Perron's Formula

Math 531
November 11, 2018
Email: N/A

Before our proof of Perron's formula, we firstly recall the lemma proved in our last class:

Lemma 0.1

Let $c>0$, and for $T>0$ and $y>0$ set

$$
I(y, T)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{y^{s}}{s} \mathrm{~d} s, \quad I_{1}(y)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{y^{s}}{s(s+1)} \mathrm{d} s .
$$

1. Given $T>0$ and $y>0, y \neq 1$, we have

$$
\begin{cases}|I(y, T)-1| \leqslant \frac{y^{c}}{\pi T \ln y} & \text { if } y>1, \tag{1}\\ |I(y, T)| \leqslant \frac{y^{c}}{\pi T|\ln y|} & \text { if } 0<y<1 .\end{cases}
$$

2. For all $y>0$ we have

$$
I_{1}(y)= \begin{cases}1-\frac{1}{y} & \text { if } y>1 \tag{2}\\ 0 & \text { if } 0<y \leqslant 1\end{cases}
$$

From now on we will use this conclusion without proving it. Now we define some notations used later:

$$
\begin{aligned}
& M(f, y)=\sum_{n \leqslant y} f(n) \\
& M_{1}(f, x)=\int_{1}^{x} M(f, y) \mathrm{d} y=\sum_{n \leqslant x} f(n)(x-n) .
\end{aligned}
$$

Theorem 0.1 Perron's formula for $M_{1}(f, x)$

Let $f(n)$ be an arithmetic function, and suppose that the Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

has finite abscissa of absolute convergence σ_{a}, i.e. $\sigma_{a}<\infty$. Then we have, for any $c>\max \left(0, \sigma_{a}\right)$ and real number $x \geqslant 1$,

$$
\begin{equation*}
M_{1}(f, x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \tag{3}
\end{equation*}
$$

Note: The integral in (3) is absolutely convergent, since

$$
|F(s)| \leqslant \sum_{n=1}^{\infty} \frac{|f(n)|}{n^{c}}<\infty
$$

and on the line of integration we have $\left|x^{s+1}\right|=x^{c+1}$. Thus we conclude that

$$
F(s) \frac{x^{s+1}}{s(s+1)}=O\left(\frac{x^{c+1}}{|s|^{2}}\right)
$$

which proves the claim.
Proof: In order to interchange the order of integration and summation, we first note that

$$
\begin{aligned}
& \int_{c-i \infty}^{c+i \infty} \sum_{n=1}^{\infty}\left|\frac{|f(n)|}{n^{s}}\right|\left|\frac{x^{s+1}}{s(s+1)}\right| \cdot|\mathrm{d} s| \\
& \quad \leqslant x^{c+1} \sum_{n=1}^{\infty} \frac{|f(n)|}{n^{c}} \int_{c-i \infty}^{c+i \infty} \frac{x^{c+1}}{|s(s+1)|} \cdot|\mathrm{d} s|<\infty,
\end{aligned}
$$

since, by the assumption $c>\max \left(0, \sigma_{a}\right)$, we have $\sum_{n=1}^{\infty} \frac{|f(n)|}{n^{c}}<\infty$ and

$$
\int_{c-i \infty}^{c+i \infty} \frac{1}{|s(s+1)|} \cdot|\mathrm{d} s| \leqslant \int_{c-i \infty}^{c+i \infty} \frac{1}{|s|^{2}} \cdot|\mathrm{~d} s|=\int_{-\infty}^{+\infty} \frac{1}{c^{2}+t^{2}} \mathrm{~d} t<\infty,
$$

and so we're done. Now interchanging the integration and summation in (3), we obtain

