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Abstract

This paper gives a brief introduction to the Riemann-Roch Theorem
in algebraic geometry. We will develop the appropriate tool to state it in
a suitable way (without the use of sheaf language). Background of some
basic commutative algebra is assumed.
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1 Introduction

There is a classical problem arise from the study of Riemann surface: is there
any non-constant meromorphic forms w in a given Riemann surface M with
genus g7

If we let g > 1, w cannot have a simple pole at only one point p € M. This is
a direct corollary of residue theorem. Then how about w have a double pole at
p? If we let g = 0 or 1, it can happen since we have the Weierstrass g-function,
however it depends on the point p when g > 2.

Is there a general way to solve this problem? Namely, can we guarantee such
w exists (but singular at one point p) for a given g? The answer is yes, and this
is really a result of the well-known Riemann-Roch Theorem.

Theorem 1.1 (Riemann-Roch). For every divisor D on a compact Riemann
surface of genus g, we have

(D) —I(K — D) =deg(D) +1—g.

In particular, we have for f € IC(M) with a single pole (at p) with v,(f) > —k
has dimension > max{1l,k — g + 1}. Hence if we let the order of the pole at p
> 2, we can guarantee the existence of such w as long as k —g+1 > 2.

In order to have a clear picture of Riemann-Roch Theorem, we need to
develop some tools. In the following sections, we will introduce some basic
concepts needed and hopefully we will provide a simple proof towards it.

2 Basic concepts

Definition 2.1. A Riemann surface M is a compact complex 1-manifold.

We will use letter M to denote a Riemann surface unless stated otherwise.
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Example 2.2. P!, the (complex) projective space of dimension 1, is a Riemann
surface, which is actually the (Riemann) sphere S? = C.

Definition 2.3. A meromorphic (resp. holomophic) function f € K(M) (resp.
D(M)) is a collection of continuous maps fo : Uy — P! such that

1. the {fa} agrees on overlaps,
2. fo © ¢ is meromorphic (resp. holomorphic) function for all «,
where {¢o : Uy — C} is the coordinate charts.

Definition 2.4. A (complex) holomorphic (resp. meromorphic) 1-form
w € QYM) (resp. K(M)) on M is a collection of expressions wo = fo(za)dza
with fo : Vo — C holomorphic (resp. meromorphic) and satisfying wg |v,,=
@ 5(wa |v.,) for any a, B and @7, 5 the pullback of the transition of charts {za}.

Example 2.5. Let M =P, w; = w and wy = dz. Here z = % on P as usual,

and dz looks as if it should be not just meromorphic but holomorphic. But in
the ”coordinate at c0”, w = %, dz becomes d(%) = —f}—‘;’. So dz in fact has a
pole of order 2 at [0 : 1].

Now consider F'(z) = £t = 2 € K(P), then we have w = F(z)dz. Hence we
actually have

P(z)
Q(2)

Remark 2.6. In modern approach, the complex holomorphic 1-form is just
the global section of Q, where QY (U;, ¢;) is the free O(U;, ¢;)-module of rank
1 with basis element denoted by dz;, and Q' is defined to be the sheaf with
QY U;) = QYU;, ¢;), which is obtained by gluing compatible sheaves over U;.

Also, the complex meromorphic 1-form is the global section of the sheaf
M = M ®qo QL. Here Q0 is the structure sheaf over M, and M = M(M) =
I'(M, M) is the sheaf over M constructed through coordinate chart.

K(P) = { dz | PeC[z],Q € (C[z]\{O}} .

Definition 2.7. We define the order of a meromorphic 1-form w at a point
pelUy CM by
v

P(w) = Vza(p)(fa)'
Let D(M) be the free abelian group with basis the points in M.
Definition 2.8. A divisor D is an element of D(M):
D = Z U;D(D) b,

peEM

where v,(D) € Z and almost all v,(D) = 0. A divisor D is effective (or
positive) if v,(D) > 0 for all p € M. Say two divisor D = Y mpp and
E =3 "npp on M have the relation D > E if mp, > n, for all p.

Definition 2.9. The degree of D is defined to be

deg(D) = 3" v,(D).

peEM



Definition 2.10. For a nonzero meromorphic function f € K(M), define the
divisor of [ by

Div(f) = Z ord,(f) p.

peEM

Divisors of the form Div(f) are called principal divisor.
Example 2.11. The divisor (w) of a holomorphic 1-form w is effective.
Definition 2.12. For any D divisor of M, we define

LID) = {f e KM)"|(f)+ D =0} u{0},

and
J(D) = {we K (M)* | (w) > D} U {0},

where the 7”7 means excluding the zero function in KK(M). Also set
I(D) = dim L(D);
i(D) = dim J(D).

Example 2.13. By Liouville’s Theorem, we have L£(0) = C.

The ”U{0}” in the definition above is to make it a vector space. The next
step is to define an equivalent relation on divisors.

Definition 2.14. Say divisors D, E are rationally equivalent iff there exists
feKr(M)* with (f) =D — E, denoted by D ~ E.

Proposition 2.15. If D ~ E| then
. deg(D) = deg(E),

~

L(D) = L(E),
J(D) = J(E),
(D) =U(E),
i(D) = i(E).
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Remark 2.16. In modern language, the Picard group Pic(M) is just
Pic(M) = Div(M)/ ~,
where Div(M) is the collection of divisors on M.

Definition 2.17. A canonical divisor K is the divisor of any meromorphic
I-form w € KY(M). Since any two such are rationally equivalent, there is a
single canonical divisor class [K| € Pic(M).

Theorem 2.18 (Brill-Noether reciprocity). For arbitrary divisor D, K a canon-
ical divisor, we have
J(D) = L(K - D),

and so i(D) = (K — D).

