mathsf{D}(\mathcal{A})$ are not Abelian, but rather **triangulated categories**. For all the technical details we refer to the notes from the previous talk. If \mathcal{A} has enough injectives, then $\mathsf{D}^+(\mathcal{A})$ is equivalent to $\mathcal{I}_{\mathcal{A}}$, the full subcategory of injective objects of \mathcal{A} .

There is a natural way to define derived functor under the viewpoint of derived categories. First we recall the classical definition. Suppose that \mathcal{A} is an Abelian category with enough injectives. For $A \in \text{Obj}(\mathcal{A})$, let $A \to I^{\bullet}$ be an injective resolution of A. Suppose that $F \colon \mathcal{A} \to \mathcal{B}$ is a left exact functor. Then the *n***-th right derived functor** of F acting on X is given by $\mathbb{R}^n F(A) := \mathbb{H}^n(F(I^{\bullet}))$.

Let \mathcal{K} and \mathcal{K}' be triangulated categories, and $Q: \mathcal{K} \to \mathcal{K}/\mathcal{N}$ and $Q': \mathcal{K}' \to \mathcal{K}'/\mathcal{N}'$ be Verdier localisations. Suppose that $F: \mathcal{K} \to \mathcal{K}'$ is a triangulated functor (i.e. preserving distinguished triangles). The naive idea is to seek for a functor G such that the following diagram commutes (and satisfies some universal properties):

$$\begin{array}{c} \mathcal{K} & \xrightarrow{F} & \mathcal{K}' \\ Q \downarrow & & \downarrow Q' \\ \mathcal{K}/\mathcal{N} & \xrightarrow{G} & \mathcal{K}'/\mathcal{N}' \end{array}$$

For this we need the Kan extension from category theory. Let's recap.

Definition 0.1. Consider functors $Q: \mathcal{C} \to \mathcal{D}$ and $F: \mathcal{C} \to \mathcal{E}$. The **left Kan extension** of F by Q consists of the following data:

- A functor $\operatorname{\mathsf{Lan}}_Q F \colon \mathcal{D} \to \mathcal{E};$
- A natural transformation $\eta: F \Rightarrow \mathsf{Lan}_Q F \circ Q;$

which satisfy the following universal property: for any functor $L: \mathcal{D} \to \mathcal{E}$ and natural transformation $\xi: F \Rightarrow L \circ Q$, there exists a unique $\chi: \operatorname{Lan}_Q F \Rightarrow L$ such that $\xi = (\chi \circ Q) \circ \eta$.

Considering left Kan extension in the opposite categories, we could define **right Kan extension**. The corresponding diagram is given by reversing all natural transformations in the above diagram.

Definition 0.2. Let $F: \mathcal{K} \to \mathcal{K}'$ as above. If the left (*resp.* right) Kan extension $\text{Lan}_Q(Q' \circ F)$ (*resp.* $\text{Ran}_Q(Q' \circ F)$) exists and is a triangulated functor, then it is called the right (*resp.* left) **derived** functor of F, denoted by RF (*resp.* LF).

Remark. Suppose that $G: \mathcal{K} \to \mathcal{K}'$ is another triangulated functor with a natural transformation $\eta: F \Rightarrow G$. If the right derived functor $\mathsf{R}G$ exists, then there is a canonical natural transformation $\mathsf{R}F \Rightarrow \mathsf{R}G$ by the universal property of right Kan extension.

Then we focus on the derived categories. Note that an additive functor $F: \mathcal{A} \to \mathcal{A}'$ between Abelian categories induces the homotopy functor $\mathsf{K}F: \mathsf{K}(\mathcal{A}) \to \mathsf{K}(\mathcal{A}')^1$ which is triangulated. Consider the Kan extensions:

Assuming existence, RF (*resp.* LF) is called the right (*resp.* left) derived functor of F. Their uniqueness is ensured by the universal property. What about existence?

