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1 The Number N(T )

Let N(T ) denote the number of zeros of ζ(s) in the rectangle 0 < σ < 1, 0 < t ≤ T . In this
section, we will prove the following approximate formula for N(T ):

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ). (1)

Our primary tool for this is Argument principle. We will state as follow:

Theorem 1 (Argument Principle). Suppose that f(z) be a meromorphic function defined
inside and on a simple closed contour C with no zeroes or poles C. Let N and P be the
number of zeroes and poles, respectively, of f(z) inside C, where a multiple zero or pole is
counted according to its multiplicity. Then

1

2πi

∫
C

f ′(z)

f(z)
dz = N − P =

1

2π
∆C arg f(z).

We omit the proof here. It is convenient to work initially with ξ(s) rather than with ζ(s)
because of its simple functional equation, namely ξ(1 − s) = ξ(s). Assuming for simplicity
that T (which we suppose to be large) does not coincide with the ordinate of a zero, we have
by argument principle

2πN(T ) = ∆R arg ξ(s),

where R is the rectangle in the s-plane with vertices at 2, 2 + iT , −1 + iT , −1 described in
the positive sense, and in which ξ(s) has no poles.

By simple observation, there is no change in arg ξ(s) as s moves along the bottom edge
of rectangle since ξ(s) is real and nowhere 0. Further, the change as s moves from 1

2
+ iT

to −1 + iT and then to −1 is equal to the change as s moves from 2 to 2 + iT and then to
1
2

+ iT , since

ξ(σ + it) = ξ(1− σ − it) = ξ(1− σ + it).

Hence
πN(T ) = ∆L arg ξ(s), (2)

where L denotes the line from 2 to 2 + iT and then to 1
2

+ iT .
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Recall that

ξ(s) = (s− 1)π−
1
2
sΓ(

1

2
s+ 1)ζ(s).

Thus in (2) we have

arg ξ(s) = arg(s− 1) + arg π−
1
2
s + arg Γ(

1

2
s+ 1) + arg ζ(s). (3)

Simple calculation gives

∆L arg(s− 1) = ∆L arg(σ − 1 + it) = ∆L arctan
t

σ − 1
=
π

2
+O(T−1),

∆L arg π−
1
2
s = ∆L(−1

2
t log π) = −1

2
T log π.

Recall that the Stirling’s formula gives:

Theorem 2 (Stirling’s formula).

log Γ(s) = (s− 1

2
) log s− s+

1

2
log 2π +O(|s|−1) (4)

Apply this to (3) we have

∆L arg Γ(
1

2
s+ 1) = arg Γ(

1

2
iT +

5

4
)− arg Γ(2)

= arg

[
exp

(
< log Γ(

1

2
iT +

5

4
) + i= log Γ(

1

2
iT +

5

4
)

)]
== log Γ(

1

2
iT +

5

4
)

==
[
(
1

2
iT +

3

4
) log(

1

2
iT +

3

4
)− 1

2
iT − 5

4
+

1

2
log 2π +O(T−1)

]
=
T

2
log

T

2
− T

2
+

3π

8
+O(1).

Hence

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) +O(1), (5)

where

πS(T ) = ∆L arg ζ(s) = arg ζ(
1

2
+ iT ).

Suffice to prove

arg ζ(
1

2
+ iT ) = O(log T ). (6)

In order to prove that, we need a lemma first.

Lemma 1. If ρ = β + iγ runs through the nontrivial zeros of ζ(s), then for large T∑
ρ

1

1 + (T − γ)2
= O(log T ). (7)
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Proof. We have proved during discussion about zero-free region for ζ(s) that

−<ζ
′(s)

ζ(s)
< A log t−

∑
ρ

<
(

1

s− ρ
+

1

ρ

)
(8)

for 1 ≤ σ ≤ 2 and t ≥ 2, with the sum over ρ is positive. Take s = 2 + iT . Also we have

−ζ
′(s)

ζ(s)
≤ 1

σ − 1
+ A1,

where A1 is some absolute constant. Hence
∣∣∣ ζ′(s)ζ(s)

∣∣∣ is bounded, and we obtain

∑
ρ

<
(

1

s− ρ
+

1

ρ

)
< A2 log T,

Since

< 1

s− ρ
=

2− β
(2− β)2 + (T − γ)2

≥ 1

4 + (T − γ)2
,

we obtain the assertion in the lemma.

Corollary 1. The number of zeros with T − 1 < γ < T + 1 is O(log T ).

Corollary 2. The sum
∑

(T − γ)−2 extended over the zeros with γ outside the interval just
mentioned is also O(log T ).

Lemma 2. For large t which does not coincide with the ordinate of a zero and −1 ≤ σ ≤ 2,

ζ ′(s)

ζ(s)
=
∑
ρ

′ 1

s− ρ
+O(log t), (9)

where the sum is limited to those ρ for which |t− γ| < 1.

Proof. Recall that we have

ζ ′(s)

ζ(s)
= B − 1

s− 1
+

1

2
log π − 1

2

Γ′(1
2
s+ 1)

Γ(1
2
s+ 1)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
.

Apply it at s and at 2 + it and then subtracted,

ζ ′(s)

ζ(s)
= O(log t) +

∑
ρ

(
1

s− ρ
+

1

2 + it− ρ

)
.