Proof. Let K — (w); if (f)+ K —D > 0, then (fw) = (f)+K >D—-K+K = D.
So f+ fwmaps L(K — D) — J(D), and n +— Z gives an inverse. O



3 Statement of the proof

We are now ready to give a proof of Riemann-Roch theorem. Before we state
the proof, we need some lemmas and a big theorem (we won’t prove it).

Definition 3.1. A projective algebraic curve C C P? of degree d is the zero of
a homogeneous polynomial F of degree d with 8 variables.

Definition 3.2. C is said to be irreducible iff F' has no proper homogeneous
factors.

Definition 3.3. ODP, or ordinary double point, is a point in the algebraic
curve locally looks like the cross point in the shape ”8”.

Theorem 3.4 (Normalization Theorem). We have an 1-1 correspondence be-
tween Riemann surfaces and algebraic curves in the following senses:

1. Given an irreducible algebraic curve C C P2, there exists a Riemann sur-
face M and a holomorphic map o : M — P? with C as its image which
is 1-1 on o~ (C\sing(C)), where sing(C) is the collection of singularities
on C.

2. Given a Riemann surface M, there exists a holomorphic map o : M — P?
such that

e o(M) is an irreducible algebraic curve with sing(o(M)) consisting of

ODPs (or empty).
e o is 1-1 off the preimage of these ODPs.

So it is reasonable to associate the Riemann surfaces with algebraic curves.
We will make a convention below:

Notation 3.5. In this section, we take C to be an irreducible degree d projective
algebraic curve with ODP singularities S = {p1,p2,-++ ,ps}, and o : M == C —
P2 be its normalization with o= (p;) = {qi,ri}. Also we define a divisor

25
§=0"1(5) = Z%‘ +ri
i=1

of degree 25. Given any line H C P?, write
H o ' (H-C) € Div(M)
for the intersection divisor.

In order to give a proof of Riemann-Roch, we still need two more lemmas,
which we’ll not prove here.

Lemma 3.6. For all sufficiently large m € N, we have
I(mH —n)>md—25—g+1

and

i(mH —n) =0,

W — § is the genus of M.

where g =



Lemma 3.7. Let D be a divisor on M, and p € M. Then
0<IU(D+p)—UD)—i(D+p)+iD)<1.

Theorem 3.8 (Riemann-Roch Theorem). Let M be a Riemann surface of genus
g, D a divisor on M, then

(D) —14(D) = deg(D) —g+1.

Note that by Brill-Noether reciprocity (Theorem 2.18), we have i(D) = (K —
D). So the theorem above can be written into {(D)—I(K — D) = deg(D)—g+1,
which corresponds to the form in Theorem 1.1 in the Introduction section.

Proof. By Part 2 of Normalization Theorem (Theorem 3.4, 2), we can assume
we are in the situation described in the Notation 3.5, with M = C.
By Lemma 3.6, there exists mg € Z such that for m > mg, we have

I(mH —n) —i(mH —n) >md—25 —g+ 1.

Now for any two lines Hy, Ho, we have Hi ~ Ho. So if Hy,--- , Hy, are lines in
P2, we have by Proposition 2.15, 4 and 5 that

I(Hi++Hm—n)—i(Hi+ - +Hm—n) >md—25— g+ 1.

Taking m large enough and lines through all points of S and all points in D, we
can ensure that Hi + -+ -+ H,, —n — D is effective, so that

Hit+Hp—n=D+p1+-+pk,
where k = md — 26 — deg(D), and p;’s points of M. Therefore we have

k k
LD+ pj| =i | D+D pj | =k+deg(D)—g+1.
j=1

j=1

Repeatedly applying right-hand side of inequality of Lemma 3.7, we obtain
k k
k+UD)—i(D)=1| D+ pj | =i [ D+ pi |,
j=1 j=1

and we conclude that
I(D) —i(D) > deg(D) — g + 1. (1)
Next we show the reverse inequality. Plugging K — D into (1) gives
I(K—-D)—i(K—D)>deg(K—-D)—g+1,
which becomes by Brill-Noether reciprocity (Theorem 2.18) that
i(D) ~ (D) > 29 — 2 — deg(D) — g + 1 = —(deg(D) — g + 1),

so that
(D) —i(D) < deg(D) —g—+ 1. (2

Combine (1) and (2), we're done the proof! O

~—



4 Applications

There are a lot of applications of Riemann-Roch theorem beside the one we men-
tioned in the Introduction section. We will briefly state two simple applications
towards it.

Corollary 4.1. We directly obtain the Riemann inequality, which is origi-
nally proved by Riemann himself in 1850°s before his student Roch finally making
it into equality:

I(D) > deg(D) — g +1,

and by taking D = 0, we obtain
dim Q' (M) = g.

Proposition 4.2. Up to isomorphism, there is only one Riemann surface of
genus 0, which is P*.

Proof. P! is a Riemann surface of genus 0 by Example 2.2. Suppose M is another
Riemann surface with genus 0. Then Corollary 4.1 tells us dim Q'(M) = 0. If
we take for some p € M that D = p, then J(D) C Q'(M) = {0}, which gives
i(D) = 0. By Riemann-Roch,

I(D) =deg(D) —g+1=1-0+1=2,

Now L(D) consists of functions with a (and only) simple pole allowed at p. The
constant function 1 belongs to £(D); and since dim £(D) = 2, there is also a
non-constant function f € £(D), which by Liouville’s Theorem must have the
allowed simple pole. Therefore the mapping degree of f : M — P! is

deg(f) = deg(f~"[o0]) = deg(p) =1,

which implies f is an isomorphism. [
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