Definition 0.3. Let $F: \mathcal{A} \to \mathcal{A}'$ be as above. Let \mathcal{J} be a triangulated subcategory of $K(\mathcal{A})$. We say that \mathcal{J} is *F*-injective (*resp. F*-projective), if:

- Resolution: For $X \in \text{Obj}(\mathsf{Ch}(\mathcal{A}))$ there exists $Y \in \text{Obj}(\mathcal{J})$ and a quasi-isomorphism $X \to Y$ (resp. $Y \to X$).
- Preserving null system: $F(\operatorname{Obj}(\mathcal{N}(\mathcal{A}) \cap \mathcal{J})) \subseteq \operatorname{Obj}(\mathcal{N}(\mathcal{A}'))$

Note that here the null system $\mathcal{N}(\mathcal{A})$ is the acyclic complexes in $\mathsf{Ch}(\mathcal{A})$.

 $^{^{1}\}mathrm{The}$ cases for $\mathsf{K}^{+},\,\mathsf{K}^{-},\,\mathrm{and}\,\,\mathsf{K}^{\mathrm{b}}$ are identical.

Remark. There is a similar notion for subcategories of \mathcal{A} . Let \mathcal{I} be an additive full subcategory of \mathcal{A} . We say that \mathcal{I} is of type I (*resp.* type P) relative to F, if:

- For any $X \in \text{Obj}(\mathcal{A})$ there exists $Y \in \text{Obj}(\mathcal{I})$ and a monomorphism $X \to Y$ (*resp.* epimorphism $Y \to X$);
- For any short exact sequence $0 \to X \to Y \to Z \to 0$ in \mathcal{A} , if $X, Y \in \operatorname{Obj}(\mathcal{I})$ then $Z \in \operatorname{Obj}(\mathcal{I})$. (resp. If $Y, Z \in \operatorname{Obj}(\mathcal{I})$ then $X \in \operatorname{Obj}(\mathcal{I})$.) In this case $0 \to F(X) \to F(Y) \to F(Z) \to 0$ is also exact.

This should be considered as the generalisation of injective objects in \mathcal{A} . Indeed the subcategory $\mathcal{I}_{\mathcal{A}}$ of injective objects of \mathcal{A} is of type I relative to any additive functor F.

The terminology is taken from [李文威, 4.8.2]. In fact, this notion is what [Schapira, 4.7.5] calls *F*-injective. The two definitions are closely related. If $\mathcal{I} \subseteq \mathcal{A}$ is of type I relative to *F*, then $\mathsf{K}(\mathcal{I}) \subseteq \mathsf{K}(\mathcal{A})$ is *F*-injective.

Proposition 0.4

Let $F: \mathcal{A} \to \mathcal{A}'$ be as above. Suppose that $\mathsf{K}(\mathcal{A})$ has an *F*-injective (*resp. F*-projective) subcategory. Then the right (*resp.* left) derived functor $\mathsf{R}F$ (*resp.* $\mathsf{L}F$) exists.

Proof. Let \mathcal{I} be an *F*-injective subcategory of $\mathsf{K}(\mathcal{A})$. By Theorem 3.5 in [YS], there is an equivalence of category $\mathsf{D}(\mathcal{A}) \simeq \mathcal{I}/(\mathcal{N}(\mathcal{A}) \cap \mathcal{I})$. Since $F(\mathsf{Obj}(\mathcal{N}(\mathcal{A}) \cap \mathcal{I})) \subseteq \mathsf{Obj}(\mathcal{N}(\mathcal{A}'))$, by the universal property of Verdier localisation there is a functor $F^{\flat}: \mathcal{I}/(\mathcal{N}(\mathcal{A}) \cap \mathcal{I}) \to \mathsf{D}(\mathcal{A}')$. Take $\mathsf{R}F: \mathsf{D}(\mathcal{A}) \to \mathsf{D}(\mathcal{A}')$ to be the functor such that the following diagram commutes:

Next we need to verify that RF is indeed the Kan extension. See [李文威, Prop 1.11.2, Prop 4.6.4].