Note for the terms with |γ − t| ≥ 1, we have∣∣∣∣ 1

s− ρ
+

1

2 + it− ρ

∣∣∣∣ =
2− σ

|(s− ρ)(2 + it− ρ)|
≤ 3

|γ − t|2
,

and the sum of these is O(log t) by Corollary 2 above. As for the terms with |γ − t| < 1,
we have |2 + it− ρ| ≥ 1, and the number of terms is O(log t) by Corollary 1 above. Hence
the result.
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The desired estimate (6) follows from (9). To be explicit,

πS(T ) = arg ζ(
1

2
+ iT ) = =

[
log ζ(

1

2
+ iT )

]
=

(∫ 2+iT

2

−
∫ 2+iT

1
2
+iT

)
=
[
ζ ′(s)

ζ(s)

]
ds

=O(1)−
∫ 2+iT

1
2
+iT

=
[
ζ ′(s)

ζ(s)

]
ds

Now from (9) we have ∫ 2+iT

1
2
+iT

=
[

1

s− ρ

]
ds = ∆ arg(s− ρ),

and this absolute value at most π. The number of terms in the sum in (9) is O(log T ), and
therefore (6) follows.

Corollary 3. If the ordinates γ > 0 are enumerated in increasing order as γ1, γ2, · · · , then
γn ∼ 2πn

logn
as n→∞.

Note. It does not follow that γn+1 − γn → 0, proved by Littlewood in 1924.

2 The Number N(T, χ)

Let χ be a primitive character to the modulus q, and let N(T, χ) denote the number of
L(s, χ) in the rectangle 0 < σ < 1, |t| < T , where T ≥ 2. Our aim in this section is to prove
the following approximate formula for N(T, χ):

1

2
N(T, χ) =

T

2π
log

qT

2π
− T

2π
+O(log T + log q). (10)

Note. It is not appropriate to consider only the upper half-plane since the zeros are not in
general symmetrically placed w.r.t. the real axis. The factor 1

2
serves only for the purpose

of comparison with N(T ). Same as before, we here consider the function ξ(s, χ) instead of
L(s, χ).

The proof is almost the same, but it is now convenient to consider the variation in
arg ξ(s, χ) as s describes the rectangle R with vertices at 5

2
− iT , 5

2
+ iT , −3

2
− iT , −3

2
+ iT ,

so as to avoid the possible zero at s = −1. This rectangle includes just one trivial zero of
L(s, χ), at either s = 0 or s = −1, and therefore

2π [N(T, χ) + 1] = ∆R arg(s, χ).

Recall that

ξ(1− s, χ) =
iαq

1
2

τ(χ)
ξ(s, χ), (11)
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and

ξ(s, χ) =
( q
π

) s+α
2

Γ(
s+ α

2
)L(s, χ), (12)

where α is 0 when χ(−1) = 1 and 1 when χ(−1) = −1. Then contribution of the left half of
the contour is equal to that of the right, since

arg ξ(σ + it, χ) = arg ξ(1− σ + it, χ) + c,

where c is independent of s. Similarly, simple calculation gives (here we also use the Stirling’s
formula (4))

∆L arg
( q
π

) s+α
2

= T log
q

π
,

∆L arg Γ(
s+ α

2
) = T log

T

2
− T +O(1),

where L denotes the half of the contour R. This implies

π [N(T, χ) + 1] = T log
qT

2π
− T + S(T, χ) +O(1), (13)

where
πS(T, χ) = ∆L argL(s, χ).

Suffice to prove
S(T, χ) = O(log T + log q). (14)

Same as before, we need two lemmas with small modifications. Let’s first state them.

Lemma 3. If ρ = β + iγ runs through the nontrivial zeros of L(s, χ), where χ is primitive,
then for any real t, ∑

ρ

1

1 + (t− γ)2
= O(log q(|t|+ 2)). (15)

Lemma 4. For t which does not coincide with the ordinate of a zero, and −1 ≤ σ ≤ 2,

L′(s, χ)

L(s, χ)
=
∑
ρ

′ 1

s− ρ
+O(log q(|t|+ 2)), (16)

where the sum is limited to those ρ for which |t− γ| < 1.

They are proved in the same method as before, under the inequality proved during the
discussion about zero-free region for L(s, χ) that

−<L
′(s, χ)

L(s, χ)
< c log(q(|t|+ 2))−

∑
ρ

< 1

s− ρ
. (17)

Again use the same method before, we can obtain (14) from (17).
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At last, if χ is not primitive, induced by the primitive character χ1( mod q1), then (10)
remains valid for N(T, χ) as defined, provided we replace q by q1. But if NR(T, χ) denotes
the number of zeros in the rectangle R defined before, we must include the zeros on σ = 0 of∏

p|q

[
1− χ1(p)p

−s] ,
according to

L(s, χ) =
∏
p-q

[
1− χ(p)p−s

]−1
= L(s, χ1)

∏
p|q

[
1− χ1(p)p

−s] . (18)

These are (for each p not dividing q1) spaced at equal distances 2π
log p

apart. Their number,

with |t| < T , is

O

∑
p|q

(T log p+ 1)

 = O(T log q).

Hence

NR(T, χ) =
T

π
log

T

2π
+O(T log q), (19)

for T ≥ 2.
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