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Before our proof of Perron’s formula, we firstly recall the lemma proved in our last
class:

Let c > 0, and for T > 0 and y > 0 set

I(y, T ) =
1

2πi

∫ c+iT

c−iT

ys

s
ds, I1(y) =

1
2πi

∫ c+i∞

c−i∞

ys

s(s + 1)
ds.

1. Given T > 0 and y > 0, y , 1, we have
∣∣∣I(y, T ) − 1

∣∣∣ ⩽ yc

πT ln y if y > 1,

∣∣∣I(y, T )
∣∣∣ ⩽ yc

πT |ln y| if 0 < y < 1.
(1)

2. For all y > 0 we have

I1(y) =

1 − 1
y if y > 1,

0 if 0 < y ⩽ 1.
(2)

Lemma 0.1

♣

From now on we will use this conclusion without proving it. Now we define some
notations used later:

M( f , y) =
∑
n⩽y

f (n);

M1( f , x) =
∫ x

1
M( f , y)dy =

∑
n⩽x

f (n)(x − n).

Let f (n) be an arithmetic function, and suppose that the Dirichlet series

F(s) =
∞∑

n=1

f (n)
ns

has finite abscissa of absolute convergence σa, i.e. σa < ∞. Then we have, for any
c > max(0,σa) and real number x ⩾ 1,

M1( f , x) =
1

2πi

∫ c+i∞

c−i∞
F(s)

xs+1

s(s + 1)
ds. (3)

Theorem 0.1 Perron’s formula for M1( f , x)

♣
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Note: The integral in (3) is absolutely convergent, since

∣∣∣F(s)
∣∣∣ ⩽ ∞∑

n=1

∣∣∣ f (n)∣∣∣
nc < ∞,

and on the line of integration we have
∣∣∣xs+1

∣∣∣ = xc+1. Thus we conclude that

F(s)
xs+1

s(s + 1)
= O

(
xc+1

|s|2

)
,

which proves the claim.
+ Proof: In order to interchange the order of integration and summation, we first note that

∫ c+i∞

c−i∞

∞∑
n=1

∣∣∣∣∣∣∣
∣∣∣ f (n)∣∣∣

ns

∣∣∣∣∣∣∣
∣∣∣∣∣∣ xs+1

s(s + 1)

∣∣∣∣∣∣ · |ds|

⩽ xc+1
∞∑

n=1

∣∣∣ f (n)∣∣∣
nc

∫ c+i∞

c−i∞

xc+1∣∣∣s(s + 1)
∣∣∣ · |ds| < ∞,

since, by the assumption c > max(0,σa), we have ∑∞
n=1
| f (n)|

nc < ∞ and

∫ c+i∞

c−i∞

1∣∣∣s(s + 1)
∣∣∣ · |ds| ⩽

∫ c+i∞

c−i∞

1

|s|2
· |ds| =

∫ +∞

−∞

1
c2 + t2 dt < ∞,

and so we’re done. Now interchanging the integration and summation in (3), we obtain

1
2πi

∫ c+i∞

c−i∞
F(s)

xs+1

s(s + 1)
ds =

1
2πi

∫ c+i∞

c−i∞

∞∑
n=1

f (n)
ns

xs+1

s(s + 1)
ds

=
1

2πi

∞∑
n=1

x f (n)
∫ c+i∞

c−i∞

(x/n)s

s(s + 1)
ds

=
∞∑

n=1

x f (n)I1(x/n)

=
∑
n⩽x

f (n)(x − n) = M1( f , x).

□

There is another formula related to M( f , x):
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Let f (n) be an arithmetic function, and suppose that the Dirichlet series

F(s) =
∞∑

n=1

f (n)
ns

has finite abscissa of absolute convergence σa, i.e. σa < ∞. Then we have, for any
c > max(0,σa) and any non-integral value x > 1,

M( f , x) =
1

2πi

∫ c+i∞

c−i∞
F(s)

xs

s
ds, (4)

where the improper integral
∫ c+i∞

c−i∞ = limT→∞
∫ c+iT

c−iT . Moreover, given T > 0, we
have

M( f , x) =
1

2πi

∫ c+iT

c−iT
F(s)

xs

s
ds + R(T ), (5)

where ∣∣∣R(T )∣∣∣ ⩽ xc

T

∞∑
n=1

∣∣∣ f (n)∣∣∣
nc

∣∣∣ln(x/n)
∣∣∣ . (6)

Theorem 0.2 Perron’s formula for M( f , x)

♣

+ Proof: It suffices to prove the formula (5). We use the same method in the proof of the former
theorem. Since the range [c − iT , c + iT ] is compact, the Dirichlet series F(s) =

∑∞
n=1 f (n)n−s

converges on that interval absolutely and uniformly. Thus we can interchange the order of
integration and summation. Namely,

1
2πi

∫ c+iT

c−iT
F(s)

xs

s
ds =

∞∑
n=1

f (n)I(x/n, T )

=
∑
n⩽x

f (n) + E(T ),

where ∣∣∣E(T )∣∣∣ ⩽ ∞∑
n=1

∣∣∣ f (n)∣∣∣ (x/n)c

T
∣∣∣ln(x/n)

∣∣∣ = xc

T

∞∑
n=1

∣∣∣ f (n)∣∣∣
nc

∣∣∣ln(x/n)
∣∣∣ .

Taking R(T ) = −E(T ) in (5) we conclude our proof. □�
Note: The restriction to non-integral values of x in (4) can be dropped if we consider

I(1, T ) =
1

2πi

∫ c+iT

c−iT

ds
s
=

1
2π

∫ T

−T

c − it
c2 + t2

dt

=
1

2π

∫ T

−T

c
c2 + t2

dt =
1

2π

∫ T /c

−T /c

1
1 + u2 du

=
1

2π
[arctan(T /c) − arctan(−T /c)] ,
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which converges to 1/2 as T → ∞. So we can take M∗( f , x) = 1
2 (M( f , x−) + M( f , x+)),

where+,− denotes the right and left limit respectively, in replace of M( f , x) to achieve this goal.
However, in applications the stated version is sufficient, since for any integer N, M( f , N)

is equal to M( f , x) for N < x < N + 1 and one can therefore apply the formula with such a
non-integral value of x. Usually one takes x to be of the form x = N + 1/2 in order to minimize
the effect a small denominator log(x/n) on the right-hand side of (6) can have on the estimate.
Usually, we take x = ⌊x⌋+ 1

2 .