Corollary 0.5

Suppose that \mathcal{A} has enough injectives (*resp.* projectives). Then the right (*resp.* left) derived functor ${}^{+}\mathsf{R}F$ (*resp.* ${}^{+}\mathsf{L}F$) exists for any additive functor $F: \mathcal{A} \to \mathcal{A}'$.

Proof. Immediate by [YS, Prop 3.10].

Proposition 0.6

Suppose that \mathcal{A} has enough injectives. Let $F \colon \mathcal{A} \to \mathcal{A}'$ be a left exact additive functor. Then for $A \in \text{Obj}(\mathcal{A})$, we have

$$\mathsf{R}^n F(A) = \mathrm{H}^n \circ \mathsf{R} F(QA),$$

where $QA \in \mathsf{D}^+(\mathcal{A})$ and $\mathrm{H}^n \colon \mathsf{D}^+(\mathcal{A}') \to \mathsf{Ab}$ is the *n*-th cohomology functor.

Proof. Take an injective resolution $A \to I^{\bullet}$. This gives rise to a quasi-isomorphism $A \to I$ in $\mathsf{K}^+(\mathcal{A})$, where I lies in the F-injective subcategory $\mathsf{K}^+(\mathcal{I}_{\mathcal{A}})$ of $\mathsf{K}^+(\mathcal{A})$. Now we have the isomorphisms

$$\mathsf{R}F(QA) \cong \mathsf{R}F(QI) \cong Q'\mathsf{K}^+F(I).$$

Applying H^n gives the result.

Proposition 0.7. Long Exact Sequence

Suppose that $F: \mathcal{A} \to \mathcal{A}'$ has a right derived functor $\mathsf{R}F$. For any distinguished triangle $X \to Y \to Z \to X[1]$ in $\mathsf{D}(\mathcal{A})$, there is a canonical long exact sequence:

 $\cdots \to \mathsf{R}^{n-1}(Z) \to \mathsf{R}^n F(X) \to \mathsf{R}^n F(Y) \to \mathsf{R}^n F(Z) \to \mathsf{R}^{n+1} F(X) \to \cdots$

Proof. Since RF is a triangulated functor, the result follows from applying the cohomology functor H^0 .

Comparing to the classical definition, a great advantage of derived functors in this viewpoint is that they compose in a canonical way.

Proposition 0.8

Consider the additive functors among Abelian categories:

$$\mathcal{A} \stackrel{F}{\longrightarrow} \mathcal{A}' \stackrel{F'}{\longrightarrow} \mathcal{A}''$$

Suppose that the right derived functors $\mathsf{R}F$, $\mathsf{R}F'$ and $\mathsf{R}(F' \circ F)$ all exist. Then there is a natural transformation $\mathsf{R}(F' \circ F) \Rightarrow (\mathsf{R}F') \circ (\mathsf{R}F)$.

Moreover, if \mathcal{I} is an *F*-injective subcategory of $\mathsf{K}(\mathcal{A})$ and \mathcal{I}' is an *F*'-injective subcategory of $\mathsf{K}(\mathcal{A}')$ such that $F(\operatorname{Obj}(\mathcal{I})) \subseteq \operatorname{Obj}(\mathcal{I}')$, then \mathcal{I} is $F' \circ F$ -injective. And the natural transformation above is an isomorphism:

$$\mathsf{R}(F' \circ F) \cong (\mathsf{R}F') \circ (\mathsf{R}F).$$

Proof. For the first part, the natural transformation $\mathsf{R}(F' \circ F) \Rightarrow (\mathsf{R}F') \circ (\mathsf{R}F)$ is induced by the universal property of left Kan extensions (*check it!*) For the second part, take $I \in \mathrm{Obj}(\mathcal{I})$. Using the construction in Proposition 0.4 we obtain

$$(\mathsf{R} F') \circ (\mathsf{R} F)(QI) = Q'' \circ F' \circ F(I) = \mathsf{R}(F' \circ F)(QI)$$

For $X \in \text{Obj}(\mathsf{K}(\mathcal{A}))$, by choosing quasi-isomorphism $X \to I$ we obtain the isomorphism $(\mathsf{R}F') \circ (\mathsf{R}F)(QX) \cong \mathsf{R}(F' \circ F)(QX)$. Finally check that this is compatible with the natural transformation given above.

