The Number $N(T)$ and $N(T, \chi)$

Jinghui Yang

March 2019

1 The Number $N(T)$

Let $N(T)$ denote the number of zeros of $\zeta(s)$ in the rectangle $0<\sigma<1,0<t \leq T$. In this section, we will prove the following approximate formula for $N(T)$:

$$
\begin{equation*}
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+O(\log T) \tag{1}
\end{equation*}
$$

Our primary tool for this is Argument principle. We will state as follow:
Theorem 1 (Argument Principle). Suppose that $f(z)$ be a meromorphic function defined inside and on a simple closed contour C with no zeroes or poles C. Let N and P be the number of zeroes and poles, respectively, of $f(z)$ inside C, where a multiple zero or pole is counted according to its multiplicity. Then

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=N-P=\frac{1}{2 \pi} \Delta_{C} \arg f(z)
$$

We omit the proof here. It is convenient to work initially with $\xi(s)$ rather than with $\zeta(s)$ because of its simple functional equation, namely $\xi(1-s)=\xi(s)$. Assuming for simplicity that T (which we suppose to be large) does not coincide with the ordinate of a zero, we have by argument principle

$$
2 \pi N(T)=\Delta_{R} \arg \xi(s)
$$

where R is the rectangle in the s-plane with vertices at $2,2+i T,-1+i T,-1$ described in the positive sense, and in which $\xi(s)$ has no poles.

By simple observation, there is no change in $\arg \xi(s)$ as s moves along the bottom edge of rectangle since $\xi(s)$ is real and nowhere 0 . Further, the change as s moves from $\frac{1}{2}+i T$ to $-1+i T$ and then to -1 is equal to the change as s moves from 2 to $2+i T$ and then to $\frac{1}{2}+i T$, since

$$
\xi(\sigma+i t)=\xi(1-\sigma-i t)=\overline{\xi(1-\sigma+i t)} .
$$

Hence

$$
\begin{equation*}
\pi N(T)=\Delta_{L} \arg \xi(s) \tag{2}
\end{equation*}
$$

where L denotes the line from 2 to $2+i T$ and then to $\frac{1}{2}+i T$.

Recall that

$$
\xi(s)=(s-1) \pi^{-\frac{1}{2} s} \Gamma\left(\frac{1}{2} s+1\right) \zeta(s)
$$

Thus in (2) we have

$$
\begin{equation*}
\arg \xi(s)=\arg (s-1)+\arg \pi^{-\frac{1}{2} s}+\arg \Gamma\left(\frac{1}{2} s+1\right)+\arg \zeta(s) \tag{3}
\end{equation*}
$$

Simple calculation gives

$$
\begin{aligned}
& \Delta_{L} \arg (s-1)=\Delta_{L} \arg (\sigma-1+i t)=\Delta_{L} \arctan \frac{t}{\sigma-1}=\frac{\pi}{2}+O\left(T^{-1}\right) \\
& \Delta_{L} \arg \pi^{-\frac{1}{2} s}=\Delta_{L}\left(-\frac{1}{2} t \log \pi\right)=-\frac{1}{2} T \log \pi
\end{aligned}
$$

Recall that the Stirling's formula gives:
Theorem 2 (Stirling's formula).

$$
\begin{equation*}
\log \Gamma(s)=\left(s-\frac{1}{2}\right) \log s-s+\frac{1}{2} \log 2 \pi+O\left(|s|^{-1}\right) \tag{4}
\end{equation*}
$$

Apply this to (3) we have

$$
\begin{aligned}
\Delta_{L} \arg \Gamma\left(\frac{1}{2} s+1\right) & =\arg \Gamma\left(\frac{1}{2} i T+\frac{5}{4}\right)-\arg \Gamma(2) \\
& =\arg \left[\exp \left(\Re \log \Gamma\left(\frac{1}{2} i T+\frac{5}{4}\right)+i \Im \log \Gamma\left(\frac{1}{2} i T+\frac{5}{4}\right)\right)\right] \\
& =\Im \log \Gamma\left(\frac{1}{2} i T+\frac{5}{4}\right) \\
& =\Im\left[\left(\frac{1}{2} i T+\frac{3}{4}\right) \log \left(\frac{1}{2} i T+\frac{3}{4}\right)-\frac{1}{2} i T-\frac{5}{4}+\frac{1}{2} \log 2 \pi+O\left(T^{-1}\right)\right] \\
& =\frac{T}{2} \log \frac{T}{2}-\frac{T}{2}+\frac{3 \pi}{8}+O(1)
\end{aligned}
$$

Hence

$$
\begin{equation*}
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+S(T)+O(1) \tag{5}
\end{equation*}
$$

where

$$
\pi S(T)=\Delta_{L} \arg \zeta(s)=\arg \zeta\left(\frac{1}{2}+i T\right)
$$

Suffice to prove

$$
\begin{equation*}
\arg \zeta\left(\frac{1}{2}+i T\right)=O(\log T) \tag{6}
\end{equation*}
$$

