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Abstract

This paper gives a brief introduction to the Riemann-Roch Theorem
in algebraic geometry. We will develop the appropriate tool to state it in
a suitable way (without the use of sheaf language). Background of some
basic commutative algebra is assumed.
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1 Introduction

There is a classical problem arise from the study of Riemann surface: is there
any non-constant meromorphic forms ω in a given Riemann surface M with
genus g?

If we let g ≥ 1, ω cannot have a simple pole at only one point p ∈M . This is
a direct corollary of residue theorem. Then how about ω have a double pole at
p? If we let g = 0 or 1, it can happen since we have the Weierstrass ℘-function,
however it depends on the point p when g ≥ 2.

Is there a general way to solve this problem? Namely, can we guarantee such
ω exists (but singular at one point p) for a given g? The answer is yes, and this
is really a result of the well-known Riemann-Roch Theorem.

Theorem 1.1 (Riemann-Roch). For every divisor D on a compact Riemann
surface of genus g, we have

l(D)− l(K −D) = deg(D) + 1− g.

In particular, we have for f ∈ K(M) with a single pole (at p) with νp(f) ≥ −k
has dimension ≥ max{1, k − g + 1}. Hence if we let the order of the pole at p
≥ 2, we can guarantee the existence of such ω as long as k − g + 1 ≥ 2.

In order to have a clear picture of Riemann-Roch Theorem, we need to
develop some tools. In the following sections, we will introduce some basic
concepts needed and hopefully we will provide a simple proof towards it.

2 Basic concepts

Definition 2.1. A Riemann surface M is a compact complex 1-manifold.

We will use letter M to denote a Riemann surface unless stated otherwise.
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Example 2.2. P1, the (complex) projective space of dimension 1, is a Riemann

surface, which is actually the (Riemann) sphere S2 = Ĉ.

Definition 2.3. A meromorphic (resp. holomophic) function f ∈ K(M) (resp.
Ø(M)) is a collection of continuous maps fα : Uα → P1 such that

1. the {fα} agrees on overlaps,

2. fα ◦ φα is meromorphic (resp. holomorphic) function for all α,

where {φα : Uα → C} is the coordinate charts.

Definition 2.4. A (complex) holomorphic (resp. meromorphic) 1-form
ω ∈ Ω1(M) (resp. K(M)) on M is a collection of expressions ωα = fα(zα)dzα
with fα : Vα → C holomorphic (resp. meromorphic) and satisfying ωβ |Vαβ

=
Φ∗αβ(ωα |Vαβ

) for any α, β and Φ∗αβ the pullback of the transition of charts {zα}.

Example 2.5. Let M = P1, ω1 = ω and ω2 = dz. Here z = Z1

Z0
on P as usual,

and dz looks as if it should be not just meromorphic but holomorphic. But in
the ”coordinate at ∞”, ω = Z0

Z1
, dz becomes d( 1

ω ) = −dωω2 . So dz in fact has a
pole of order 2 at [0 : 1].

Now consider F (z) = ω1

ω2
= ω

dz ∈ K(P), then we have ω = F (z)dz. Hence we
actually have

K(P) =

{
P (z)

Q(z)
dz | P ∈ C[z], Q ∈ C[z]\{0}

}
.

Remark 2.6. In modern approach, the complex holomorphic 1-form is just
the global section of Ω1, where Ω1(Ui, ϕi) is the free O(Ui, ϕi)-module of rank
1 with basis element denoted by dzi, and Ω1 is defined to be the sheaf with
Ω1(Ui) = Ω1(Ui, ϕi), which is obtained by gluing compatible sheaves over Ui.

Also, the complex meromorphic 1-form is the global section of the sheaf
M1 =M⊗Ω0 Ω1. Here Ω0 is the structure sheaf over M , and M =M(M) =
Γ(M,M) is the sheaf over M constructed through coordinate chart.

Definition 2.7. We define the order of a meromorphic 1-form ω at a point
p ∈ Uα ⊂M by

νp(ω) := νzα(p)(fα).

Let D(M) be the free abelian group with basis the points in M .