Derived Bi-Functors

The tensor functor $-\otimes -$ and the Hom functor Hom(-, -) are two typical examples of bi-functors of Abelian categories. Since we are interested in these functors, it is useful to treat the derived bi-functors separately.

Definition 0.9. Let $\mathcal{K}, \mathcal{K}_1, \mathcal{K}_2$ be triangulated categories. A bi-functor $F \colon \mathcal{K}_1 \times \mathcal{K}_2 \to \mathcal{K}$ is triangulated, if

- F is triangulated in both slots;
- For any $A \in \mathcal{K}_1$ and $B \in \mathcal{K}_2$, the following diagram anti-commutes²:

The definition of the left/right derived functor of a triangulated bi-functor is essentially identical. We are interested in the cases where the triangulated categories are homotopy categories of Abelian categories.

Now we consider Abelian categories $\mathcal{A}, \mathcal{A}_1, \mathcal{A}_2$, where \mathcal{A} admits countable products and coproducts. Let $F: \mathcal{A}_1 \times \mathcal{A}_2 \to \mathcal{A}$ be an additive bi-functor. Let

$$Ch_{\oplus}F := Tot_{\oplus} \circ Ch^{2}(F) \colon Ch(\mathcal{A}_{1}) \times Ch(\mathcal{A}_{2}) \to Ch(\mathcal{A});$$

$$Ch_{\Pi}F := Tot_{\Pi} \circ Ch^{2}(F) \colon Ch(\mathcal{A}_{1}) \times Ch(\mathcal{A}_{2}) \to Ch(\mathcal{A}).$$

Then induce the triangulated bi-functors $\mathsf{K}_{\oplus}F, \mathsf{K}_{\Pi}F \colon \mathsf{K}(\mathcal{A}_1) \times \mathsf{K}(\mathcal{A}_2) \to \mathsf{K}(\mathcal{A}).$

Let $\mathcal{I}_1, \mathcal{I}_2$ be triangulated subcategories of $\mathsf{K}(\mathcal{A}_1), \mathsf{K}(\mathcal{A}_2)$ respectively. We say that $(\mathcal{I}_1, \mathcal{I}_2)$ is *F*-injective (*resp. F*-projective), if \mathcal{I}_2 is $F(\mathcal{A}_1, -)$ -injective for any $\mathcal{A}_1 \in \mathrm{Obj}(\mathsf{K}(\mathcal{A}_1))$, and \mathcal{I}_1 is $F(-, \mathcal{A}_2)$ -injective for any $\mathcal{A}_2 \in \mathrm{Obj}(\mathsf{K}(\mathcal{A}_2))$.

Proposition 0.10

Let $F: \mathcal{A}_1 \times \mathcal{A}_2 \to \mathcal{A}$ be as above.

- 1. If $(\mathcal{I}_1, \mathcal{I}_2)$ is *F*-injective, then $\mathsf{R}F := \mathsf{R}\mathsf{K}_{\Pi}F$ exists. We call it the right derived functor of *F*;
- 2. If $(\mathcal{P}_1, \mathcal{P}_2)$ is *F*-projective, then $\mathsf{L}F := \mathsf{L}\mathsf{K}_{\oplus}F$ exists. We call it the left derived functor of *F*.

