Riemann-Roch Theorem: An Observation

Jinghui Yang

December 20, 2019

Abstract

This paper gives a brief introduction to the Riemann-Roch Theorem in algebraic geometry. We will develop the appropriate tool to state it in a suitable way (without the use of sheaf language). Background of some basic commutative algebra is assumed.

- Kerr M. Lecture Notes: Algebraic Geometry III/IV.
- Vakil R. THE RISING SEA: Foundations of Algebraic Geometry.

1 Introduction

There is a classical problem arise from the study of Riemann surface: is there any non-constant meromorphic forms ω in a given Riemann surface M with genus g?

If we let $g \ge 1$, ω cannot have a simple pole at only one point $p \in M$. This is a direct corollary of residue theorem. Then how about ω have a double pole at p? If we let g = 0 or 1, it can happen since we have the Weierstrass \wp -function, however it depends on the point p when $g \ge 2$.

Is there a general way to solve this problem? Namely, can we guarantee such ω exists (but singular at one point p) for a given g? The answer is yes, and this is really a result of the well-known Riemann-Roch Theorem.

Theorem 1.1 (Riemann-Roch). For every divisor D on a compact Riemann surface of genus g, we have

$$l(D) - l(K - D) = \deg(D) + 1 - g.$$

In particular, we have for $f \in \mathcal{K}(M)$ with a single pole (at p) with $\nu_p(f) \ge -k$ has dimension $\ge \max\{1, k - g + 1\}$. Hence if we let the order of the pole at $p \ge 2$, we can guarantee the existence of such ω as long as $k - g + 1 \ge 2$.

In order to have a clear picture of Riemann-Roch Theorem, we need to develop some tools. In the following sections, we will introduce some basic concepts needed and hopefully we will provide a simple proof towards it.

2 Basic concepts

Definition 2.1. A Riemann surface M is a compact complex 1-manifold.

We will use letter M to denote a Riemann surface unless stated otherwise.

Example 2.2. \mathbb{P}^1 , the (complex) projective space of dimension 1, is a Riemann surface, which is actually the (Riemann) sphere $S^2 = \hat{\mathbb{C}}$.

Definition 2.3. A meromorphic (resp. holomophic) function $f \in \mathcal{K}(M)$ (resp. $\mathcal{O}(M)$) is a collection of continuous maps $f_{\alpha} : U_{\alpha} \to \mathbb{P}^1$ such that

- 1. the $\{f_{\alpha}\}$ agrees on overlaps,
- 2. $f_{\alpha} \circ \phi_{\alpha}$ is meromorphic (resp. holomorphic) function for all α ,

where $\{\phi_{\alpha}: U_{\alpha} \to \mathbb{C}\}$ is the coordinate charts.

Definition 2.4. A (complex) holomorphic (resp. meromorphic) 1-form $\omega \in \Omega^1(M)$ (resp. $\mathcal{K}(M)$) on M is a collection of expressions $\omega_{\alpha} = f_{\alpha}(z_{\alpha})dz_{\alpha}$ with $f_{\alpha} : V_{\alpha} \to \mathbb{C}$ holomorphic (resp. meromorphic) and satisfying $\omega_{\beta} \mid_{V_{\alpha\beta}} = \Phi^*_{\alpha\beta}(\omega_{\alpha} \mid_{V_{\alpha\beta}})$ for any α, β and $\Phi^*_{\alpha\beta}$ the pullback of the transition of charts $\{z_{\alpha}\}$.

Example 2.5. Let $M = \mathbb{P}^1$, $\omega_1 = \omega$ and $\omega_2 = dz$. Here $z = \frac{Z_1}{Z_0}$ on \mathbb{P} as usual, and dz looks as if it should be not just meromorphic but holomorphic. But in the "coordinate at ∞ ", $\omega = \frac{Z_0}{Z_1}$, dz becomes $d(\frac{1}{\omega}) = -\frac{d\omega}{\omega^2}$. So dz in fact has a pole of order 2 at [0:1].