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \frac{x^{s+1}}{s(s+1)} \mathrm{d} s & =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \sum_{n=1}^{\infty} \frac{f(n)}{n^{s}} \frac{x^{s+1}}{s(s+1)} \mathrm{d} s \\
& =\frac{1}{2 \pi i} \sum_{n=1}^{\infty} x f(n) \int_{c-i \infty}^{c+i \infty} \frac{(x / n)^{s}}{s(s+1)} \mathrm{d} s \\
& =\sum_{n=1}^{\infty} x f(n) I_{1}(x / n) \\
& =\sum_{n \leqslant x} f(n)(x-n)=M_{1}(f, x) .
\end{aligned}
$$

There is another formula related to $M(f, x)$:

Theorem 0.2 Perron's formula for $M(f, x)$

Let $f(n)$ be an arithmetic function, and suppose that the Dirichlet series

$$
F(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

has finite abscissa of absolute convergence σ_{a}, i.e. $\sigma_{a}<\infty$. Then we have, for any $c>\max \left(0, \sigma_{a}\right)$ and any non-integral value $x>1$,

$$
\begin{equation*}
M(f, x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \frac{x^{s}}{s} \mathrm{~d} s, \tag{4}
\end{equation*}
$$

where the improper integral $\int_{c-i \infty}^{c+i \infty}=\lim _{T \rightarrow \infty} \int_{c-i T}^{c+i T}$. Moreover, given $T>0$, we have

$$
\begin{equation*}
M(f, x)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} F(s) \frac{x^{s}}{s} \mathrm{~d} s+R(T) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
|R(T)| \leqslant \frac{x^{c}}{T} \sum_{n=1}^{\infty} \frac{|f(n)|}{n^{c}|\ln (x / n)|} \tag{6}
\end{equation*}
$$

Proof: It suffices to prove the formula (5). We use the same method in the proof of the former theorem. Since the range $[c-i T, c+i T]$ is compact, the Dirichlet series $F(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$ converges on that interval absolutely and uniformly. Thus we can interchange the order of integration and summation. Namely,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} F(s) \frac{x^{s}}{s} \mathrm{~d} s & =\sum_{n=1}^{\infty} f(n) I(x / n, T) \\
& =\sum_{n \leqslant x} f(n)+E(T),
\end{aligned}
$$

where

$$
|E(T)| \leqslant \sum_{n=1}^{\infty}|f(n)| \frac{(x / n)^{c}}{T|\ln (x / n)|}=\frac{x^{c}}{T} \sum_{n=1}^{\infty} \frac{|f(n)|}{n^{c}|\ln (x / n)|} .
$$

Taking $R(T)=-E(T)$ in (5) we conclude our proof.
Note: The restriction to non-integral values of x in (4) can be dropped if we consider

$$
\begin{aligned}
I(1, T)=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{\mathrm{~d} s}{s} & =\frac{1}{2 \pi} \int_{-T}^{T} \frac{c-i t}{c^{2}+t^{2}} \mathrm{~d} t \\
& =\frac{1}{2 \pi} \int_{-T}^{T} \frac{c}{c^{2}+t^{2}} \mathrm{~d} t=\frac{1}{2 \pi} \int_{-T / c}^{T / c} \frac{1}{1+u^{2}} \mathrm{~d} u \\
& =\frac{1}{2 \pi}[\arctan (T / c)-\arctan (-T / c)],
\end{aligned}
$$

which converges to $1 / 2$ as $T \rightarrow \infty$. So we can take $M^{*}(f, x)=\frac{1}{2}\left(M\left(f, x^{-}\right)+M\left(f, x^{+}\right)\right)$, where,+- denotes the right and left limit respectively, in replace of $M(f, x)$ to achieve this goal.

However, in applications the stated version is sufficient, since for any integer $N, M(f, N)$ is equal to $M(f, x)$ for $N<x<N+1$ and one can therefore apply the formula with such a non-integral value of x. Usually one takes x to be of the form $x=N+1 / 2$ in order to minimize the effect a small denominator $\log (x / n)$ on the right-hand side of (6) can have on the estimate. Usually, we take $x=\lfloor x\rfloor+\frac{1}{2}$.