In order to prove that, we need a lemma first.
Lemma 1. If $\rho=\beta+i \gamma$ runs through the nontrivial zeros of $\zeta(s)$, then for large T

$$
\begin{equation*}
\sum_{\rho} \frac{1}{1+(T-\gamma)^{2}}=O(\log T) \tag{7}
\end{equation*}
$$

Proof. We have proved during discussion about zero-free region for $\zeta(s)$ that

$$
\begin{equation*}
-\Re \frac{\zeta^{\prime}(s)}{\zeta(s)}<A \log t-\sum_{\rho} \Re\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right) \tag{8}
\end{equation*}
$$

for $1 \leq \sigma \leq 2$ and $t \geq 2$, with the sum over ρ is positive. Take $s=2+i T$. Also we have

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)} \leq \frac{1}{\sigma-1}+A_{1}
$$

where A_{1} is some absolute constant. Hence $\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right|$ is bounded, and we obtain

$$
\sum_{\rho} \Re\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)<A_{2} \log T
$$

Since

$$
\Re \frac{1}{s-\rho}=\frac{2-\beta}{(2-\beta)^{2}+(T-\gamma)^{2}} \geq \frac{1}{4+(T-\gamma)^{2}}
$$

we obtain the assertion in the lemma.
Corollary 1. The number of zeros with $T-1<\gamma<T+1$ is $O(\log T)$.
Corollary 2. The sum $\sum(T-\gamma)^{-2}$ extended over the zeros with γ outside the interval just mentioned is also $O(\log T)$.

Lemma 2. For large t which does not coincide with the ordinate of a zero and $-1 \leq \sigma \leq 2$,

$$
\begin{equation*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{\rho}^{\prime} \frac{1}{s-\rho}+O(\log t) \tag{9}
\end{equation*}
$$

where the sum is limited to those ρ for which $|t-\gamma|<1$.
Proof. Recall that we have

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=B-\frac{1}{s-1}+\frac{1}{2} \log \pi-\frac{1}{2} \frac{\Gamma^{\prime}\left(\frac{1}{2} s+1\right)}{\Gamma\left(\frac{1}{2} s+1\right)}+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right)
$$

Apply it at s and at $2+i t$ and then subtracted,

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=O(\log t)+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{2+i t-\rho}\right)
$$

Note for the terms with $|\gamma-t| \geq 1$, we have

$$
\left|\frac{1}{s-\rho}+\frac{1}{2+i t-\rho}\right|=\frac{2-\sigma}{|(s-\rho)(2+i t-\rho)|} \leq \frac{3}{|\gamma-t|^{2}}
$$

and the sum of these is $O(\log t)$ by Corollary 2 above. As for the terms with $|\gamma-t|<1$, we have $|2+i t-\rho| \geq 1$, and the number of terms is $O(\log t)$ by Corollary 1 above. Hence the result.

The desired estimate (6) follows from (9). To be explicit,

$$
\begin{aligned}
\pi S(T) & =\arg \zeta\left(\frac{1}{2}+i T\right)=\Im\left[\log \zeta\left(\frac{1}{2}+i T\right)\right] \\
& =\left(\int_{2}^{2+i T}-\int_{\frac{1}{2}+i T}^{2+i T}\right) \Im\left[\frac{\zeta^{\prime}(s)}{\zeta(s)}\right] \mathrm{d} s \\
& =O(1)-\int_{\frac{1}{2}+i T}^{2+i T} \Im\left[\frac{\zeta^{\prime}(s)}{\zeta(s)}\right] \mathrm{d} s
\end{aligned}
$$

Now from (9) we have

$$
\int_{\frac{1}{2}+i T}^{2+i T} \Im\left[\frac{1}{s-\rho}\right] \mathrm{d} s=\Delta \arg (s-\rho)
$$

and this absolute value at most π. The number of terms in the sum in (9) is $O(\log T)$, and therefore (6) follows.

Corollary 3. If the ordinates $\gamma>0$ are enumerated in increasing order as $\gamma_{1}, \gamma_{2}, \cdots$, then $\gamma_{n} \sim \frac{2 \pi n}{\log n}$ as $n \rightarrow \infty$.

Note. It does not follow that $\gamma_{n+1}-\gamma_{n} \rightarrow 0$, proved by Littlewood in 1924.

2 The Number $N(T, \chi)$

Let χ be a primitive character to the modulus q, and let $N(T, \chi)$ denote the number of $L(s, \chi)$ in the rectangle $0<\sigma<1,|t|<T$, where $T \geq 2$. Our aim in this section is to prove the following approximate formula for $N(T, \chi)$:

$$
\begin{equation*}
\frac{1}{2} N(T, \chi)=\frac{T}{2 \pi} \log \frac{q T}{2 \pi}-\frac{T}{2 \pi}+O(\log T+\log q) \tag{10}
\end{equation*}
$$

Note. It is not appropriate to consider only the upper half-plane since the zeros are not in general symmetrically placed w.r.t. the real axis. The factor $\frac{1}{2}$ serves only for the purpose of comparison with $N(T)$. Same as before, we here consider the function $\xi(s, \chi)$ instead of $L(s, \chi)$.