Definition 2.8. A divisor D is an element of D(M):

D =
∑
p∈M

vp(D) p,

where vp(D) ∈ Z and almost all vp(D) = 0. A divisor D is effective (or
positive) if vp(D) ≥ 0 for all p ∈ M . Say two divisor D =

∑
mpp and

E =
∑
npp on M have the relation D ≥ E if mp ≥ np for all p.

Definition 2.9. The degree of D is defined to be

deg(D) =
∑
p∈M

vp(D).

2



Definition 2.10. For a nonzero meromorphic function f ∈ K(M), define the
divisor of f by

Div(f) =
∑
p∈M

ordp(f) p.

Divisors of the form Div(f) are called principal divisor.

Example 2.11. The divisor (ω) of a holomorphic 1-form ω is effective.

Definition 2.12. For any D divisor of M , we define

L(D) := {f ∈ K(M)∗ | (f) +D ≥ 0} ∪ {0},

and
J (D) := {ω ∈ K1(M)∗ | (ω) ≥ D} ∪ {0},

where the ”∗” means excluding the zero function in K(M). Also set

l(D) := dimL(D);

i(D) := dimJ (D).

Example 2.13. By Liouville’s Theorem, we have L(0) ∼= C.

The ”∪{0}” in the definition above is to make it a vector space. The next
step is to define an equivalent relation on divisors.

Definition 2.14. Say divisors D,E are rationally equivalent iff there exists
f ∈ K(M)∗ with (f) = D − E, denoted by D ∼ E.

Proposition 2.15. If D ∼ E, then

1. deg(D) = deg(E),

2. L(D) ∼= L(E),

3. J (D) ∼= J (E),

4. l(D) = l(E),

5. i(D) = i(E).

Remark 2.16. In modern language, the Picard group Pic(M) is just

Pic(M) = Div(M)/ ∼,

where Div(M) is the collection of divisors on M .

Definition 2.17. A canonical divisor K is the divisor of any meromorphic
1-form ω ∈ K1(M). Since any two such are rationally equivalent, there is a
single canonical divisor class [K] ∈ Pic(M).

Theorem 2.18 (Brill-Noether reciprocity). For arbitrary divisor D, K a canon-
ical divisor, we have

J (D) ∼= L(K −D),

and so i(D) = l(K −D).

Proof. Let K−(ω); if (f)+K−D ≥ 0, then (fω) = (f)+K ≥ D−K+K = D.
So f 7→ fω maps L(K −D)→ J (D), and η 7→ η

ω gives an inverse.
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3 Statement of the proof

We are now ready to give a proof of Riemann-Roch theorem. Before we state
the proof, we need some lemmas and a big theorem (we won’t prove it).

Definition 3.1. A projective algebraic curve C ⊂ P2 of degree d is the zero of
a homogeneous polynomial F of degree d with 3 variables.

Definition 3.2. C is said to be irreducible iff F has no proper homogeneous
factors.

Definition 3.3. ODP, or ordinary double point, is a point in the algebraic
curve locally looks like the cross point in the shape ”8”.

Theorem 3.4 (Normalization Theorem). We have an 1-1 correspondence be-
tween Riemann surfaces and algebraic curves in the following senses:

1. Given an irreducible algebraic curve C ⊂ P2, there exists a Riemann sur-
face M and a holomorphic map σ : M → P2 with C as its image which
is 1-1 on σ−1(C\sing(C)), where sing(C) is the collection of singularities
on C.

2. Given a Riemann surface M , there exists a holomorphic map σ : M → P2

such that

• σ(M) is an irreducible algebraic curve with sing(σ(M)) consisting of
ODPs (or empty).

• σ is 1-1 off the preimage of these ODPs.

So it is reasonable to associate the Riemann surfaces with algebraic curves.
We will make a convention below:

Notation 3.5. In this section, we take C to be an irreducible degree d projective
algebraic curve with ODP singularities S = {p1, p2, · · · , pδ}, and σ : M := C̃ →
P2 be its normalization with σ−1(pi) = {qi, ri}. Also we define a divisor

ξ := σ−1(S) =

2δ∑
i=1

qi + ri

of degree 2δ. Given any line H ⊂ P2, write

H 7→ σ−1(H · C) ∈ Div(M)

for the intersection divisor.