Now consider $F(z) = \frac{\omega_1}{\omega_2} = \frac{\omega}{dz} \in \mathcal{K}(\mathbb{P})$, then we have $\omega = F(z)dz$. Hence we actually have

$$\mathcal{K}(\mathbb{P}) = \left\{ \frac{P(z)}{Q(z)} dz \mid P \in \mathbb{C}[z], Q \in \mathbb{C}[z] \setminus \{0\} \right\}.$$

Remark 2.6. In modern approach, the complex holomorphic 1-form is just the global section of Ω^1 , where $\Omega^1(U_i, \varphi_i)$ is the free $\mathcal{O}(U_i, \varphi_i)$ -module of rank 1 with basis element denoted by dz_i , and Ω^1 is defined to be the sheaf with $\Omega^1(U_i) = \Omega^1(U_i, \varphi_i)$, which is obtained by gluing compatible sheaves over U_i .

Also, the complex meromorphic 1-form is the global section of the sheaf $\mathcal{M}^1 = \mathcal{M} \otimes_{\Omega 0} \Omega^1$. Here Ω^0 is the structure sheaf over M, and $\mathcal{M} = \mathcal{M}(M) = \Gamma(M, \mathcal{M})$ is the sheaf over M constructed through coordinate chart.

Definition 2.7. We define the order of a meromorphic 1-form ω at a point $p \in U_{\alpha} \subset M$ by

$$\nu_p(\omega) \coloneqq \nu_{z_\alpha(p)}(f_\alpha).$$

Let D(M) be the free abelian group with basis the points in M.

Definition 2.8. A divisor D is an element of D(M):

$$D = \sum_{p \in M} v_p(D) \, p,$$

where $v_p(D) \in \mathbb{Z}$ and almost all $v_p(D) = 0$. A divisor D is effective (or **positive**) if $v_p(D) \ge 0$ for all $p \in M$. Say two divisor $D = \sum m_p p$ and $E = \sum n_p p$ on M have the relation $D \ge E$ if $m_p \ge n_p$ for all p.

Definition 2.9. The degree of D is defined to be

$$\deg(D) = \sum_{p \in M} v_p(D).$$

Definition 2.10. For a nonzero meromorphic function $f \in \mathcal{K}(M)$, define the *divisor of* f by

$$\operatorname{Div}(f) = \sum_{p \in M} \operatorname{ord}_p(f) p.$$

Divisors of the form Div(f) are called **principal divisor**.

Example 2.11. The divisor (ω) of a holomorphic 1-form ω is effective.

Definition 2.12. For any D divisor of M, we define

$$\mathcal{L}(D) \coloneqq \{ f \in \mathcal{K}(M)^* \mid (f) + D \ge 0 \} \cup \{ 0 \},\$$

and

$$\mathcal{J}(D) \coloneqq \{ \omega \in \mathcal{K}^1(M)^* \mid (\omega) \ge D \} \cup \{ 0 \},\$$

where the "*" means excluding the zero function in $\mathcal{K}(M)$. Also set

$$l(D) := \dim \mathcal{L}(D);$$

$$i(D) \coloneqq \dim \mathcal{J}(D).$$

Example 2.13. By Liouville's Theorem, we have $\mathcal{L}(0) \cong \mathbb{C}$.

The " \cup {0}" in the definition above is to make it a vector space. The next step is to define an equivalent relation on divisors.

Definition 2.14. Say divisors D, E are rationally equivalent iff there exists $f \in \mathcal{K}(M)^*$ with (f) = D - E, denoted by $D \sim E$.

Proposition 2.15. If $D \sim E$, then

- 1. $\deg(D) = \deg(E),$
- 2. $\mathcal{L}(D) \cong \mathcal{L}(E),$
- 3. $\mathcal{J}(D) \cong \mathcal{J}(E)$,
- 4. l(D) = l(E),
- 5. i(D) = i(E).

Remark 2.16. In modern language, the Picard group Pic(M) is just

$$\operatorname{Pic}(M) = \operatorname{Div}(M) / \sim,$$

where Div(M) is the collection of divisors on M.

