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Before our proof of Perron’s formula, we firstly recall the lemma proved in our last

class:

~

Letc > 0,andforT > 0and y > 0 set

1 c+iT ys 1 Cc+ico ys
I(y,T) = — Y ds, Li(y) = — S AT
0»T) 2ni I_iT s 1) 2mi jc‘_,-‘x, s(s+1) >

1. GivenT >0andy > 0,y # 1, we have

U T) - 1| < 7y fy>1,

3T < sy ifO<y<l.
2. Forally > 0 we have
1-1 ify>1,
I = Y 2
1) {o if0<y<l. @)

From now on we will use this conclusion without proving it. Now we define some

notations used later:

Theorem 0.1 Perron’s formula for M| (f, x)

Let f(n) be an arithmetic function, and suppose that the Dirichlet series

Fo = 340

nS

has finite abscissa of absolute convergence o, i.e. o, < 0. Then we have, for any o
¢ > max(0, 0,) and real number x > 1,

1 c—+ioco xs—l—l
Mi(f,x) = %fc_m F(S)mds- (3)

e LO0 s
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@ Note: The integral in (3) is absolutely convergent, since
> |f(n)]
[F(s)] < D)= <o,
n=1

and on the line of integration we have |x5+1| = x“*!. Thus we conclude that

s+1 c+1
F(s)———— = o(x )

2
|5

which proves the claim.

1 Proof: In order to interchange the order of integration and summation, we first note that

fc-i-ioo i
c—ioo

n=1

|f(n)]

nS

s+1
= |- ds]
s(s+1)

c+1

< X! i Mfﬁ_im L -|ds] < oo,
n—1 n c—ico ‘S(S + 1)|

o )]

n=1 nc

f —-Ids|<f —2-|ds|:f ———dt < o0,
c-ico |s(s+1)] civo || oo 2t

and so we're done. Now interchanging the integration and summation in (3), we obtain

< o0 and

since, by the assumption ¢ > max(0,0,), we have ),

1 c+ioo s+1 1 c+ico X s+1
L Fs)——— s:__f fln)
s(s+1) 270 Jeioo A4 n s(s+1)

2mi c—ico

:L_ fo(n) me —(x/n)"' ds

2mi &4 cmico S(s+1)

There is another formula related to M(f, x):

—VY )
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Theorem 0.2 Perron’s formula for M(f, x) \

Let f(n) be an arithmetic function, and suppose that the Dirichlet series

Zf(”

has finite abscissa of absolute convergence o, i.e. o, < c. Then we have, for any
¢ > max(0, 0,) and any non-integral value x > 1,

Cc+i00 x5
M) =50 [ F(s)%as ar.

27l ico S

where the improper integral f:{; = hrnT_,oof it Moreover, given T > 0, we
have :
1 c+iT xsd
F(s)— R(T),
M) =50 [ F(s)as+R(T) )
where
e & n
|R(T)| < x_Z& (6)

T & ne|in(x/n))|

1= Proof: It suffices to prove the formula (5). We use the same method in the proof of the former
theorem. Since the range [c¢ —iT,c + iT] is compact, the Dirichlet series F(s) = X7 | f(n)n~
converges on that interval absolutely and uniformly. Thus we can interchange the order of

integration and summation. Namely,

1 C+lT
s [, PO = R stotorn)
= Zf n) + E(T)
n<x
where ‘ ( )|
(x/n)° X = f(n
Z|f T'ln (x/n) ( _?; nC|ln(x/n)|'
Taking R(T) = —E(T) in (5) we conclude our proof. o

@ Note: The restriction to non-integral values of x in (4) can be dropped if we consider

1 (tTds 1 (T c—it
I(1,T — =— ——dt
(1L.7) = 2ni f T s 2n)rct+r?

1T 1 (Te
[ = [
2n J_r 2+ 12 2 J_rye 14+ u?

:iﬁ larctan(T /c) — arctan(-T /¢)],

—VY )
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which converges to 1/2 as T — co. So we can take M*(f,x) = % (M(f,x™) + M(f,x")),
where +, — denotes the right and left limit respectively, in replace of M(f, x) to achieve this goal.

However, in applications the stated version is sufficient, since for any integer N, M(f, N)
is equal to M(f,x) for N < x < N + 1 and one can therefore apply the formula with such a
non-integral value of x. Usually one takes x to be of the form x = N +1/2 in order to minimize
the effect a small denominator log(x/n) on the right-hand side of (6) can have on the estimate.

Usually, we take x = [x]| + %

e LO0 s