In order to give a proof of Riemann-Roch, we still need two more lemmas,
which we’ll not prove here.

Lemma 3.6. For all sufficiently large m ∈ N, we have

l(mH− η) ≥ md− 2δ − g + 1

and
i(mH− η) = 0,

where g = (d−1)(d−2)
2 − δ is the genus of M .
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Lemma 3.7. Let D be a divisor on M , and p ∈M . Then

0 ≤ l(D + p)− l(D)− i(D + p) + i(D) ≤ 1.

Theorem 3.8 (Riemann-Roch Theorem). Let M be a Riemann surface of genus
g, D a divisor on M , then

l(D)− i(D) = deg(D)− g + 1.

Note that by Brill-Noether reciprocity (Theorem 2.18), we have i(D) = l(K−
D). So the theorem above can be written into l(D)− l(K−D) = deg(D)−g+1,
which corresponds to the form in Theorem 1.1 in the Introduction section.

Proof. By Part 2 of Normalization Theorem (Theorem 3.4, 2), we can assume
we are in the situation described in the Notation 3.5, with M = C̃.

By Lemma 3.6, there exists m0 ∈ Z such that for m ≥ m0, we have

l(mH− η)− i(mH− η) ≥ md− 2δ − g + 1.

Now for any two lines H1, H2, we have H1 ∼ H2. So if H1, · · · , Hm are lines in
P2, we have by Proposition 2.15, 4 and 5 that

l(H1 + · · ·+Hm − η)− i(H1 + · · ·+Hm − η) ≥ md− 2δ − g + 1.

Taking m large enough and lines through all points of S and all points in D, we
can ensure that H1 + · · ·+Hm − η −D is effective, so that

H1 + · · ·+Hm − η = D + p1 + · · ·+ pk,

where k = md− 2δ − deg(D), and pj ’s points of M . Therefore we have

l

D +

k∑
j=1

pj

− i
D +

k∑
j=1

pj

 ≥ k + deg(D)− g + 1.

Repeatedly applying right-hand side of inequality of Lemma 3.7, we obtain

k + l(D)− i(D) ≥ l

D +

k∑
j=1

pj

− i
D +

k∑
j=1

pj

 ,

and we conclude that

l(D)− i(D) ≥ deg(D)− g + 1. (1)

Next we show the reverse inequality. Plugging K −D into (1) gives

l(K −D)− i(K −D) ≥ deg(K −D)− g + 1,

which becomes by Brill-Noether reciprocity (Theorem 2.18) that

i(D)− l(D) ≥ 2g − 2− deg(D)− g + 1 = −(deg(D)− g + 1),

so that
l(D)− i(D) ≤ deg(D)− g + 1. (2)

Combine (1) and (2), we’re done the proof!
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4 Applications

There are a lot of applications of Riemann-Roch theorem beside the one we men-
tioned in the Introduction section. We will briefly state two simple applications
towards it.

Corollary 4.1. We directly obtain the Riemann inequality, which is origi-
nally proved by Riemann himself in 1850’s before his student Roch finally making
it into equality:

l(D) ≥ deg(D)− g + 1,

and by taking D = 0, we obtain

dim Ω1(M) = g.

Proposition 4.2. Up to isomorphism, there is only one Riemann surface of
genus 0, which is P1.

Proof. P1 is a Riemann surface of genus 0 by Example 2.2. SupposeM is another
Riemann surface with genus 0. Then Corollary 4.1 tells us dim Ω1(M) = 0. If
we take for some p ∈ M that D = p, then J (D) ⊂ Ω1(M) = {0}, which gives
i(D) = 0. By Riemann-Roch,

l(D) = deg(D)− g + 1 = 1− 0 + 1 = 2.

Now L(D) consists of functions with a (and only) simple pole allowed at p. The
constant function 1 belongs to L(D); and since dimL(D) = 2, there is also a
non-constant function f ∈ L(D), which by Liouville’s Theorem must have the
allowed simple pole. Therefore the mapping degree of f : M → P1 is

deg(f) = deg(f−1[∞]) = deg(p) = 1,

which implies f is an isomorphism.
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