$\mathbf{Ext} \ \mathbf{and} \ \mathsf{R}\operatorname{Hom}$

Recall that in C2.2 Homological Algebra. we define the $\operatorname{Ext}^n_{\mathcal{A}}(A, B)$ to be the *n*-th right derived functor of $\operatorname{Hom}_{\mathcal{A}}(A, -)$ acting on $B \in \operatorname{Obj}(\mathcal{A})$. If \mathcal{A} has enough injectives or projectives, then $\operatorname{Ext}^n_{\mathcal{A}}(A, B)$ is computed by an injective resolution $B \to I^{\bullet}$ of B or a projective resolution $P^{\bullet} \to A$ of A. By acyclic assembly lemma, $\operatorname{Ext}^n_{\mathcal{A}}(A, B)$ can also be computed as the *n*-th cohomology of the total complex $\operatorname{Tot}^{\Pi}(\operatorname{Hom}_{\mathcal{A}}(P_{\bullet}, Q_{\bullet}))$ using projective resolutions $P_{\bullet} \to A$ and $Q_{\bullet} \to B$.

Using the derived category, the Ext group can be defined without using injective or projective resolutions:

Definition 0.11. Let \mathcal{A} be an Abelian category. For chain complexes A, B in $Ch(\mathcal{A})$, we define the **(hyper-)Ext** group as

$$\operatorname{Ext}^{n}_{\mathcal{A}}(A, B) := \operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(A, B[n]).$$

²The term is used in [$\hat{2}$ 文威]. It means that the two composite morphisms in the square differ by a sign.

This definition gives an obvious multiplication structure on Ext:

$$\operatorname{Ext}^{n}_{\mathcal{A}}(B,C) \times \operatorname{Ext}^{m}_{\mathcal{A}}(A,B) \longrightarrow \operatorname{Ext}^{n+m}_{\mathcal{A}}(A,C)$$
$$(f,g) \longmapsto f[m] \circ g$$

In particular it makes $\operatorname{Ext}^{\bullet}_{\mathcal{A}}(A, A)$ a graded ring for any $A \in \operatorname{Obj}(\mathcal{A})$.

Next we will consider Ext as the right derived functor of Hom bi-functor $\operatorname{Hom}_{\mathcal{A}}: \mathcal{A}^{\operatorname{op}} \times \mathcal{A} \to \mathsf{Ab}$. It induces the functor on the double complexes:

$$\operatorname{Hom}_{\mathcal{A}}^{\bullet,\bullet}(-,-)\colon \mathsf{Ch}(\mathcal{A})^{\operatorname{op}}\times\mathsf{Ch}(\mathcal{A})\to\mathsf{Ch}(\mathsf{Ab})\times\mathsf{Ch}(\mathsf{Ab}).$$

Define $\mathsf{Ch}\operatorname{Hom}_{\mathcal{A}}(-,-) := \operatorname{Tot}_{\Pi}\operatorname{Hom}_{\mathcal{A}}^{\bullet,\bullet}(-,-) \colon \mathsf{Ch}(\mathcal{A})^{\operatorname{op}} \times \mathsf{Ch}(\mathcal{A}) \to \mathsf{Ch}(\mathsf{Ab})$. It is not hard to verify that $\mathsf{Ch}\operatorname{Hom}_{\mathcal{A}}$ is naturally isomorphic to the **Hom complex** $\operatorname{Hom}_{\mathcal{A}}^{\bullet}$:

$$\operatorname{Hom}_{\mathcal{A}}^{n}(A,B) := \prod_{k \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{A}}(A^{k}, B^{k+n}), \qquad \operatorname{d}_{\operatorname{Hom}}^{n}(f) := \operatorname{d}_{B} \circ f - (-1)^{n} f \circ \operatorname{d}_{A}.$$

Lemma 0.12

$$\operatorname{Hom}_{\mathsf{K}(\mathcal{A})}(A, B[n]) \cong \operatorname{H}^{n}(\operatorname{Hom}^{\bullet}_{\mathcal{A}}(A, B), \operatorname{d}^{\bullet}_{\operatorname{Hom}}).$$

Proof. Trivial by definition.