Definition 2.17. A canonical divisor K is the divisor of any meromorphic 1-form $\omega \in \mathcal{K}^1(M)$. Since any two such are rationally equivalent, there is a single canonical divisor class $[K] \in \operatorname{Pic}(M)$.

Theorem 2.18 (Brill-Noether reciprocity). For arbitrary divisor D, K a canonical divisor, we have

$$\mathcal{J}(D) \cong \mathcal{L}(K-D),$$

and so i(D) = l(K - D).

Proof. Let $K - (\omega)$; if $(f) + K - D \ge 0$, then $(f\omega) = (f) + K \ge D - K + K = D$. So $f \mapsto f\omega$ maps $\mathcal{L}(K - D) \to \mathcal{J}(D)$, and $\eta \mapsto \frac{\eta}{\omega}$ gives an inverse.

3 Statement of the proof

We are now ready to give a proof of Riemann-Roch theorem. Before we state the proof, we need some lemmas and a big theorem (we won't prove it).

Definition 3.1. A projective algebraic curve $C \subset \mathbb{P}^2$ of degree d is the zero of a homogeneous polynomial F of degree d with 3 variables.

Definition 3.2. C is said to be irreducible iff F has no proper homogeneous factors.

Definition 3.3. *ODP*, or ordinary double point, is a point in the algebraic curve locally looks like the cross point in the shape "8".

Theorem 3.4 (Normalization Theorem). We have an 1-1 correspondence between Riemann surfaces and algebraic curves in the following senses:

- 1. Given an irreducible algebraic curve $C \subset \mathbb{P}^2$, there exists a Riemann surface M and a holomorphic map $\sigma : M \to \mathbb{P}^2$ with C as its image which is 1-1 on $\sigma^{-1}(C \setminus \operatorname{sing}(C))$, where $\operatorname{sing}(C)$ is the collection of singularities on C.
- 2. Given a Riemann surface M, there exists a holomorphic map $\sigma: M \to \mathbb{P}^2$ such that
 - $\sigma(M)$ is an irreducible algebraic curve with $sing(\sigma(M))$ consisting of ODPs (or empty).
 - σ is 1-1 off the preimage of these ODPs.

So it is reasonable to associate the Riemann surfaces with algebraic curves. We will make a convention below:

Notation 3.5. In this section, we take C to be an irreducible degree d projective algebraic curve with ODP singularities $S = \{p_1, p_2, \dots, p_{\delta}\}$, and $\sigma : M \coloneqq \tilde{C} \to \mathbb{P}^2$ be its normalization with $\sigma^{-1}(p_i) = \{q_i, r_i\}$. Also we define a divisor

$$\xi \coloneqq \sigma^{-1}(S) = \sum_{i=1}^{2\delta} q_i + r_i$$

of degree 28. Given any line $H \subset \mathbb{P}^2$, write

$$\mathcal{H} \mapsto \sigma^{-1}(H \cdot C) \in \operatorname{Div}(M)$$

for the intersection divisor.

In order to give a proof of Riemann-Roch, we still need two more lemmas, which we'll not prove here.

Lemma 3.6. For all sufficiently large $m \in \mathbb{N}$, we have

$$l(m\mathcal{H} - \eta) \ge md - 2\delta - g + 1$$

and

 $i(m\mathcal{H}-\eta)=0,$

where $g = \frac{(d-1)(d-2)}{2} - \delta$ is the genus of M.

Lemma 3.7. Let D be a divisor on M, and $p \in M$. Then

$$0 \le l(D+p) - l(D) - i(D+p) + i(D) \le 1.$$

Theorem 3.8 (Riemann-Roch Theorem). Let M be a Riemann surface of genus q, D a divisor on M, then

$$l(D) - i(D) = \deg(D) - g + 1.$$

Note that by Brill-Noether reciprocity (Theorem 2.18), we have i(D) = l(K - C)D). So the theorem above can be written into $l(D) - l(K-D) = \deg(D) - g + 1$, which corresponds to the form in Theorem 1.1 in the Introduction section.