The proof is almost the same, but it is now convenient to consider the variation in $\arg \xi(s, \chi)$ as s describes the rectangle R with vertices at $\frac{5}{2}-i T, \frac{5}{2}+i T,-\frac{3}{2}-i T,-\frac{3}{2}+i T$, so as to avoid the possible zero at $s=-1$. This rectangle includes just one trivial zero of $L(s, \chi)$, at either $s=0$ or $s=-1$, and therefore

$$
2 \pi[N(T, \chi)+1]=\Delta_{R} \arg (s, \chi)
$$

Recall that

$$
\begin{equation*}
\xi(1-s, \bar{\chi})=\frac{i^{\alpha} q^{\frac{1}{2}}}{\tau(\chi)} \xi(s, \chi) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi(s, \chi)=\left(\frac{q}{\pi}\right)^{\frac{s+\alpha}{2}} \Gamma\left(\frac{s+\alpha}{2}\right) L(s, \chi) \tag{12}
\end{equation*}
$$

where α is 0 when $\chi(-1)=1$ and 1 when $\chi(-1)=-1$. Then contribution of the left half of the contour is equal to that of the right, since

$$
\arg \xi(\sigma+i t, \chi)=\arg \overline{\xi(1-\sigma+i t, \chi)}+c,
$$

where c is independent of s. Similarly, simple calculation gives (here we also use the Stirling's formula (4))

$$
\begin{aligned}
& \Delta_{L} \arg \left(\frac{q}{\pi}\right)^{\frac{s+\alpha}{2}}=T \log \frac{q}{\pi} \\
& \Delta_{L} \arg \Gamma\left(\frac{s+\alpha}{2}\right)=T \log \frac{T}{2}-T+O(1)
\end{aligned}
$$

where L denotes the half of the contour R. This implies

$$
\begin{equation*}
\pi[N(T, \chi)+1]=T \log \frac{q T}{2 \pi}-T+S(T, \chi)+O(1) \tag{13}
\end{equation*}
$$

where

$$
\pi S(T, \chi)=\Delta_{L} \arg L(s, \chi)
$$

Suffice to prove

$$
\begin{equation*}
S(T, \chi)=O(\log T+\log q) \tag{14}
\end{equation*}
$$

Same as before, we need two lemmas with small modifications. Let's first state them.
Lemma 3. If $\rho=\beta+i \gamma$ runs through the nontrivial zeros of $L(s, \chi)$, where χ is primitive, then for any real t,

$$
\begin{equation*}
\sum_{\rho} \frac{1}{1+(t-\gamma)^{2}}=O(\log q(|t|+2)) \tag{15}
\end{equation*}
$$

Lemma 4. For t which does not coincide with the ordinate of a zero, and $-1 \leq \sigma \leq 2$,

$$
\begin{equation*}
\frac{L^{\prime}(s, \chi)}{L(s, \chi)}=\sum_{\rho}^{\prime} \frac{1}{s-\rho}+O(\log q(|t|+2)) \tag{16}
\end{equation*}
$$

where the sum is limited to those ρ for which $|t-\gamma|<1$.
They are proved in the same method as before, under the inequality proved during the discussion about zero-free region for $L(s, \chi)$ that

$$
\begin{equation*}
-\Re \frac{L^{\prime}(s, \chi)}{L(s, \chi)}<c \log (q(|t|+2))-\sum_{\rho} \Re \frac{1}{s-\rho} . \tag{17}
\end{equation*}
$$

Again use the same method before, we can obtain (14) from (17).

At last, if χ is not primitive, induced by the primitive character $\chi_{1}\left(\bmod q_{1}\right)$, then (10) remains valid for $N(T, \chi)$ as defined, provided we replace q by q_{1}. But if $N_{R}(T, \chi)$ denotes the number of zeros in the rectangle R defined before, we must include the zeros on $\sigma=0$ of

$$
\prod_{p \mid q}\left[1-\chi_{1}(p) p^{-s}\right],
$$

according to

$$
\begin{equation*}
L(s, \chi)=\prod_{p \nmid q}\left[1-\chi(p) p^{-s}\right]^{-1}=L\left(s, \chi_{1}\right) \prod_{p \mid q}\left[1-\chi_{1}(p) p^{-s}\right] . \tag{18}
\end{equation*}
$$

These are (for each p not dividing q_{1}) spaced at equal distances $\frac{2 \pi}{\log p}$ apart. Their number, with $|t|<T$, is

$$
O\left[\sum_{p \mid q}(T \log p+1)\right]=O(T \log q)
$$

Hence

$$
\begin{equation*}
N_{R}(T, \chi)=\frac{T}{\pi} \log \frac{T}{2 \pi}+O(T \log q) \tag{19}
\end{equation*}
$$

for $T \geq 2$.