The bi-functor $\mathsf{Ch}\operatorname{Hom}_{\mathcal{A}}$ or $\operatorname{Hom}_{\mathcal{A}}^{\bullet}$ induces the triangulated bi-functor

$$\mathsf{K}\operatorname{Hom}_{\mathcal{A}}\colon\mathsf{K}^{-}(\mathcal{A})^{\operatorname{op}}\times\mathsf{K}^{+}(\mathcal{A})\to\mathsf{K}^{+}(\mathsf{Ab}).$$

If \mathcal{A} has enough injectives or projectives, then the right derived functor

$$\mathsf{R}\operatorname{Hom}_{\mathcal{A}}: \mathsf{D}^{-}(\mathcal{A})^{\operatorname{op}} \times \mathsf{D}^{+}(\mathcal{A}) \to \mathsf{D}^{+}(\mathsf{Ab})$$

exists.

Proposition 0.13

Suppose that \mathcal{A} has enough injectives or projectives. For $A \in \text{Obj}(\mathsf{D}^{-}(\mathcal{A}))$ and $B \in \text{Obj}(\mathsf{D}^{+}(\mathcal{A}))$, there exists a canonical isomorphism

$$\operatorname{H}^{n} \operatorname{\mathsf{R}} \operatorname{Hom}_{\mathcal{A}}(A, B) \cong \operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(A, B[n]).$$

Proof. Taking the right derived functor in the previous lemma and note that the cohomology functor H^n factors through the derived functor.

Corollary 0.14

Suppose that \mathcal{A} has enough injectives. Let $A, B \in \text{Obj}(\mathcal{A})$ (viewed as complexes concentrated at degree 0). Then there is a canonical isomorphism

$$\operatorname{Hom}_{\mathsf{D}(\mathcal{A})}(A, B[n]) \cong \mathsf{R}^n \operatorname{Hom}(A, -)(B)$$

Therefore the hyper-Ext is a generalisation of the usual Ext.

Tor and \otimes^{L}

In this part we only consider *R*-modules. For $A, B \in Ch(R-Mod)$, from *C3.1 Algebraic Topology* we recall the tensor product of complexes is given by the total complex $A \otimes_R B := Tot_{\oplus}(A^{\bullet} \otimes_R B^{\bullet})$.

Definition 0.15. For $A, B \in Ch(R-Mod)$, the **total tensor product** of A and B is the left derived functor

$$A \otimes_{B}^{\mathsf{L}} B := \mathsf{L}(-\otimes_{R} -)(A, B).$$

 $L(-\otimes_R -)$: $D^-(Mod-R) \times D^-(R-Mod) \rightarrow D^-(Ab)$ exists because *R*-Mod has enough projectives. By taking cohomology we have the **(hyper-)Tor** groups:

$$\operatorname{Tor}_{n}^{R}(A,B) := \operatorname{H}_{n}(A \otimes_{R}^{\mathsf{L}} B).^{3}$$

Similar as hyper-Ext, using the theory of derived functors we can verify that the hyper-Tor reduces to the usual Tor on Obj(R-Mod) (defined using projective resolutions).

Remark. In general QCoh(X) does not have enough projectives. We will have to instead use flat resolutions to compute the total tensor product. See later.

Proposition 0.16. Derived Tensor-Hom Adjunction Let $A \in D(Mod-R)$, $B \in D(R-Mod)$, and $C \in D(Ab)$. There are canonical isomorphisms in D(Ab): $R \operatorname{Hom}_{Ab}(X \otimes_{R}^{L} Y, Z) \cong R \operatorname{Hom}_{Mod-R}(X, R \operatorname{Hom}_{Ab}(Y, Z))$

 $\cong \mathsf{R}\operatorname{Hom}_{R-\mathsf{Mod}}(Y,\mathsf{R}\operatorname{Hom}_{\mathsf{Ab}}(X,Z)).$

³Cohomology and homology make no difference in algebra. By convention, $H_n := H^{-n}$.