Proof. By Part 2 of Normalization Theorem (Theorem 3.4, 2), we can assume we are in the situation described in the Notation 3.5, with $M = \tilde{C}$.

By Lemma 3.6, there exists $m_0 \in \mathbb{Z}$ such that for $m \geq m_0$, we have

$$l(m\mathcal{H} - \eta) - i(m\mathcal{H} - \eta) \ge md - 2\delta - g + 1.$$

Now for any two lines H_1, H_2 , we have $\mathcal{H}_1 \sim \mathcal{H}_2$. So if H_1, \cdots, H_m are lines in \mathbb{P}^2 , we have by Proposition 2.15, 4 and 5 that

$$l(\mathcal{H}_1 + \dots + \mathcal{H}_m - \eta) - i(\mathcal{H}_1 + \dots + \mathcal{H}_m - \eta) \ge md - 2\delta - g + 1$$

Taking m large enough and lines through all points of S and all points in D, we can ensure that $\mathcal{H}_1 + \cdots + \mathcal{H}_m - \eta - D$ is effective, so that

$$\mathcal{H}_1 + \dots + \mathcal{H}_m - \eta = D + p_1 + \dots + p_k$$

where $k = md - 2\delta - \deg(D)$, and p_j 's points of M. Therefore we have

$$l\left(D + \sum_{j=1}^{k} p_j\right) - i\left(D + \sum_{j=1}^{k} p_j\right) \ge k + \deg(D) - g + 1.$$

Repeatedly applying right-hand side of inequality of Lemma 3.7, we obtain

,

$$k + l(D) - i(D) \ge l\left(D + \sum_{j=1}^{k} p_j\right) - i\left(D + \sum_{j=1}^{k} p_j\right),$$

and we conclude that

$$l(D) - i(D) \ge \deg(D) - g + 1.$$

$$\tag{1}$$

,

Next we show the reverse inequality. Plugging K - D into (1) gives

$$l(K - D) - i(K - D) \ge \deg(K - D) - g + 1,$$

which becomes by Brill-Noether reciprocity (Theorem 2.18) that

$$i(D) - l(D) \ge 2g - 2 - \deg(D) - g + 1 = -(\deg(D) - g + 1),$$

so that

$$l(D) - i(D) \le \deg(D) - g + 1.$$
 (2)

Combine (1) and (2), we're done the proof!

4 Applications

There are a lot of applications of Riemann-Roch theorem beside the one we mentioned in the Introduction section. We will briefly state two simple applications towards it.

Corollary 4.1. We directly obtain the **Riemann inequality**, which is originally proved by Riemann himself in 1850's before his student Roch finally making it into equality:

$$l(D) \ge \deg(D) - g + 1,$$

and by taking D = 0, we obtain

$$\dim \Omega^1(M) = g.$$

Proposition 4.2. Up to isomorphism, there is only one Riemann surface of genus 0, which is \mathbb{P}^1 .

Proof. \mathbb{P}^1 is a Riemann surface of genus 0 by Example 2.2. Suppose M is another Riemann surface with genus 0. Then Corollary 4.1 tells us dim $\Omega^1(M) = 0$. If we take for some $p \in M$ that D = p, then $\mathcal{J}(D) \subset \Omega^1(M) = \{0\}$, which gives i(D) = 0. By Riemann-Roch,

$$l(D) = \deg(D) - g + 1 = 1 - 0 + 1 = 2.$$

Now $\mathcal{L}(D)$ consists of functions with a (and only) simple pole allowed at p. The constant function 1 belongs to $\mathcal{L}(D)$; and since dim $\mathcal{L}(D) = 2$, there is also a non-constant function $f \in \mathcal{L}(D)$, which by Liouville's Theorem must have the allowed simple pole. Therefore the mapping degree of $f : M \to \mathbb{P}^1$ is

$$\deg(f) = \deg(f^{-1}[\infty]) = \deg(p) = 1,$$

which implies f is an isomorphism.